Table 4 Summary of recent approaches to LAHVA development | Cell source (VICs) | Cell source
(VECs) | Scaffold material | Signals | Model / observation period | Functionality | Morphology / structure | Mechanical strength | ECM production / DNA content | Scaffold degradation time | Limitations | Reference | |---|--|--|--|--|---|--|---|--|--|---|---------------------------------| | Ovine femoral artery smooth muscle cells / fibroblasts | Ovine femoral
artery endothelial
cells | Woven PGLA / non-woven PGA leaflet construct (3.2mm thickness) | | In vivo allogeneic and autogeneic ovine pulmonary models / up to 21 days | Autogeneic leaflets shown to function appropriately using Doppler echocardiography | Shrinkage and deterioration of allogeneic leaflets Poorly developed matrix | Maximal tensile strength pre-
implantation of 3.6MPa compared to
3.1MPa for native valve | 30% of native valve collagen
after 7 days
No values reported for DNA
content | Not reported | Serious infectious complications in allogeneic models Inflammatory reaction Moderate regurgitation | Shinoka <i>et al.</i> ,
1995 | | - | - | Valve matrix decellularised using
hypo-/hypertonic KCl solutions,
Triton X-100, SDS, DNase and
RNase | | In vivo allogeneic canine pulmonary model / explantation at 1 month | Leaflet motion demonstrated at 1 month | Partial endothelialisation
Ingrowth of cells at leaflet
base | Not reported | Not reported | | Requires long-term follow-up studies | Wilson <i>et al.</i> ,
1995 | | Ovine femoral artery smooth muscle cells / fibroblasts | Ovine femoral
artery endothelial
cells | Woven PGLA / non-woven PGA leaflet construct (3.2mm thickness) | - | In vivo autogeneic ovine pulmonary model / up to 11 weeks | Competent in pulmonary circulation | Resemblance to native valve architecture | Maximal tensile strength of 2.68MPa after 11 weeks Increase in strength over time | Evidence for elastin and collagen production Increase in collagen content over time | Scaffold persisted for up to 6 weeks | Thickness and stiffness of leaflets
Long-term growth and durability
unknown | Shinoka <i>et al.</i> ,
1996 | | Mixed population of dermal fibroblasts and endothelial cells | | Woven PGLA / non-woven PGA leaflet construct (3.2mm thickness) | - | In vivo autogeneic ovine pulmonary model / explantation at 8-10 weeks | Evidence for contracted immobile leaflets | Less organised structure than leaflets of arterial cell origin | Maximal tensile strength of 1.27MPa | Evidence for elastin and collagen production Collagen values approached 56% of native valve collagen | Scaffold persisted for up to 8 weeks | Thick and contracted leaflets Disorganised matrix Mild regurgitation | Shinoka <i>et al.</i> ,
1997 | | - | Human saphenous
vein endothelial
cells | Valve matrix decellularised using
Triton X-100, DNase and RNase | - | In vitro xenogeneic porcine model / up to 3 days in culture | Not implanted | Grossly loosened matrix
structure
Confluent monolayer of viable
endothelial cells | - | - | - | Presence of immume-stimulating cell remnants could not be excluded | Bader <i>et al.</i> ,
1998 | | Ovine carotid artery myofibroblasts | Ovine carotid
artery endothelial
cells | Trileaflet valve scaffold composed of non-woven PGA mesh coated with P4HB | In vitro pulse duplicator
system – 14 days pre-
conditioning | In vivo autogeneic ovine
pulmonary model / up to 20
weeks | Synchronous opening and closing of leaflets Leaflets competent during valve closure | Tissue maximally organised
after 14 days pre-conditioning
Uniform laminated structure
after explantation | Suture retention strength >50g after 14 days pre-conditioning Tensile strength 130% that of native tissue at 20 weeks post-implantation | 180% of native valve collagen values after 8 weeks 150% of native valve DNA content, 140% of native valve GAG content after 20 weeks Elastin detectable by 6 weeks | Complete degradation of
PGA by 4 weeks and of
P4HB by 8 weeks | Moderate regurgitation reported | Hoerstrup <i>et al.</i> , 2000 | | Ovine carotid artery myofibroblasts | Ovine carotid
artery endothelial
cells | Valve matrix decellularised using 0.05% trypsin and 0.02% EDTA under continuous shaking | - | In vivo allogeneic ovine
pulmonary model / up to 12
weeks | Mild to moderate regurgitation in
unseeded control valves
Severe regurgitation in 1 of 6
animals in seeded group | Moderate thickening of valves
in seeded group
Complete endothelial lining at
4 and 12 weeks
Repopulation of valve matrix | Not reported | Active matrix synthesis indicated by procollagen I-staining | - | Calcification of conduit tissue
Inflammatory reaction
Long-term fate of grafts remains
unclear | Steinhoff et al., 2000 | | Ovine carotid artery myofibroblasts | Ovine carotid
artery endothelial
cells | Conduit: non-porous PHO film
(240µm thick) between 2 layers of
PGA felt (1mm thick)
Leaflet: porous PHO film (120µm
thick) | | In vivo autogeneic ovine
pulmonary model / up to 24
weeks | Valve competence demonstrated
One non-functioning leaflet fused
to conduit wall | Thickened laminated structure in conduit wall lined by endothelial cells Leaflets showed less tissue maturity than conduit wall | Not reported | Stainable collagen and PGs in leaflets reported No stainable elastin in leaflets | PHO material still evident
in conduit and leaflets at
24 weeks | Long-term degradation period of PHO may have potential to augment host-tissue reactions | Stock et al.,
2000 | | Ovine carotid artery myofibroblasts | Ovine jugular
vein endothelial
cells | Moulded porous PHO trileaflet valve scaffold | - | In vivo autogeneic ovine
pulmonary model / up to 17
weeks | Synchronous opening and closing of leaflets | Smooth flow surfaces on
leaflets and conduit walls
Capillary ingrowth | Maximal tensile strength decreased from 967±99kPa (1 week) to 648±52kPa (17 weeks) Constructs became more elastic | 116% of native valve collagen,
73% of native valve DNA
content after 17 weeks | Only 30% degradation of scaffold after 17 weeks in vivo | Mild stenosis and regurgitation in all animals | Sodian et al.,
2000 | | Human ascending aorta myofibroblasts | - | Moulded fibrin gel trileaflet valve scaffold | | In vitro human model / up to 4 weeks in culture | Not implanted | Gross appearance comparable to native valve | Tissue could be sutured but strength was too low for direct implantation | Well-developed ECM with organized collagen bundles | Degradation rate can be controlled <i>in vitro</i> using aprotinin | Low initial stiffness | Jockenhoevel et al., 2001 | | Porcine thoracic aorta myofibroblasts | Porcine thoracic
aorta endothelial
cells | Type I collagen scaffold derived from bovine skin tissue | - | In vitro xenogeneic porcine model / up to 4 weeks in culture | Not implanted | Several layers of cells separated by extensive ECM | Not reported | Evidence for the production of PGs, and ECM proteins fibronectin and thrombospondin | Not reported | Confluent, intact endothelium not achieved | Rothenburger et al., 2001 | | Human bone marrow stromal cells (MSCs) | | Trileaflet valve scaffold composed of non-woven PGA mesh coated with P4HB | In vitro pulse duplicator
system – 14 days pre-
conditioning | In vitro human model / up to 21 days in culture | Not implanted | Synchronous opening and closing of leaflets in bioreactor system Leaflets competent during valve closure | Conditioned leaflets displayed maximum stress 92±12% that of native leaflets, and Young's modulus 139±14% of native leaflets | Evidence for production of collagen types I and III Collagen content reached 25% and GAG content 37% that of native valve DNA content reached >300% | Not reported | Minimal characterization studies of MSCs before and after seeding of scaffolds Low ECM production | Hoerstrup <i>et al.</i> , 2002 | | Mixed population of human umbilical cord artery, vein and Wharton's jelly cells | | Scaffold patches
composed of non-woven PGA mesh
coated with P4HB | In vitro laminar flow
system – 14 days pre-
conditioning | In vitro human model / up to 21 days in culture | Not implanted | - | Layered tissue structure with irregular cellular ingrowth | Production of collagen types I and III GAG content reached 34% that of native pulmonary artery DNA content reached 361% | Not reported | 'Mixed' cell population was used, with
minimal characterization studies
performed before and after cell seeding | Kadner <i>et al.</i> , 2002 | List of abbreviations: VICs: valvar interstitial cells; VECs: valvar endocardial cells; ECM: extracellular matrix; DNA: deoxyribonucleic acid; PGLA: polyglactin; PGA: polyglycolic acid; KCl: potassium chloride; SDS: sodium dodecyl sulphate: DNAse: deoxyribonuclease: RNAse: ribonuclease; P4HB: poly-4-hydroxybutyrate; GAG: glycosaminoglycan; EDTA: ethylene diamine tetraacetic acid; PHO: polyhydroxyoctanoate; PGs:proteoglycans