
166 www.ecmjournal.org

D Gothard et al.                                                                                      Tissue engineered bone and clinical translationEuropean Cells and Materials Vol. 28  2014 (pages 166-208)  DOI: 10.22203/eCM.v028a13                ISSN 1473-2262

Abstract

There is a growing socio-economic need for effective 
strategies to repair damaged bone resulting from disease, 
trauma and surgical intervention. Bone tissue engineering 
has received substantial investment over the last few 
decades as a result. A multitude of studies have sought to 
examine the efficacy of multiple growth factors, delivery 
systems and biomaterials within in vivo animal models 
for the repair of critical-sized bone defects. Defect repair 
requires recapitulation of in vivo signalling cascades, 
including osteogenesis, chondrogenesis and angiogenesis, 
in an orchestrated spatiotemporal manner. Strategies to 
drive parallel, synergistic and consecutive signalling of 
factors including BMP-2, BMP-7/OP-1, FGF, PDGF, 
PTH, PTHrP, TGF-β3, VEGF and Wnts have demonstrated 
improved bone healing within animal models. Enhanced 
bone repair has also been demonstrated in the clinic 
following European Medicines Agency and Food and Drug 
Administration approval of BMP-2, BMP-7/OP-1, PDGF, 
PTH and PTHrP. The current review assesses the in vivo 
and clinical data surrounding the application of growth 
factors for bone regeneration. This review has examined 
data published between 1965 and 2013. All bone tissue 
engineering studies investigating in vivo response of the 
growth factors listed above, or combinations thereof, 
utilising animal models or human trials were included. All 
studies were compiled from PubMed-NCBI using search 
terms including ‘growth factor name’, ‘in vivo’, ‘model/
animal’, ‘human’, and ‘bone tissue engineering’. Focus 
is drawn to the in vivo success of osteoinductive growth 
factors incorporated within material implants both in 
animals and humans, and identifies the unmet challenges 
within the skeletal regenerative area.
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However, Supplementary Tables 1-9 can be accessed 
from a secondary supplementary document that is available 
from the eCM Journal webpage for this paper ( http://www.
ecmjournal.org/journal/papers/vol028/vol028a13.php )

Introduction

Tissue engineering utilises design and construction 
principles to manufacture replacement tissues exhibiting 
competent biological function (Tabata, 2003). Regeneration 
or repair of critical-sized bone defects by substitution 
of damaged or diseased tissues requires an ability to 
recapitulate developmental biology processes and 
control tissue morphogenesis. Manipulation of tissue 
development and morphogenesis can be achieved through 
delivery of inductive signals replicating native in vivo 
microenvironmental cues. Utilisation of select growth 
factors enables controlled cell differentiation towards 
specified lineages (Sundelacruz and Kaplan, 2009). 
Spatiotemporal orchestration of growth factors in vivo is 
critical to successful bone tissue engineering strategies 
(Reddi, 2000). The aim of this review was to assess 
the inductive signalling aspect of current bone tissue 
engineering strategies, and identify individual growth 
factors or combinations thereof which have shown in vivo 
success within animal models and have been scaled to 
large animals prior to clinical translation within humans. 
It is pertinent to understand current progress to evaluate 
optimum strategies that can be taken forward for further 
study.
 There is currently a range of tissue-engineered solutions 
advocated for bone repair and yet there remains a need for 
demonstrable preclinical and clinical efficacy of materials 
with a proven capacity to repair bone damage resulting from 
disease, trauma or surgical intervention. It is estimated that 
3.6 % of the UK population (of over 64 million) will suffer 
a bone fracture in their lifetime (Donaldson et al., 2008). 
The risk of fracture increases with age and statistics show 
1 in 3 women and 1 in 5 men over 50 years of age will 
experience an osteoporotic fracture; a growing concern in 
an increasingly aged population (van Staa et al., 2001). 
The worldwide incidence of hip fracture is expected to 
increase 240 % and 310 % in women and men, respectively, 
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by 2050 (Baim and Leslie, 2012; Gullberg et al., 1997), 
resulting potentially in a rise from 1.6 million cases per 
annum to between 4.5 and 6.3 million cases (Cooper et 
al., 1992b). Osteoporosis is a major cause of hip fractures 
with equally significant financial tolls derived from both 
immediate medical treatment and post-treatment aid for 
reduced mobility, disability and increased dependency 
(Keene et al., 1993; Leslie et al., 2012). There are currently 
over 2 million osteoporosis sufferers in the UK alone 
whose medical treatment of related fractures (Borgstrom 
et al., 2010a; Borgstrom et al., 2010b; Strom et al., 2013) 
is predicted to cost over £2 billion by 2020 (Burge et al., 
2001). Throughout the rest of Europe, osteoporosis related 
fractures are estimated to cost £51 billion by 2050 (Kanis 
and Johnell, 2005).
 In addition, typically 10 % of fractures fail to repair 
resulting in non-union and increased socio-economic 
costs. There are two categories of non-union, hypertrophic 
(callus formation but without union) and atrophic (no 
callus formation). Many factors contribute to non-union 
fractures including avascular necrosis, bone apposition 
failure, poor or loss of fixation, infection, and soft tissue 
imposition within the defect site. A study in 2007 showed 
that humeral, tibial and femoral non-unions cost £15.5K, 
£16.3K and £17.2K, respectively, on a ‘best-case scenario’ 
(Kanakaris and Giannoudis, 2007). Non-union may also 
occur following spinal fusion surgery (posterolateral 
lumbar arthrodesis). Over 200,000 spinal fusion procedures 
are performed per annum in the US, yet non-union occurs 
in 10-40 % of patients undergoing single-level fusions 
(Boden, 2000). This is more frequent in patients undergoing 
multiple-level fusions. Increasing costs are expected in 
the future, as only a third of vertebral fractures come to 
clinical attention and are officially diagnosed (Cooper et 
al., 1992a); it is estimated that up to 29 % of vertebral 
fractures may go unrecognised in Europe alone (Delmas et 
al., 2005). Improved diagnosis of bone-related cancers is 
also expected to see rising costs for treatment. More than 
2,000 cases are diagnosed per annum in the UK and more 
than 3,000 in the US.
 It is thus important to understand the principles of the 
bone-healing cascade and manipulation with biomaterials 
and growth factors to aid development of successful tissue 

engineering strategies for effective bone regeneration 
and repair (Berner et al., 2012). This review examines 
data published between 1965 and 2013. All bone tissue 
engineering studies detailing an in vivo response of 
selected growth factors, including bone morphogenetic 
protein 2 (BMP-2), BMP-7/osteogenic protein 1 (OP-1), 
fibroblast growth factor (FGF), platelet-derived growth 
factor (PDGF), parathyroid hormone (PTH), parathyroid 
hormone-related protein (PTHrP), transforming growth 
factor beta 3 (TGF-β3), vascular endothelial growth 
factor (VEGF) and Wnt proteins, or combinations thereof, 
utilising animal models or human trials were included. All 
studies were compiled from PubMed-NCBI using search 
terms including ‘growth factor name’, ‘in vivo’, ‘model/
animal’, ‘human’, and ‘bone tissue engineering’. Focus 
is drawn to the in vivo success of osteoinductive growth 
factors both in animals and in humans.

Animal Model Selection

To understand and recapitulate the healing cascade, suitable 
bone defects must be established in vivo through the use 
of appropriate animal models. Animal models allow for 
standardisation or elimination of variables which contribute 
to the success or failure of tissue engineered materials; 
animals may be obtained from the same source or breed, 
and maintained under identical environmental conditions 
(Khan and Lane, 2004). The bone defects must not exhibit 
spontaneous healing during the lifetime of the animal 
(Horner et al., 2010). These critical-sized bone defects 
are dependent on multiple factors and remain difficult to 
define across anatomical location and species (Cooper 
et al., 2010). Previous work has defined a critical-sized 
defect as “a segmental bone deficiency of a length that 
exceeds 2 to 2.5 times the diameter of the affected bone” 
(Gugala et al., 2007). However, this definition is not often 
applied to defects within animal models, and the important 
parameters to report are defect size and location. Efficacy 
of any tissue-engineered constructs within these critical-
sized defects is dependent on a number of variables detailed 
in Table 1 (Lindsey et al., 2006; Reichert et al., 2009; 
Rimondini et al., 2005). Furthermore, when choosing a 

Factors affecting construct efficacy in vivo Factors affecting animal species selection
•	 Anatomic bone location •	 Acquisition and treatment costs
•	 Animal species and age •	 Animal breed and uniformity
•	 Animal state of health (disease states) •	 Animal size relative to implant number and size
•	 Bone structure and complexity •	 Availability
•	 Defect size (critical sized) and position (bone region) •	 Biological characteristics analogous to humans
•	 Mechanical load and stress conditions •	 Blood and biopsy sample size and number
•	 Mutational status (strain) •	 Ethical considerations
•	 Nutrition •	 Existing biological knowledge of the species
•	 Presence of adjacent soft tissues •	 Handling and nature of the animal
•	 Presence of periosteum •	 Normal activity level of the animal
•	 Post-surgical fixation •	 Resistance to infection
•	 Time •	 Study period and lifetime of the animal
•	 Vascularisation •	 Tolerance to surgery and captivity

Table 1. Factors affecting both study animal selection and efficacy of implanted constructs within these animal models.
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suitable species for study, additional factors also require 
further consideration as detailed in Table 1 (Pearce et al., 
2007; Reichert et al., 2009). A review of the literature by 
O’Loughlin et al. (2008) demonstrated clear preferences 
towards particular species for fracture related studies, 
including rat (38 %), rabbit (19 %), mouse (15 %), sheep 
(11 %), dog (9 %) and goat (4 %). The remaining 4 % 
comprised a wide selection of less frequently investigated 
animal models. Currently, no single animal model provides 
a representative comparison for human bone repair; rather 
each animal model is selected to address a particular 
research question. Advantages and disadvantages of current 
large and small animal models as human comparisons for 
bone tissue research are shown in Table 2. Furthermore, it 
is apparent that, dependent on the research question, bones 
of the selected animal model should exhibit significant 
physiological and pathophysiological analogies to human 
bone, regarding both macro- and micro-structure (Table 
3). If animal studies are to inform clinical translation then 
models should be carefully selected to best recapitulate the 
in vivo bone environment within humans. Table 3 details 
the structure of bone, highlighting parameters that require 
consideration prior to animal model selection (Egermann 
et al., 2005; Liebschner, 2004). Some aspects of animal 
bone structure may be similar to that of humans; however, 
a balance should be struck with those that are different 
from humans. For example, preliminary investigations of 
bone biology and response to growth factor combinations 
could be assessed within small animals such as mouse or 
rat, as they provide a high-throughput in vivo model with 
similar biochemical composition to humans, and existing 
literature would help evaluate and interpret data. Systems 
could then be transferred to large animal models to assess 
candidate growth factors or combinations thereof in a 
functional setting analogous to humans. For example, 
defect regeneration strategies could be assessed within 
sheep long bone fractures as a model for large bone defects 
in humans, where the scale, mechanical loading and bone 
composition are similar to humans.

Growth Factor Delivery Vehicles

Following selection of an animal model and formation of a 
suitable critical-sized defect, a scaffold material exhibiting 
multifactorial properties is typically required to fill or 
bridge the defect site (Butler et al., 2000). Orthopaedic 
materials currently employed in bone regeneration studies 
comprise organic bone substitutes, synthetic biomaterials 
and/or inorganic materials (Table 4). The suitability of a 
selected biomaterial scaffold is governed by four factors; i) 
biomimicry, ii) biocompatibility, iii) biodegradability and 
iv) biomechanics. Successful scaffolds are thought to be 
those that replicate host tissue 3D architecture (porosity and 
microstructure enabling cell migration and vascularisation) 
(Bonfield, 2006; Laschke et al., 2008; Ma, 2008), and do 
not elicit an immunological or inflammatory response 
locally or systemically during either long or short-term 
integration. If degradation is required the material should 
degrade over time without production of toxic by-products, 
and endure mechanical and physiological stresses (Ghosh 

and Ingber, 2007; Howard et al., 2008; McMahon et al., 
2008; Semino, 2008). Hip replacement implants are often 
not biodegradable, rather these implant scaffolds are 
selected to exhibit corrosion resistance, durability and 
strength sufficient enough to last the lifetime of the patient 
(Schauss et al., 2006). Biomechanical properties of interest 
include elasticity, thermostability and tensile strength of 
the constituent materials (El Haj et al., 2005; Guan and 
Davies, 2004; Lendlein and Langer, 2002).
 Many researchers believe that bone scaffold material 
should ideally replicate/incorporate the extracellular matrix 
(ECM) and thus influence cell attachment, migration, 
proliferation, differentiation and resultant bone tissue 
organisation (Green et al., 2002; Karageorgiou and 
Kaplan, 2005; Shin et al., 2003; Yang et al., 2003). A 
variety of materials have been designed to address this 
challenge exhibiting either a bioactive osteoconductive 
surface (Takimoto et al., 2003), enhanced functionality 
as a consequence of cell-scaffold surface topography 
interactions (Cohen et al., 1993; Engel et al., 2008), 
functionalisation with a bioactive coating, or impregnation 
with bioactive molecules (Murphy and Mooney, 1999; 
Zhang et al., 2009a). Growth and development of 
functional engineered tissue is dependent on environmental 
cues, both physical and chemical (Burdick and Vunjak-
Novakovic, 2009; Chan and Mooney, 2008; Quaglia, 
2008). Implanted scaffolds can be designed as a delivery 
system for essential growth factors critical to cellular 
proliferation and osteogenic differentiation (Basmanav 
et al., 2008; Cartmell, 2009; Kanczler et al., 2008). 
Sustained release of encapsulated growth factors from 
implanted material scaffolds provides adequate localised 
osteoinduction at the defect site and has shown some 
success in vivo with respect to tissue engineered bone 
(Table 5) (Tabata, 2003).
 Alternative vehicles have also been utilised to deliver 
selected growth factors in vivo. Rather than direct delivery, 
the gene(s) encoding the selected growth factor(s) can be 
introduced to the defect site by means of viral transduction 
or non-viral transfection. As seen in mouse studies 
administering BMP-2 as the choice growth factor, either 
viral (Gazit et al., 1999) or plasmid vectors (Osawa et al., 
2009) can be directly delivered to the defect site (Dupont 
et al., 2012), or pre-treated cells can be delivered (Kallai 
et al., 2010).

Individual Growth Factors

Growth factor choice in a tissue engineering approach is 
critical for successful bone formation. Notable growth 
factors known to be important for bone regeneration 
include BMP-2, BMP-7/OP-1, FGF, PDGF, PTH, PTHrP, 
TGF-β3, VEGF and Wnt proteins. These growth factors 
have been applied individually and in combination, through 
direct and indirect delivery vehicles (Table 5). In vivo 
paracrine and autocrine signalling cascades leading to bone 
formation are complex and rely on strict spatiotemporal 
interplay between select growth factors. Teasing apart 
the individual roles that each growth factor plays within 
bone development and healing systems is of the highest 
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Animal Advantages Disadvantages Reference(s)
Large 
Models Extrapolation to human studies
Dog •	 Tractable

•	 Similar trabecular bone mineral density 
(BMD)

•	 Similar biochemical composition 
•	 Considerable existing literature
•	 Trained in recuperative regime

•	 Breed variety
•	 Ethical implications
•	 High bone remodelling
•	 High costs
•	 High mechanical strength
•	 High solid bone fusion
•	 Low non-union
•	 Quadrupedal  gait

(Aerssens et al., 1998; Kimmel 
and Jee, 1982; Neyt et al., 
1998; Pearce et al., 2007; 
Skurla and James, 2005)

Goat •	 Large body size for multiple implants
•	 Similar BMD and biochemical 

composition
•	 Similar body weight
•	 Similar bone remodelling rate
•	 Tolerant of ambient conditions

•	 Ethical implications
•	 Fast revascularisation
•	 High costs
•	 Inquisitive nature
•	 Quadrupedal  gait

(Lamerigts et al., 2000; Leung 
et al., 2001; Pearce et al., 
2007)

Pig •	 Similar anatomy, biochemical compo-
sition, BMD, bone healing and bone 
morphology

•	 Aggressive
•	 Difficult to handle
•	 Ethical implications
•	 Excessive body weight
•	 High costs
•	 High growth rate
•	 Quadrupedal  gait

(Aerssens et al., 1998; 
Mosekilde et al., 1993; Pearce 
et al., 2007; Thorwarth et al., 
2005)

Primates •	 Phylogenetic proximity to humans
•	 Similar skeletal structure
•	 Similar BMD (dependent on sub-species)

•	 Availability
•	 Difficult to handle
•	 Ethical implications
•	 High costs

(Khan and Lane, 2004)

Sheep •	 Age mimics human ageing in bone and 
osteoid volume, and mineral apposition

•	 Considerable existing literature
•	 Docile
•	 Similar body weight
•	 Similar long bones structure
•	 Similar biochemical and mineral 

composition

•	 Age-dependent bone 
remodelling

•	 Ethical implications
•	 Haversian remodelling at 

7-9years
•	 High costs
•	 High mechanical strength 

(adults)
•	 High trabecular BMD
•	 Quadrupedal  gait

(Aerssens et al., 1998; 
Newman et al., 1995; Pearce 
et al., 2007; Ravaglioli et al., 
1996)

Small 
Models Extrapolation to human studies
Minipig •	 Reduced growth rate

•	 Reduced body mass
•	 Similar anatomy, BMD, bone healing and 

bone morphology
•	 Similar biochemical composition

•	 Ethical implications
•	 Limited clinical translation
•	 Quadrupedal  gait
•	 Size limitation for implants

(Aerssens et al., 1998; Pearce 
et al., 2007)

Mouse •	 Availability
•	 Considerable existing literature
•	 Easy to handle
•	 Enable disease state research
•	 Feasibility studies prior to scale up
•	 Immunodeficient - accept xenogenic 

material
•	 Lifespan allows for age-related research

•	 Ethical implications
•	 High bone healing rate
•	 Impractical bone fixation
•	 Limited blood and biopsy 

samples 
•	 Limited clinical translation
•	 Limited long term studies
•	 Limited sampling
•	 Quadrupedal  gait
•	 Size limitation for implants

(Gomes and Fernandes, 2010; 
Liebschner, 2004; O’Loughlin 
et al., 2008)

Rabbit •	 Availability
•	 Comparable long bone and lumbar 

structure
•	 Considerable existing literature
•	 Early skeletal maturity
•	 Ease of handling and size
•	 Feasibility studies prior to scale up

•	 Different bone structure
•	 Ethical implications
•	 High bone turnover
•	 Limited clinical translation
•	 Quadrupedal  gait 
•	 Size limitation for implants

(Castaneda et al., 2006; 
Liebschner, 2004; Pearce et al., 
2007)

Rat •	 Availability
•	 Considerable existing literature
•	 Easy to handle
•	 Enable disease state research
•	 Feasibility studies prior to scale up
•	 Immunodeficient - accept xenogenic 

material
•	 Lifespan allows for age related research
•	 Similar biochemical composition

•	 Ethical implications
•	 High bone remodelling
•	 Limited blood and biopsy 

samples
•	 Limited clinical translation
•	 Limited long term studies
•	 Quadrupedal gait
•	 Size limitation for implants

(Aerssens et al., 1998; 
Gomes and Fernandes, 2010; 
Liebschner, 2004; O’Loughlin 
et al., 2008)

Table 2. Advantages and disadvantages of large and small animal models for in vivo bone tissue engineering strategies 
and extrapolation for human clinical study.
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Physiological and pathophysiological analogies to humans Hierarchy of bone structure
•	 Macro Structure •	 Level 1 – Whole bone

Compact and cancellous bone External and internal geometry
•	 Micro Structure •	 Level 2 – Architecture

Osteons
Haversian bone
Lamellae
Trabeculae

Internal trabecular structure
Haversian/interstitial structure
Circumferential structure

•	 Shape and curvature •	 Level 3 – Tissue
Epiphysis
Metaphysis
Diaphysis

Individual trabeculae
Individual osteons
Cortical microbeam structure

•	 Composition •	 Level 4 – Lamellar
Bone mineral content and density
Collagen, proteoglycans and glycoproteins

Individual lamellae structure

•	 Healing and Remodelling •	 Level 5 – Ultrastructure
Callus formation
Osteoclast resorption
Osteoblast activity

Molecular composition
Mineral composition

Table 3. Factors affecting both study animal selection and efficacy of implanted constructs within these 
animal models.

Organic Substitutes for Bone Synthetic and Inorganic Substitutes 
Name Abbrev. Name Abbrev.
Alginate ALG Calcium carbonate CaCO3

Allograft n/a Calcium deficient HA CDHA
Autograft n/a Calcium phosphate n/a
Chitosan n/a Carboxymethyl cellulose CMC
Collagen n/a Cholesterol-bearing pullalan nanogel with acrylol 

residue
CHPA

Coral n/a Hydroxyapatite HA
Cortico-cancellous human bone block CHBB Poly ethylene glycol PEG
Demineralised bone n/a Poly ethylene glycol-diacrylate n/a
Deproteinised bovine bone block with porcine 
collagen

DBBB Poly lactic co-glycolic acid PLGA

Fibrin n/a Perfluorotributylamine PFTBA
Fibrinogen n/a Poly L lysine PLL
Gelatin n/a Polystyrene n/a
Hyaluronic acid HAA Poly urethane PUR
Matrigel n/a Poly vinyl alcohol PVA
Monoolein n/a Poly glycolic acid PGA
Silk fibroin n/a Poly caprolactone PCL

Poly propylene fumarate PPF
Poly lactic acid PLA
Poly-(N-isopropylacrylamide-co-acrylic acid) pNIPAm-co-AAc
Silica n/a
Titanium mesh n/a
Tri-calcium phosphate TCP

Table 4. Organic, inorganic and synthetic materials for orthopaedic applications in vivo.

BMP-2
The discovery of auto-induced bone formation in rabbits 
implanted with autologous demineralised, lyophilised bone 
segments by Marshall R. Urist in 1965 (Urist, 1965) led to 
the identification of osteoinductive signalling molecules 
named by Urist as ‘bone morphogenetic proteins’ (BMPs) 
(Urist and Strates, 1971). BMPs act as morphogens 
providing crucial signals which direct cell differentiation 
and tissue architecture. To date, twenty human BMP 
proteins have been discovered, of which eight (BMP-1 

importance to any robust and effective tissue engineering 
strategy. Here, the authors discuss the effect of growth 
factor delivery on bone formation in vivo following 
‘direct’, ‘indirect’ and ‘combination’ administration. 
Within each section, the effect of administration within first 
of all ‘small’ animal models is discussed, followed by the 
effect within ‘large’ animal models. The incorporation of 
cells within tissue engineering strategies and their effect 
on bone formation is discussed case by case throughout 
the review.
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Table 5. In vivo bone tissue engineering utilising growth factors including BMP-2/OP-1, BMP-7, FGF, PDGF, PTH, 
PTHrP, TGF-β3, VEGF and Wnt proteins. (divided into 4 parts - part 1)

Growth 
Factor(s) Animal Model Defect location and type Time Delivery system Dose/ Conc.

Defect 
regeneration Analysis methods

1. Direct Delivery

BMP-2

Large 
Models

Dog, Goat, 
Horse, 
Monkey, 
Pig and 
Sheep

•	 Drill – calvaria, cleft, 
condyle, patella and 
vertebrae

•	 Ectopic – intramuscular and 
subcutaneous

•	 Fusion – lumbar
•	 Segmental – femur, fibula, 

humerus, radius, tibia,  ulna 
(endochondral), mandible, 
maxilla, periodontal 
ridge and zygomatic arch 
(intramembranous)

3 weeks 
to 26 
months

•	 Organic scaffolds – collagen, 
demineralised bone, gelatin and 
silk fibroin 

•	 Inorganic scaffolds – CPC, 
ceramic phosphate, HA, PCL, 
PEG, PLA, PLGA, TCP and 
titanium oxide

5 to 100,000 µg
1.6 to 1,500 
µg/mL

1.2 to 21 fold 
(bone)
1.7 to 2.6 fold 
(biomechanics)

Biochemistry, 
biomechanical testing, 
CT (micro), DXA, 
faxitron, histology, 
histomorphometry, 
immunohistochemistry, 
in situ hybridization, 
MRI, RT-PCR, 
radiography (micro) 
and SEM

#37

Small 
Models

Mouse, 
Rabbit and 
Rat

5 d to 24 
weeks

•	 Organic scaffolds – alginate, 
CHBB, chitosan, collagen, 
coralline HA, DBBB, 
demineralised bone, fibrin, gelatin, 
hyaluronan and monoolein 

•	 Inorganic scaffolds – CDHA, 
CHPA, CPC, PCL, PEG, PLA, 
PLG, PLGA, polystyrene, PUR, 
PVA, silica and TCP

0.1 to 5,000 µg
(other studies 
have used 
150,000 µg)
2 to 4,000 µg/
mL

1.1 to 50 fold 
(bone)
1.6 to 18 fold 
(biomechanics)

#62

BMP-7/
OP-1

Large 
Models

Baboon, 
Dog, Goat, 
Monkey 
and Sheep •	 Drill – calvaria, femur, 

humerus and condyle
•	 Ectopic – intramuscular and 

subcutaneous
•	 Fusion – lumbar
•	 Osteotomy – tibia and 

mandible
•	 OVX – osteopenia, 
•	 Segmental – femur, tibia, 

ulna (endochondral), 
alveolar ridge and mandible 
(intramembranous)

1 week to 
1 year

•	 Organic scaffolds – alginate, 
allograft, autograft, chitosan, 
collagen, DBM and xenograft 

•	 Inorganic scaffolds – CMC, HA, 
hydroxylapatite, PCL, PLGA, 
PLLA, polylactide, TCP and 
titanium

100 to 750,000 
µg
1,000 to 3,500 
µg/mL

1.25 to 8.3 fold 
(bone)
1.65 to 3.3 fold 
(biomechanics)
1.6 fold (osteoid)

Biomechanical 
testing, CT (micro), 
DXA,  histology, 
histomorphometry, 
immunohistochemistry, 
MRI, radiography 
(micro), 
radioimmunoassay, and 
SEM

#28

Small 
Models

Minipig, 
Mouse, 
Rabbit and 
Rat

5 d to 12 
weeks

0.025 to 3,500 
µg
25 to 200 µg/
mL

1.1 to 29.5 fold 
(bone) – one 
study showed 
96 fold
1.3 to 31 fold 
(biomechanics)#25

FGF-1/2/18

Large 
Models Dog and 

Primate
•	 Drill – calvaria, condyle, 

femur and tibia
•	 Ectopic – intramuscular and 

subcutaneous
•	 Fracture – tibia
•	 Furcation
•	 OVX – osteopenia
•	 Segmental – femur, tibia 

(endochondral), alveolar 
ridge and mandible 
(intramembranous) 

2 to 32 
weeks

•	 Direct injection
•	 Organic scaffolds – collagen, 

gelatin and Matrigel
•	 Inorganic scaffolds – HA, 

hydroxypropoyl cellulose, 
polyethylene, polyglycolate, 
polylactide, TCP and titanium

0.15 to 200 µg
100 to 400 
µg/mL

1.3 to 3 fold 
(bone)

Biochemistry, 
biomechanical 
testing, CT (micro), 
FTIR, histology, 
histomorphometry, 
immunohistochemsitry, 
radiography and SEM

#5

Small 
Models

Mouse, 
Rabbit and 
Rat

3 d to 24 
weeks

0.01 to 200 µg
10 to 100 µg/
mL
100 to 1,000 
µg/kg

1.2 to 16.4 fold 
(bone)
2.1 to 4 fold 
(biomechanics)

#20

PDGF
Small 
Models

Minipig, 
Mouse, 
Rabbit and 
Rat

•	 Diabetes – rat
•	 Distraction – femur
•	 Drill – calvaria, condyle 

and femur
•	 Ectopic – intramuscular
•	 Osteotomy – tibia
•	 Segmental – femur and 

mandible

10 d to 12 
weeks

•	 Organic scaffolds – chitosan, 
collagen, DBM and fibrin

•	 Inorganic scaffolds – HA, PDLLA, 
PGA, PLGA, PLLA and TCP

0.01 to 750 μg
1 to 1,000 μg/
mL

1.45 to 10 fold 
(bone)

Biochemistry, 
biomechanical 
testing, histology, 
histomorphometry, 
immunohistochemistry, 
micro CT, radiography 
and SEM#14

PTH (1-31, 
1-34, 1-84, 
2-34, 28-48 
and 53-84)

Large 
Models

Dog, Mon-
key and 
Sheep

•	 Drill – calvaria
•	 Fracture – femur, mandible, 

tibia and ulna
•	 Fusion – lumbar
•	 Diet – calcium free
•	 Marrow ablation – femur
•	 OVX/ORX/PX – osteopenia
•	 Segmental – femur, tibia, 

humerus (endochondral) 
and mandible 
(intramembranous)

4 weeks 
to 4.5 
years

•	 Subcutaneous injection
•	 Organic scaffolds - fibrin and RGD
•	 Inorganic scaffolds - calcium 

phosphate, HA, PEG and TCP

0.75 to 7.5 µg/
kg/d
20 to 1,000 
µg/mL

1.1 to 3.4 fold 
(bone)
1.4 to 2 fold 
(mechanics)

Biochemistry, 
biomechanical testing, 
DXA, finite element 
analysis, histology, 
histomorphometry, 
in situ hybridisation, 
immunohistochemsitry, 
manual palpation, 
micro CT, northern 
blot, QCT, radiography, 
radiolabelling, RT-PCR 
and SEM.

#6

Small 
Models Mouse, 

Rabbit and 
Rat

1 h to 1 d, 
2 d to 24 
months

0.05 to 800 µg/
kg/d
20 to 100 µg/
mL

1.1 to 13.1 fold 
(bone)
1.1 to 3.8 fold 
(mechanics)

#46

PTHrP
peptides 
(1-36 and 
107-139)

Small 
Models

Mouse, 
Rabbit and 
Rat

•	 Diabetes – mouse
•	 OVX - osteopenia (rat)
•	 Segmental – femur and ulna 

(endochondral)

12 d to 6 
months

•	 Subcutaneous injection
•	 Inorganic scaffold - silica

10 to 320 µg/
kg/d

1.2 to 10 fold 
(bone)

Biomechanical testing, 
CT (micro), histology, 
histomorphometry, 
immunohistochemistry, 
RT-PCR and western blot#9

TGF-β3

Large 
Model Baboon

•	 Bone-tendon transection
•	 Drill – calvaria
•	 Ectopic – intra-muscular
•	 Furcation – mandible and 

maxilla (intramembranous)

30 to 90 d •	 Organic scaffolds – collagen and 
Matrigel 75 to 125 µg 1.6 to 3 fold 

(bone) Biomechanical testing, 
CT (micro), histology, 
histomorphometry, 
immunohistochemistry, 
RT-PCR and western blot

#3

Small 
Models Mouse and 

Rat 14 to 28 d •	 Organic scaffolds – calcium 
phosphate and collagen 0.003 to 2.75 µg

1.05 fold (bone)
1.2 fold 
(cartilage)

#2

VEGF
Small 
Model Mouse

•	 Drill – calvaria 
•	 Segmental – femur 

(endochondral)
4 weeks

•	 Organic scaffolds – calcium 
phosphate

•	 Inorganic scaffolds – PLA
1.7 µg
5 µg/mL

1.65 fold (bone)
Enhanced 
vascularisation

CT (micro), histology, 
histomorphometry, 
immunohistochemistry, 
intravital microscopy 
and radiography

#2
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Growth 
Factor(s) Animal Model Defect location and type Time Delivery system Dose/ Conc. Defect regeneration Analysis methods

1. Direct Delivery (continued)

Wnt 3A
Small 
Model Mouse

•	 Delayed skeletal 
development – suture 
closure

•	 Segmental – tibia 
(endochondral)

4 weeks •	 Injection – protein suspension 
and liposomal vesicles 0.5 µg/mL

Enhanced bone 
healing and reduced 
suture area approx. 
1.4 fold

Biochemical testing, 
CT (micro), histology, 
immunohistochemistry, 
in situ hybridisation and 
RT-PCR#2

2. Indirect Delivery

BMP-2

Large 
Models Dog, 

Horse, Pig 
and Sheep •	 Drill – calvaria, iliac crest, 

orbital bone (lacrimal) and 
patella 

•	 Ectopic – intra-muscular 
and subcutaneous

•	 Fusion – lumbar
•	 Segmental – femur, fibula, 

metacarpal, metatarsal, 
radius (endochondral) 
and mandible, maxilla 
(intramembranous) 

4 to 24 
weeks

Direct viral/non-viral particle 
injection or implant of transduced/
transfected cells with and without 
scaffolds
•	 Viral transduction – 

adenovirus, retrovirus, 
lentivirus

•	 Non-viral transfection – 
plasmids and vectors

•	 Organic scaffolds – alginate, 
allograft, autograft, collagen, 
demineralised bone matrix, 
fibrin, fibrinogen and Matrigel

•	 Inorganic scaffolds – PEG-
diacrylate, PFTBA and 
titanium mesh 

12 µg
0.04 to 5 x 1011 
viral particles
2 to 5 x 107 cells

1.3 to 3.2 fold 
(bone)

Biomechanical 
testing, CT (micro), 
DXA, histology, 
histomorphometry, 
immunohistochemistry, 
in vivo imaging, RT-
PCR, and radiography 
(micro) 

#6

Small 
Models Minipig, 

Mouse, 
Rabbit and 
Rat

1 to 35 
weeks

3 to 75,000 µg
0.001 to 7 x 1010 
viral particles
0.005 to 5 x 107 
cells

1.3 to 9 fold (bone) 
2.7 to 10.9 fold 
(biomechanics)

#32

BMP-7/
OP-1

Large 
Models Dog and 

Goat •	 Ectopic – intramuscular
•	 Intervertebral disc 

transplant
•	 Segmental – femur 

(endochondral) 
and mandible 
(intramembranous)

1 to 8 
months

Direct viral/non-viral particle 
injection or implant of transduced/
transfected cells with and without 
scaffolds
•	 Viral transduction – adenovirus
•	 Non-viral transfection – 

plasmids and vectors
•	 Organic scaffolds – allograft, 

chitosan, collagen, coral, 
gelatin and silk fibroin

•	 Inorganic scaffolds – HA, PA 
and PCL

2 x 1010 viral 
particles
0.01 to 5 x 107 
cells

2 to 2.5 fold (bone)
Biomechanical testing, 
biochemistry, CT(micro), 
cytochemistry, histology, 
histomorphometry, MRI, 
radiography, RT-PCR 
and SEM

#3

Small 
Models Mouse, 

Rabbit and 
Rat

1 to 16 
weeks

25 to 250 µg
0.2 to 2.5 x 1011 
viral particles
0.1 to 4 x106 
cells

1.03 to 5 fold (bone) 
– one study showed 
21 fold

#11

FGF-2

Large 
Models Dog •	 Furcation – dental root

•	 Irradiation
•	 Drill – calvaria
•	 Segmental – radius 

(endochondral)

6 weeks Direct implantation of transduced 
cells within scaffold
•	 Inorganic scaffolds – HA, 

PA66, PLGA and TCP

unknown
Enhanced 
periodontal bone 
regeneration

Biochemistry, clinical 
examination, CT 
(micro), DXA, histology, 
histomorphometry, 
immunohistochemistry, 
pQCT, radiography, RT-
PCR and SEM

#1
Small 
Models

Mouse, 
Rabbit and 
Rat

1 to 20 
weeks

0.0625 to 5 x 106 
cells

2 to 2.7 fold (bone) 
– one study showed 
53.5 fold#5

PDGF

Small 
Models

Mouse and 
Rat

•	 Ectopic – subcutaneous
•	 Segmental – alveolar ridge 

and femur
10 d to 6 
weeks

Direct viral/non-viral particle 
injection or implant of transduced/
transfected cells with and without 
scaffolds
•	 Viral transduction – adenovirus
•	 Non-viral transfection – 

plasmids and vectors
•	 Organic scaffolds – collagen, 

methylcellulose and silk
•	 Inorganic scaffolds – PLGA 

and mesoporous glass

5.5 x 108 to 5.5 x 
109 PFU/mL
1 x 106 cells

1.7 to 2 fold (bone)

Backscatter SEM, 
biochemistry, 
biomechanical 
testing, histology, 
histomorphometry, 
immunohistochemistry, 
micro CT, northern blot 
and RT-PCR#4

TGF-β3 

Small 
Model

Mouse •	 Ectopic - subcutaneous 30 d

Direct implantation of transduced 
cells within scaffold
•	 Viral transduction – 

recombinant adeno-associated 
virus

•	 Inorganic scaffold – PLLA/
PEG scaffold

1 x 106 cells 3D cartilage 
constructs

Histology, 
immunohistochemistry 
and western blot

#1

VEGF

Small 
Models

Mouse and 
Rabbit

•	 Ectopic – subcutaneous
•	 Segmental – femur, radius 

and tibia (endochondral)
4 to 16 
weeks

Direct delivery of non-viral 
particles or implantation of 
transfected cells
•	 Non-viral transfection – 

plasmid vectors
•	 Organic scaffolds – collagen, 

calcium phosphate and calcium 
carbonate

20 µg
5 x 106 cells

1.6 to 2 fold (bone)
Enhanced vasculari-
sation

CT (micro), histology, 
histomorphometry, 
immunohistochemistry, 
RT-PCR and radiography 

#3

Wnt 1, 3A, 
4, 5A, 6 and 
10B

Small 
Models

Chick, 
Mouse and 
Rat

•	 Drill – calvaria
•	 SCID mouse
•	 Transfected embryo

4 d to 12 
weeks

Direct implantation of transfected/
transduced cells with and without 
scaffolds
•	 Viral transduction – lentivirus 

and retrovirus
•	 Non-viral transfection – 

plasmid vectors
•	 Organic scaffold – HA and 

TCP
•	 Inorganic scaffold – PLGA

0.15 to 5 x 106 
cells
N/A (transgenic 
animal)

1.25 to 12 fold 
(bone)
1.5 fold (cartilage)

Wnt-5A reduced 
bone formation

CT (micro), histology, 
histomorphometry, 
immunohistochemistry, 
in situ hybridisation and 
radiography

#8

3. Combinational Delivery

BMP-2

plus (BBP, 
BMP-7/OP-
1, Epo, FGF, 
integrin, 
MSCs, 
Runx2, 
TGF-β2, 
tobramycin, 
VEGF or 
zoledronic 
acid)

Large 
Model Dog, Horse 

and Pig

•	 Drill – calvaria, orbital bone 
(lacrimal), and ulna

•	 Ectopic – intramuscular and 
subcutaneous 

•	 Fusion – lumbar
•	 Irradiated – mandible
•	 Segmental – femur and tibia 

(endochondral)

1 to 9 
weeks

Direct delivery by injection or 
implant, and indirect delivery by 
viral/non-viral particle injection 
or transduced/ transfected cell 
implant
•	 Organic scaffolds – alginate, 

allograft, chitosan, collagen, 
coral and gelatin 

•	 Inorganic scaffolds – CMC, 
CDHA, PEG-diacrylate, PEG-
MMP, PLA, PLGA, PPF, TCP 
and titanium

•	 Viral transduction – 
adenovirus, baculovirus and 
lentivirus

•	 Non-viral transfection – 
plasmids

5.26 to 120 µg 
BMP-2
2 x 1011 viral 
particles

1.6 fold (bone)
Biochemistry, 
biomechanical 
testing, CT (micro), 
DXA, histology, 
histomorphometry, 
immunohistochemistry, 
in situ hybridisation, 
RT-PCR, PET (micro), 
radiography, rheology 
and western blot

#4

Small 
Models

Minipig, 
Mouse, 
Rabbit and 
Rat

1 to 16 
weeks

0.0025 to 200 µg 
BMP-2
0.075 to 7.5 
x 1010 viral 
particles
1 to 4.8 x 106 
cells

1.1 to 20 fold (bone)
4 to 8.3 fold 
(biomechanics)
2 fold (vasculature)

#38

Table 5. In vivo bone tissue engineering utilising growth factors including BMP-2/OP-1, BMP-7, FGF, PDGF, PTH, 
PTHrP, TGF-β3, VEGF and Wnt proteins. (contined - part2)
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3. Combinational Delivery (continued)

BMP-7/OP-1

plus (BBP, 
BMP-2, 
BMSCs, blood, 
bone marrow, 
FGF-2, IGF-1, 
pamidronate, 
PDGFb, PTH 
(1-34), MSCs, 
osteoblasts, 
TGF-β1, 
TGF-β3, TSP-
1 or VEGF)

Large 
Models Baboon, 

Dog and 
Horse •	 Drill – calvaria and femur

•	 Ectopic – intramuscular and 
subcutaneous

•	 Fusion – lumbar
•	 Osteotomy – tibia
•	 OVX – osteopenia
•	 Segmental – mandible and 

metacarpal (endochondral 
and intramembranous)

2 to 16 
weeks

Direct delivery by injection or 
implant, and indirect delivery by 
viral/non-viral particle injection 
or transduced/ transfected cell 
implant
•	 Organic scaffolds – allograft, 

chitosan, collagen, gelatin and 
silk fibroin 

•	 Inorganic scaffolds – calcium 
carbonate, calcium phosphate, 
CMC, HA, PCL, PDLLA 
and TCP 

•	 Viral transduction – adenovirus
•	 Non-viral transfection – 

plasmids

5 to 5,000 µg – 
one study used 
125mg
0.2 to 2 x 1011 
viral particles

1.4 to 5.3 fold 
(bone)
3 fold (osteoid) Biochemistry, 

biomechanical 
testing, CT (micro), 
cytochemistry, 
DXA, histology, 
histomorphometry,  
immunohistochemistry, 
MRI, radiography, 
RT-PCR and SEM

#7

Small 
Models

Mouse, 
Rabbit and 
Rat

1 d to 48 
weeks

2 to 200 µg
0.00075 to 5.5 
x 1011 viral 
particles
1 to 4 x 106 cells

1.2 to 15 fold (bone)
1.2 to 1.4 fold 
(biomechanics)

#19

FGF-2

plus 
(17β-estradiol, 
BMP-7/OP-1, 
estrogen, IGF-
2, PTH (1-34), 
melatonin or 
VEGF)

Small 
Models

Mouse, 
Rabbit and 
Rat

•	 Drill – calvaria, condyle 
and femur 

•	 Ectopic – intramuscular
•	 OVX – osteopenia

1 to 48 
weeks

Direct infusion or scaffold implant
•	 Organic scaffolds – collagen 

and gelatin
•	 Inorganic scaffolds – titanium

0.001 to 100 µg
200 to 1,000 
µg/mL

1.1 to 3.3 fold 
(bone)
8 fold (osteoid)

Biochemistry, 
CT (micro), 
DXA, histology, 
histomorphometry, 
immunohistochemistry, 
radiography and XTM#11

PDGF

plus (bFGF, 
BMP-2, 
BMP-7, 
BMSCs,IGF-1, 
osteogenin, 
TGF-β1 and 
VEGF )

Large 
Models Dog

•	 Drill – calvaria
•	 Ectopic – subcutaneous
•	 Osteotomy – mandible
•	 Segmental – femur

4 to 18 
weeks

Direct delivery by implant, and 
indirect delivery by viral particle 
injection
•	 Organic scaffolds – chitosan, 

collagen, fibrinogen and 
methylcellulose

•	 Inorganic scaffolds – Brushite, 
calcium phosphate, ePTFE, 
TCP and titanium

•	 Viral transduction – adenovirus

5 μg/mL
2 x 1010 viral 
particles

1.4 to 2.3 fold 
(bone)

Flow cytometry, 
histology, 
histomorphometry and 
micro CT

#4

Small 
Models Mouse, 

Rabbit and 
Rat

4 to 8 
weeks

0.05 to 200 μg
0.001 to 0.05 
μg/mL

2.5 to 10 fold (bone)
#6

PTH (1-34 
and 1-84)

plus 
(alendronate, 
BMP-2, BMP-
7, BMSCs,  
human 
PDL cells, 
ibandronate, 
IL-6, MSCs, 
pamidronate, 
rapamycin, 
tiludronate 
and zoledronic 
acid)

Large 
Models Sheep

•	 Ectopic – subcutaneous
•	 Fracture – tibia
•	 OVX – osteopenia
•	 Segmental – femur and tibia

3 months

•	 Subcutaneous injection

500IU/day 2 to 4 fold (bone) 
PTH alone

Biochemistry, 
mechanical testing, 
DXA, FACS, 
faxitron, histology, 
histomorphometry, 
immunocytochemistry, 
immunohistochemsitry, 
micro CT, 
nanoindentation 
testing, northern blot, 
QCT, radiography, 
raman spectroscopy, 
RT-PCR, SEM and 
western blot

#1

Small 
Models Mouse, 

Rabbit and 
Rat

1 to 15 
weeks 10 to 90 µg/kg/d

1.2 to 4.1 fold 
(bone)
1.2 to 3.1 fold 
(mechanics)

#14

PTHrP
peptides (1-36 
and 1-86)

plus (C-
terminal 
PTHrP (107-
139) peptide or 
PTH)

Small 
Model

Mouse
•	 Diabetes
•	 Knockout – PTHrP
•	 Osteopenia

1 to 2 
months •	 Subcutaneous injection 80 to 100 µg/

kg/d 1.5 to 3 fold (bone)

Biochemistry, CT 
(micro), DXA, faxitron 
analysis, histology, 
immunohistochemistry, 
RT-PCR, radiography 
and western blot#3

TGF-β3

plus (BMP-2, 
chondrocytes, 
MSCs, OP-1, 
Sox9 or 
TGF-β1)

Large 
Models Baboon 

and Sheep
•	 Drill – condyle, humerus 

and patella
•	 Ectopic – subcutaneous and 

intra-muscular 

63 to 90 d
•	 Organic scaffold – chitosan 

and fibrin
•	 Inorganic scaffold – HA and 

calcium carbonate

0.05 to 125 µg 
TGF-β3 5.3 fold (bone)

Biomechanical testing, 
CT (micro), histology, 
histomorphometry, 
immunohistochemistry 
and RT-PCR

#2

Small 
Models Mouse, 

Rabbit and 
Rat

1 to 22 
weeks

Direct infusion or scaffold implant
•	 Organic scaffolds – alginate 

and fibrin
•	 Inorganic scaffolds – PEG-

PCL, PLGA, PLL and 
pNIPAm-co-AAc

0.02 µg TGF-β3
(0.01 to 0.1 µg/
mL)

12.8 to 13 fold 
(bone)
1.6 to 22 fold 
(collagen)#12

VEGF

plus (BMP-2, 
BMP-4, BMP-
7/OP-1 or 
FGF-2)

Large 
Model Dog and 

Pig

•	 Drill – calvaria
•	 Ectopic – subcutaneous and 

intramuscular
•	 Segmental – femur, 

ulna (endochondral) 
and infra-orbital bone 
(intramembranous)

•	 Sinus floor elevation

9 weeks

Direct delivery by injection or 
implant, and indirect delivery by 
viral/non-viral particle injection 
or transduced/ transfected cell 
implant
•	 Organic scaffolds – alginate, 

biocoral, collagen, gelatin and 
silk hydrogel 

•	 Inorganic scaffolds – calcium 
phosphate, PLA, PLGA, 
PPF, octacalcium phosphate 
and TCP

•	 Viral transduction – adenovirus 
and retrovirus

•	 Non-viral transfection – 
plasmids and vectors

0.4 to 4 µg
1.6 fold (bone)
Enhanced 
vascularisation

Biochemistry, CT 
(micro), histology, 
histomorphometry, 
immunohistochemistry, 
in situ hybridisation, 
microangiography, 
radiography and SEM

#2

Small 
Models

Mouse, 
Rabbit and 
Rat

1 to 16 
weeks

0.2 to 20 µg
5.5 x 1011 viral 
particles
0.2 to 3 x 106 

cells

1.4 to 20 fold (bone)
4 to 208 fold 
(biomechanics)
2 fold (vasculature)

#17

4. Human Trials

BMP-2
Human

•	 Bone augmentation
•	 Facial reconstruction (cleft, 

mandible and maxilla)
•	 Long bone fracture and 

non-union (tibia)
•	 Lumbar fusion

6 weeks 
to 6 years

•	 Organic scaffolds – allograft, 
autograft, collagen and gelatin 

•	 Inorganic scaffolds – fusion 
cage, HA-TCP, PEEK, PGA, 
PLGA, PLA and titanium mesh

0.9 to 100 mg
(0.75 to 1.5 mg/
mL)

Enhanced bone 
healing was 
observed in the 
majority of patients

Biochemistry, 
CT, histology and 
radiography

#30

Table 5. In vivo bone tissue engineering utilising growth factors including BMP-2/OP-1, BMP-7, FGF, PDGF, PTH, 
PTHrP, TGF-β3, VEGF and Wnt proteins. (continued - part 3)
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4. Human Trials (continued)

BMP-7/
OP-1

Human
•	 Mandible reconstrutcion
•	 Non-union fracture
•	 Long bone osteotomy 
•	 Lumbar fusion
•	 Pseudarthrosis

2 weeks 
to 68 
months

•	 Organic scaffolds – allograft, 
autograft, collagen and 
xenograft

•	 Inorganic scaffolds – CMC, 
TCP and titanium

2.5 to 17.5 mg – 
one study used 
2,000 mg (3.5mg 
average)

Accelerated 
bone healing 
and increased 
bone tissue and 
mechanical strength 
was observed

Clinical assessment, 
CT, histology, 
histomorphometry, 
physical examination, 
radiography and 
scintigraphy

#32

PDGF
Human

•	 Periodontitis 9 months •	 Organic scaffolds – allograft 0.5 to 5 mg/mL 1.12 to 1.17 fold 
(bone)

Clinical assessment, 
histology and 
radiography

#1

PTH
Human

•	 Healthy adults
•	 Low bone mineral density
•	 Mandibular repair
•	 Postmenopausal women
•	 Vertebral fracture

2 months 
to 2 years
(one 
study - 
7 d)

•	 Subcutaneous injection 20 to 100 µg/d
2 to 4 pmol/kg/h

Accelerated bone 
healing  through 
upregulation of 
bone markers and 
resultant bone tissue 
was observed

Biochemistry, clinical 
assessment, CT, 
DXA, histology, 
histomorphometry, 
QCT, quality of 
life assessment, 
radiography, SEM 
and TEM#14

PTHrP
peptides 
(1-34 and 
1-36)

Human •	 Healthy adults
•	 Postmenopausal estrogen 

deficient females
2 d to 2 
weeks

•	 Subcutaneous injection
•	 Intravenous infusion

2 to 80 pmol/
kg/h

Bone formation 
was activated in 
postmenopausal 
females, but 
inhibited in healthy 
adults

Biochemistry

#4

Abbreviations: 1,24,25[OH]3 D3 (1,24,25-trihydroxyvitamin D3), 2MD (2-methylene-19-nor-(20S)-calcitriol), BBP (BMP binding protein), BMP-2/7 (bone morphogenetic protein 2/7), 
CDHA (calcium deficient hydroxyapatite), CHBB (cortico-cancellous human bone block), CHPA (cholesterol-bearing pullulan nanogel with acrylol residue), CMC (carboxymethylcellulose), 
CPC (calcium phosphate cement), CT (computerised tomography), DBBB (deproteinised bovine bone block/porcine collagen), DBM (demineralised bone matrix), DXA (dual energy 
x-ray absorptiometry), Epo (erythropoietin), FGF (fibroblast growth factor), FTIR (fourier transform infrared spectroscopy), HA (hydroxyapatite), HAA-PVAH (hyaluronic acid and 
poly-vinyl alcohol functionalised with hydrazide groups), ID2 (1α-hydroxyvitamin D2), ID3 (1α-hydroxyvitamin D3), MMP (matrix metalloproteinase), MRI (magnetic resonance 
imaging), MSC (mesenchymal stem cell), OP-1 (osteogenic protein-1), ORX (orchiectomised), OVX (ovariectomised), PCL (poly caprolactone), PDLLA (poly-D, L-lactic acid), PEEK 
(polyetheretherketone), PEG (poly ethylene glycol), PET (positron emission tomography), PGA (poly glycolic acid), PLA (poly lactic acid), PLG (poly D,L-lactide-co-glycolide), PLGA (poly 
lactic co-glycolic acid), PLL (poly-L-lysine), PLLA (poly-L-lactide), pNIPAm-co-AAc (poly-(N-isopropylacrylamide-co-acrylic acid)), PPF (poly-propylene fumarate), pQCT (peripheral 
quantitative CT), PTFBA (perfluorotributylamine), PTFE (polytetrafluoroethylene), PTH (parathyroid hormone), PTHrP (parathyroid hormone receptor-related protein), PUR (polyurethane), 
PVA (poly-vinyl alcohol), PX (p arathyroidectomized), rhBMP-2 (recombinant human bone morphogenetic protein-2), RT-PCR (real time polymerase chain reaction), SEM (scanning electron 
microscopy), Sox9 (SRY (sex determining region Y)-box 9), TCP (tricalcium phosphate), TEM (transmission electron microscopy), TGFβ (transforming growth factor β), VEGF (vascular 
endothelial growth factor), VitD3 (vitamin D3), Wnt (wingless-type MMTV integration site family), and XTM (X-ray tomographic microscopy). # - number of publications.

Table 5. In vivo bone tissue engineering utilising growth factors including BMP-2/OP-1, BMP-7, FGF, PDGF, PTH, 
PTHrP, TGF-β3, VEGF and Wnt proteins. (continued - part 4)

to BMP-8a) have a known osteochondral function (Even 
et al., 2012). BMP-2 specifically, is a disulphide-linked 
homodimer with a known role in osteoblast differentiation. 
Abundant use of recombinant human BMP-2 (rhBMP-2) 
within animal models has demonstrated successful in vivo 
bone regeneration and repair, and has been extensively 
examined as an osteoinductive growth factor for tissue 
engineering (Supplementary Table 1).

Direct administration of BMP-2
A review of the literature revealed variable increased bone 
formation and defect regeneration ranging between 1.2 and 
21 fold in large animal models (He et al., 2009; Wikesjo 
et al., 2008), and 1.1 and 50 fold in small animal models 
(Ishihara et al., 2008; Tolli et al., 2011) (Table 5). To date, 
despite the wealth of reported studies there remains a lack 
of consensus concerning the optimum rhBMP-2 dose for 
effective bone defect repair. Applications of rhBMP-2 
have utilised dosages between 5 μg and 100 mg in large 
animal studies (Gu et al., 2011; Nilsson et al., 1986), and 
0.1 μg and 5 mg in small animal models (Hayashi et al., 
2009; Whang et al., 1998). A few small animal studies 
have also used higher dosages up to 150 mg (Dohzono 
et al., 2009; Hou et al., 2012). One explanation for the 
observed variable success and diverse dosages is the 
number of different size models and defects investigated. 
Large animal models included dog (Hussein et al., 2012), 
goat (Li et al., 2010b), horse (Tsuzuki et al., 2012), 
monkey (Bai et al., 2009), pig (Abbah et al., 2011) and 
sheep (Gu et al., 2011). Small animal models included 

mouse (Yu et al., 2010b), rabbit (Liu et al., 2013) and rat 
(Iyomasa et al., 2012). Bone defects investigated included 
both endochondral and intramembranous bone segmental 
defects (Boerckel et al., 2012; Kirker-Head et al., 1998; 
Wikesjo et al., 2008), lumbar fusions (Akamaru et al., 
2003; Fu et al., 2009) and drill defects (He et al., 2009; Levi 
et al., 2010), in addition to ectopic implants intramuscularly 
(Luca et al., 2010b; Saito et al., 2003) and subcutaneously 
(Fu et al., 2010; Kimura et al., 2010). Consequently, it may 
be more informative for authors to reference concentration 
and volume within given defect dimensions rather than a 
simple dosage as a standard between models. This would 
aid comparison between studies and animals enabling 
direct assessment of dosage and defect regeneration 
correlation. However, employed rhBMP-2 concentrations 
vary considerably, from 1.6 μg/mL to 1.5 mg/mL for large 
animals (Itoh et al., 1998; Sheehan et al., 2003), and 2 μg/
mL to 4 mg/mL for small animals (Bax et al., 1999; Woo 
et al., 2001). There does not appear to be any correlation 
between dosages and fold increase in bone formation or 
time to healing. Therefore, reporting both defect volume 
and implant volume would help comparison of studies. 
It is important to clarify distinctions between studies and 
that ideal comparisons would be made between identical 
animals and anatomic defect locations, of which to date 
there are not enough publications for statistical comparison.

Indirect administration of BMP-2
Further studies have utilised indirect delivery by viral 
transduction or non-viral transfection of rhBMP-2 to 
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the bone defect site with a view to enabling sustained 
localised growth factor delivery. The two main avenues 
for application are either virus particles/plasmid vectors 
(Dupont et al., 2012; Ishihara et al., 2008), or transduced/
transfected cells (Lazard et al., 2011; Lin et al., 2008). 
The former influences non-specific host cell-originated 
tissue regeneration, whilst the latter enables exogenous 
cell-derived tissue repair. Indirect delivery studies 
showed a maximum 9-fold increase in bone formation 
(Wang et al., 2009), demonstrating reduced tissue repair 
in comparison to direct delivery. This may be due to 
under-dosing at the defect site, resulting from inadequate 
uptake by endogenous cells or production by exogenous 
cells. Continuous production of rhBMP-2 at the defect 
site may also have had negative or limiting effects on 
bone formation, compared to a single dose in most direct 
delivery studies. Spatiotemporal delivery at the defect site 
is therefore of paramount importance for augmentation of 
defect regeneration.

Combination administration of BMP-2
The bone-healing cascade is a complex process whose 
effective recapitulation is dependent on an exquisite 
interplay between multiple growth factors (Grimes et al., 
2011). A number of in vivo studies have thus investigated 
the use of growth factors in combination rather than single 
factor application (Table 5). Wang et al. (2012) delivered 
5 μg of BMP-2 and 5 μg of BMP-7 via an implanted 
collagen sponge within a minipig calvarial defect, and 
demonstrated a 1.5 fold increase in bone formation 
compared to either growth factor alone. Koh et al. (2008) 
also investigated BMP-2 and BMP-7 indirect delivery via 
implantation of transduced cells within a mouse calvarial 
defect. The study showed a maximum 2-fold increase 
in bone formation compared to individual growth factor 
administration. Combination with other factors also 
demonstrated increased bone formation; Fujimura et al. 
(2002) showed a maximum 3.3-fold increase with BMP-7 
and FGF-2 treatment, compared to 1.7 fold with BMP-7 
alone. Clearly, there are benefits to dual combinations 
over single factors. Other factors and compounds used in 
combination with rhBMP-2, whether directly or indirectly, 
included BMP binding protein (BBP) (Lee et al., 2011), 
erythropoietin (Sun et al., 2012a), FGF (Springer et al., 
2008), α4-integrin (Kumar et al., 2010a), Runx2 (Lee et al., 
2010), TGF-β2 (Thorey et al., 2011), tobramycin (Glatt et 
al., 2009) and zoledronic acid (Doi et al., 2011; Schindeler 
et al., 2011). A number of studies have incorporated 
mesenchymal stem cells (MSCs) (Hou et al., 2007; Kim et 
al., 2009) providing a healthy inducible cell source within 
the defect site (Dawson et al., 2014). Taken together these 
studies demonstrated between 1.1 and 4 fold (Hou et al., 
2007; Thorey et al., 2011) increased bone formation and 
defect regeneration (Supplementary Table 1). Interestingly, 
some studies have shown that combined growth factor 
delivery does not enhance bone formation in comparison 
to single growth factor application. Terella et al. (2010) 
and Springer et al. (2008) demonstrated no further 
enhancement of bone regeneration above controls with 
BMP-2 treatment in combination with MSCs and FGF-2, 
respectively. Indeed, Egermann et al. (2006) revealed a 

significant systemic retardation of bone formation within 
sheep injected with BMP-2 expressing adenovirus. This 
negative effect may be due to i) the combination of growth 
factors chosen or, ii) inhibitory or competitive effects 
between the combinations selected. The growth factor 
most often used successfully in combination with BMP-2 
remains VEGF, where studies have reported a 1.4 to 20 
fold (Xiao et al., 2011; Zhang et al., 2011a) increase in 
bone formation. Co-administration with VEGF induced 
vessel ingrowth bringing endogenous cells to the defect 
site, which could be triggered by BMP-2 to differentiate 
towards the osteogenic lineage and deposit new bone 
matrix. Ultimately, the aim of combination treatment is to 
support and augment native healing processes, and to do 
so requires a specific spatiotemporal approach with select 
growth factors.

BMP-7/OP-1
BMP-7, also known as OP-1, constitutes another BMP 
family member routinely used in bone tissue engineering 
strategies (Supplementary Table 2). Many in vivo studies 
have utilised BMP-7 on the basis that its osteoinductive 
potential can drive enhanced bone defect regeneration 
(Kidder et al., 2009; Lee et al., 2013).

Direct administration of BMP-7
Analogous to BMP-2, BMP-7 has been employed in many 
large (baboon (Ripamonti et al., 2001a), dog (Fukuroku 
et al., 2007), goat (den Boer et al., 2002), monkey (Cook 
et al., 2002) and sheep (Cipitria et al., 2013)) and small 
(minipig (Warnke et al., 2006), mouse (Lee et al., 2013), 
rabbit (Haidar et al., 2010b) and rat (Haidar et al., 2010a)) 
animals with variable increased bone formation and defect 
regeneration ranging between 1.25 and 8.3 fold (Blokhuis 
et al., 2001; Salkeld et al., 2001) and 1.1 and 29.5 fold 
(Hamdy et al., 2003; Kidder et al., 2009), respectively. 
One interesting study by Chen et al. (2006) demonstrated a 
staggering 96 fold increase in mineralised callus formation 
after just 2 weeks with high dose OP-1 (200 µg). The bone 
defect model used however was complicated by Staph. 
Aureus infection and results should be carefully interpreted. 
Success variability may be dosage dependent since direct 
administration of BMP-7 has ranged from 100 µg to 
3.5 mg (Reichert et al., 2012; Ripamonti et al., 2000) in 
large animals (some studies employed 65 mg to 750 mg 
(Lind et al., 2001; Salkeld et al., 2001)) and 0.025 µg to 
3.5 mg (Sampath et al., 1992; Warnke et al., 2006) in small 
animals. However, it remains to be ascertained whether 
this suggested correlation is positive (higher dose results 
in higher bone formation (Chen et al., 2006; Haidar et al., 
2010b; Ripamonti et al., 2000)), negative (higher dose 
results in lower bone formation (Cook et al., 2005; Soballe 
et al., 2004)) or whether it indeed exists (bone formation 
remains unaffected by dosage (Hamdy et al., 2003; Leknes 
et al., 2008)). Standardisation of a species-dependent bone 
defect model of specific dimensions and anatomic location, 
rather than a simply stated ‘critical sized’ defect, would 
inevitably aid interpretation of in vivo data. In turn, this 
would also help comparison between studies regarding 
the efficacy of individual growth factors such as BMP-7 
to drive osteogenic bone formation. The variety of defects 
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currently investigated include segmental (Chen et al., 
2002; Forriol et al., 2009; Reichert et al., 2012), drill 
(Lee et al., 2013; Zhang et al., 2004), fusion (Blattert et 
al., 2002; Grauer et al., 2004; Magin and Delling, 2001) 
and ectopic implantation intramuscularly (Haidar et al., 
2010a; Spiro et al., 2010) and subcutaneously (Sampath et 
al., 1992; Wei et al., 2007), which together emphasise the 
lack of and need for standardisation. Indeed, Takigami et al. 
(2007) showed that anatomic location of the defect affected 
the efficacy of implanted BMP-7 on bone regeneration, 
where treatment of 10 mm femoral defects at the proximal 
and distal ends demonstrated 1.5-fold increased and 
1.4-fold decreased bone formation. Other interesting 
observations which warrant further investigation include 
non-augmentation of bone formation following BMP-7 
treatment and altered structure of new bone. Mont et al. 
(2001) showed that bone formation was the same with or 
without BMP-7 administration on allograft. It is important 
therefore to choose the scaffold material carefully as 
endogenous factors within the graft matrix may have 
masked the effects of BMP-7. Lammens et al. (2009) also 
reported a lack of bone augmentation following BMP-7 
administration on bone filler. Spiro et al. (2010) showed 
that diclofenac treatment altered BMP-7-induced bone 
structure, decreasing trabeculae number and increasing 
spacing. Encouragingly, alternative ways of controlling 
inflammation at the defect site include the addition of BBP, 
which demonstrated a 1.5-fold reduction (Lee et al., 2011).

Indirect administration of BMP-7
An alternative delivery method for growth factor delivery, 
as previously discussed, is viral transduction or non-viral 
transfection. BMP-7 has been indirectly delivered through 
the use of viral particles (2 x 1010 in large animals (Zhang et 
al., 2007), and 1.8 to 2.5 x 1011 in small animals (Dunn et 
al., 2005; Zhang et al., 2012b)) and transduced/transfected 
cells (1 x 105 to 5 x 107 in large animals (Chaofeng et al., 
2013; Zhu et al., 2010), and 1 x 105 to 2 x 106 in small 
animals (Li et al., 2010a; Zhang et al., 2010c)). Zhang 
et al. (2007) demonstrated a 2-fold increase in bone 
formation after implantation of viral particles, whilst 
Zhu et al. (2010) demonstrated a 2.5-fold increase after 
implantation of transduced bone marrow stromal cells 
(BMSCs) into dog and goat, respectively. Interestingly, 
the same study by Zhu et al. showed that implantation of 
non-transduced BMSCs also increased bone formation, but 
to a lesser degree (1.5 fold). Clearly, addition of cells alone 
without modification or growth factor loading can enhance 
bone defect regeneration. Typically, small animal studies 
demonstrated a 1.03 to 5 fold (Li et al., 2010a; Zhang et 
al., 2012b) increase in bone formation, although one study 
by Hidaka et al. (2003) reported 21 fold increased bone 
formation. However, this study investigated spinal fusion 
compared to segmental defects from lower fold increase 
studies.

Combination administration of BMP-7
Additional factors have been successfully utilised in 
combination with BMP-7 to aid bone regeneration. 
Combination of BMP-7 with BMP-2 constitutes an additive 
approach where two osteogenic factors are hypothesised 

to further enhance the osteogenic outcome, whilst keeping 
individual dosages low (Koh et al., 2008; Wang et al., 
2012). Alternatively, combinations with VEGF (Roldan et 
al., 2010) or TGF-β3 (Ripamonti et al., 2010) constitute 
mutualistic approaches where the angiogenic factor 
induces vessel ingrowth into the defect (2 fold (Zhang et 
al., 2010a)), the chondrogenic factor induces cartilaginous 
matrix production to fill the defect void, and the osteogenic 
factor induces resultant callus mineralisation and eventual 
bone formation (three lineages important for recapitulation 
of the in vivo bone healing cascade). Other factors and 
compounds used in combination with BMP-7 include BBP 
(Lee et al., 2011), FGF-2 (Ma et al., 2007), insulin-like 
growth factor 1 (IGF-1) (Yang et al., 2010), pamidronate 
(Yu et al., 2010a), PDGF (Zhang et al., 2012a), PTH (1-34) 
(Morgan et al., 2008), TGF-β1 (Ripamonti et al., 2001b) 
and thrombospondin 1 (TSP-1) (Gelse et al., 2011). Taken 
together these combinations have demonstrated increased 
defect regeneration from 1.4 to 5.3 fold in large animals 
(Ripamonti et al., 2010; Zhang et al., 2009b), and 1.2 
to 15 fold in small animals (Yang et al., 2010; Zhang 
et al., 2012a). Although enhanced bone formation was 
observed in most studies, fold increases were not superior 
to those investigating BMP-7 alone. This may be due 
to under or over-dosing of one or both of the delivered 
factors. Consequently, balance between combination 
choice and dosage should be carefully considered as one 
study demonstrated a 2-fold decrease in bone formation 
following high dose pamidronate (2 mg) compared to low 
dose (20 µg) pamidronate (Yu et al., 2010a). A number 
of studies have also investigated BMP-7 combinations 
with cells including BMSCs (Zhang et al., 2011b), MSCs 
(Tsiridis et al., 2007a) or osteoblasts (Reichert et al., 2011). 
Rather than flood the defect site with copious exogenous 
growth factors, these approaches endeavoured to augment 
the effect of BMP-7 through addition of an inducible cell 
source, and demonstrated a 1.5- to 8.8-fold increase in 
bone formation (Reichert et al., 2011; Takigami et al., 
2007). Again, fold increases were not superior to those of 
BMP-7 alone, which may be due to non-optimal balance 
between dosage and cell number, or even non-optimal 
spatiotemporal delivery of BMP-7.
 It is important to note that the different outcomes 
observed within all the collated studies described here, 
with the administration of BMP-2 and BMP-7 in vivo, may 
not solely be dependent on dosage but also on receptor 
expression. Inter-species receptor expression can vary 
considerably and may ultimately govern the response to 
BMP dosage.

FGF
FGFs constitute a large growth factor family with over 20 
members and are involved in many biological processes 
from embryonic development regulating cell proliferation, 
migration and differentiation, to homeostasis orchestrating 
tissue maintenance and repair (Ornitz and Itoh, 2001). 
FGF-1 to FGF-10 all bind FGF receptors (FGFR) and 
have characterised functions in bone development and 
healing (Ornitz and Marie, 2002). A review of the literature 
revealed the most abundant member utilised within bone 
tissue engineering strategies in vivo was FGF-2, also 
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known as basic FGF (Hirata et al., 2013; Hong et al., 2010; 
Maehara et al., 2009; Shirakata et al., 2010).

Direct administration of FGF
FGF-2 has been administered to large animal models, 
including dog (Murakami et al., 2003) and primate 
(Takayama et al., 2001) at dosages from 0.15 to 200 µg 
(Hosokawa et al., 2000; Nakamura et al., 1998); and 
small animal models, including mouse (Kodama et al., 
2009), rabbit (Nakasa et al., 2008) and rat (Tsurushima 
et al., 2010) at dosages from 0.01 to 200 µg (Komaki 
et al., 2006; Zellin and Linde, 2000) (Supplementary 
Table 3). Considering related fold increases in bone 
formation within large (1.3 to 3 fold (Nakamura et al., 
1998; Shirakata et al., 2010)) and small animals (1.1 to 
16.4 fold (Goodman et al., 2003; Hong et al., 2010)), it 
is interesting to note that higher dosages correlated with 
greater fold increases (defects with highest fold increase 
included tibial fracture and calvarial defect respective to 
large and small animals). Evidently, data suggest positive 
correlation between FGF-2 treatment and bone formation, 
potentially due to induced vessel ingrowth and ossification 
at the defect site (Guo et al., 2006; Maehara et al., 2009). 
However, administering the correct dose relative to 
defect size and location is paramount, since Nakasa et al. 
(2008) demonstrated a 1.5 fold decrease in lamellar bone 
formation following administration of 100 µg FGF-2 to 
a 5 mm full thickness femoral condyle defect. Although 
lamellar bone tissue was reduced, vascularisation and 
osseointegration were elevated, indicating accelerated 
maturation of extant bone. Indeed Bland et al. (1995) also 
demonstrated callus maturation without augmentation of 
bone tissue formation. Interaction of FGF-2 and condylar 
tissue may, in this instance, have had predominant effects 
on chondrogenesis, rather than osteogenesis. Nakasa et 
al. (2005) also investigated ectopic delivery of FGF-
2 (subcutaneous implantation in rabbit) and observed 
extensive osteoid deposition, suggesting that interactions 
between the delivered growth factor and surrounding 
tissues dictate outcome.
 Compared to FGF-2, a handful of studies utilised FGF-
1, also known as acidic FGF (Bland et al., 1995; Dunstan et 
al., 1999; Kelpke et al., 2004), and one study utilised FGF-
18 (Carli et al., 2012) which has been shown to promote 
chondrogenesis amongst many other functions. FGF-1 was 
administered between 3 and 7 µg in small animal models, 
including mouse (Dunstan et al., 1999), rabbit (Bland et 
al., 1995) and rat (Kelpke et al., 2004). Dunstan et al. 
(1999) demonstrated 8 to 10 fold increased bone formation. 
However, the animal model was ovariectomised to create 
a state of osteoporosis and therefore resultant data require 
careful interpretation prior to comparison with that of other 
animal models. Fold increase would be expected to drop in 
a normal animal model as baseline bone regeneration levels 
would be higher than those in osteoporotic models. The 
same study also investigated injection of FGF-1 adjacent 
to mouse calvaria, which demonstrated a 3-fold increase in 
bone thickness. However, injection with FGF-2 exhibited 
a 7-fold increase in bone thickness, suggesting FGF-2 is a 
more potent osteoinductor compared to FGF-1. Kelpke et 
al. (2004) demonstrated increased osteogenesis assessed 

by alkaline phosphatase, osteocalcin and osteopontin 
expression; however, bone tissue formation was not 
reported. Increased blood vessel ingrowth was observed 
and reported to range between 2 and 2.6 fold. Augmentation 
of vasculature can be beneficial for bone regeneration as it 
supplies an endogenous inducible cell source to populate 
and repair the defect site. Carli et al. (2012) delivered 
0.5 µg FGF-18 to a 5 mm segmental femoral defect and 
demonstrated a 5-fold increase in percentage bone volume. 
On first observation, this would suggest that FGF-18 is a 
potent osteoinductor; however, this is only one study and 
was tested within a mutated mouse model which showed 
impaired bone formation. Further study is required to 
draw conclusions regarding in vivo bone tissue formation 
efficacy of FGF-1 and FGF-18.

Indirect administration of FGF
FGF-2 has been indirectly delivered to both large (dog 
(Tan et al., 2009)) and small animals (mouse (Meng et al., 
2012), rabbit (Guo et al., 2006) and rat (Qu et al., 2011)) 
through implantation of transfected cells (6.25 x 104 and 
5 x 106 cells (Guo et al., 2006; Meng et al., 2012)). Bone 
formation was modestly increased 2 to 2.7 fold (Kwan et 
al., 2011; Meng et al., 2012). However, one study by Hall 
et al. (2007) reported a 53.5 fold increase in percentage 
cancellous bone area (0.4 % in the control group increased 
to 21.4 % in the FGF-2 treated group). As previously 
discussed, care should be taken when comparing this with 
other data as the animal model used was haematopoietic 
deficient resulting in decreased baseline healing and 
therefore elevated fold increases in comparison to normal 
animal models. Most direct administration studies deliver 
FGF-2 in a single dose direct to the defect site and may be 
encapsulated within a carrier for controlled release over 
time, whereas indirect administration through endogenous 
or exogenous cell expression leads to continuous FGF-2 
delivery. Lower bone tissue augmentation observed within 
indirect administration studies may be a consequence of 
constant exposure to FGF-2 stimulation. A spatiotemporal 
release profile would be more suitable to bone tissue-
engineering strategies eligible for clinical translation.

Combination administration of FGF
Investigation of other tissues would aid understanding 
of whether lower fold increase in bone tissue was due 
to preference or induction of pre-bone tissue formation, 
such as osteoid deposition or cartilage production. Indeed, 
Iwaniec et al. (2003) demonstrated 8 fold increased osteoid 
deposition compared to 1.8 fold increased bone formation 
rate. Combinations should be carefully selected, as Behr et 
al. (2012) demonstrated that combination of FGF-2 with 
either BMP-2 or VEGF resulted in less bone formation 
compared to BMP-2 and VEGF in combination. However, 
growth factor selection should be made according to the 
task at hand, whereby combination treatment with FGF-2 
may be required to induce void filling callus formation 
and osteoid production prior to combination treatment 
with BMP-2 for mineralisation. A staged approach may be 
necessary for efficient and effective bone healing requiring 
multiple growth factors delivered spatiotemporally in 
varying dosages. Following combination administration 
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of FGF-2 with BMP-2 (van der Stok et al., 2013), BMP-7 
(Ma et al., 2007), oestrogen (Iwaniec et al., 2003), IGF-1 
(Madry et al., 2010), melatonin (Takechi et al., 2008), PTH 
(1-34) (Lane et al., 2003a), VEGF (Behr et al., 2012) or 
17β-estradiol (Lane et al., 2003a) in small animal models, 
including mouse (Behr et al., 2012), rabbit (Madry et al., 
2010) and rat (Nakamura et al., 2005), 1.1 to 3.3 fold 
(Fujimura et al., 2002; Lane et al., 2003a) increased bone 
formation was observed. Dual combinations evidently 
have important ramifications for bone tissue formation 
and defect regeneration albeit at magnitudes smaller than 
FGF-2 delivery alone. It is difficult to interpret whether 
interactions between dual factors resulted in synergistic or 
antagonistic signalling. Indeed, it is well known that FGF-2 
inhibits BMP-2-driven bone formation by interfering with 
the signal transduction pathway, demonstrating a need for 
careful co-administration, possibly in a spatiotemporal 
manner. Analysis of parameters other than bone may help 
elucidate the mechanisms in play and aid comparison 
between studies. Although all studies reported increased 
bone formation, many did not compare to either growth 
factor individually or investigate non-bone tissues, such as 
cartilage production. Comparison to single factors would 
distinguish between synergistic and antagonistic signalling 
(greater or lower fold increase following dual combination, 
respectively).

PDGF
PDGF is a potent mitogen for the induction of angiogenesis 
from progenitor cells of the mesenchymal lineage. 
There are 5 isoforms including PDGF-A, B, C, D and a 
heterodimer AB. Homodimer BB constitutes a dimeric 
glycoprotein of PDGF that has been administered in vivo 
within small animal models, including the minipig (Herford 
and Cicciu, 2012), mouse (Ranly et al., 2005), rabbit (Lee 
et al., 2001b) and rat (Kaipel et al., 2012) for bone tissue 
engineering strategies (Supplementary Table 4).

Direct administration of PDGF
Direct administration of PDGF in vivo has been shown 
to increase bone tissue formation and defect regeneration 
between 1.5 (Herford et al., 2012) and 2.4 fold (Moore et 
al., 2009), following dosages ranging from 0.01 (Ranly 
et al., 2005) to 80 μg (Nash et al., 1994) (two studies 
have also employed dosages up to 750 μg (Herford and 
Cicciu, 2012; Herford et al., 2012)). One study by Park 
et al. (2000) demonstrated up to 10 fold increased bone 
formation; however, this was compared to healing within 
blank control defects. The same study demonstrated 
only a 1.5 fold increase in comparison to control defects 
filled with scaffold alone. Evidently, dependent on the 
controls used and comparisons made within individual 
studies, care should be taken when drawing conclusions 
regarding growth factor efficacy for bone regeneration 
in vivo. Careful consideration should also be afforded 
to which parameters are used to quantify growth factor 
efficacy, as Moore et al. (2009) reported 9 fold increased 
union but only 1.9 to 2.4 fold increased bone volume. 
Standardisation of comparable readouts across related 
growth factor investigations would ultimately provide fast 
and efficient cross-evaluation. PDGF appears to enhance 

bone regeneration through angiogenic induction and 
augmentation of surrounding vasculature. However, where 
increased bone formation is reported following high dose 
PDGF by Nash et al. (1994) reduced mechanical strength 
within newly formed bone was also reported. Quality 
alongside quantity of newly formed bone should therefore 
be factored into any analysis of bone defect regeneration. 
Although many studies have reported a positive correlation 
between PDGF administration and enhanced bone healing, 
these observations were not shared by all. Kaipel et al. 
(2012) demonstrated the failure of PDGF treatment to 
increase bone healing within a femoral segmental defect 
in rat. The same study also demonstrated failed healing 
following administration of another angiogenic factor 
VEGF. Interestingly, administration of BMP-2 within this 
study enhanced bone healing, suggesting that osteogenic 
factors are either a prerequisite for bone augmentation, or 
that they are required to drive progression of endogenous 
endochondral ossification.

Indirect administration of PDGF
Anusaksathien et al. (2004) reported similar negative 
findings with continuous PDGF exposure where treatment 
resulted in reduced mineralisation at the defect site. 
Delivery was indirect, through implantation of transduced 
cells. However, reduction was observed after 3 weeks 
then reversed and increased after 6 weeks. This suggests 
that temporal exposure within a larger network of bone 
healing processes dictates the effect of implanted PDGF. 
Addition of an angiogenic factor may not necessarily 
correlate with an angiogenic response, and is dependent on 
spatiotemporal delivery. Indeed, indirect administration of 
PDGF has been shown to modestly increase bone volume 
within the defect site between 1.7 (Chang et al., 2010) and 
2 fold (Zhang et al., 2012a) following delivery of 5.5 x 108 
to 5.5 x 109 PFU/mL within rats. Clearly, there is interplay 
between the growth factor delivered and endogenous 
processes at the defect site, which ultimately control the 
response observed. It is therefore valuable to successful 
tissue engineering strategies, to investigate and compare 
these interactions.

Combination administration of PDGF
A number of studies have investigated combination 
treatment with PDGF and several other growth factors 
including bFGF (Meraw et al., 2000), BMP-2 (Martino 
et al., 2011), BMP-7 (Zhang et al., 2009b), IGF-1 (Nociti 
Junior et al., 2000), osteogenin (Marden et al., 1993), 
TGF-β1 (Reyes et al., 2012) and VEGF (El Backly et al., 
2013). Bone formation was reported to increase between 
1.4 and 2.3 fold (Zhang et al., 2009b) within large animals 
(dog (Zhang et al., 2009b)) following PDGF dosages 
around 5 µg/mL for direct administration (Nociti Junior 
et al., 2000), or 2 x 1010/mL viral particles for indirect 
administration (Zhang et al., 2009b). Combination 
treatments within small animal (mouse (El Backly et al., 
2013), rabbit (Reyes et al., 2012) and rat (Park et al., 2013)) 
studies reported increased bone formation between 2.5 (Xu 
et al., 2012) and 10 fold (Reyes et al., 2012) following 
PDGF dosages ranging between 0.05 (Martino et al., 2011) 
and 200 µg (Marden et al., 1993).
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PTH
PTH is an 84 amino acid polypeptide secreted by 
chief cells of the parathyroid gland and is an essential 
regulator of both calcium and phosphate metabolism 
which has important ramifications for bone. Regarding 
mineral homeostasis, PTH acts to increase serum calcium 
through gastrointestinal absorption, renal reabsorption 
and liberation from bone reserves (Alkhiary et al., 2005; 
Podbesek et al., 1983). Continuous PTH treatment 
results in bone resorption, functioning indirectly through 
osteoblasts rather than directly via osteoclasts. However, 
intermittent PTH treatment has been shown to result in 
osteoblast stimulation and increased bone formation (Hock 
and Gera, 1992).

Direct administration of PTH
Many truncated forms of PTH have been directly 
administered in vivo most often by subcutaneous injection 
within large (dog (Daugaard et al., 2012), monkey (Vahle 
et al., 2008) and sheep (Arrighi et al., 2009)) and small 
animals (mouse (Takahata et al., 2012), rabbit (Lehman 
et al., 2010) and rat (Qiu et al., 2013)) at variable dosages 
from 0.75 to 7.5 µg/kg/day (Manabe et al., 2007) (20 to 
1,000 µg/mL (Arrighi et al., 2009; Jung et al., 2007a)), 
and 0.05 to 800 µg/kg/day (Mohan et al., 2000; Rihani-
Bisharat et al., 1998) (20 to 100 µg/mL (Jung et al., 
2007b)), respectively (Supplementary Table 5). Treatment 
resulted in enhanced bone formation between 1.1 and 3.4 
fold (Arrighi et al., 2009; Vahle et al., 2008) within large 
animals, and between 1.1 and 13.1 fold (Komatsu et al., 
2009; Li et al., 2001) in small animals. Respective bone 
mechanical strength was also increased ranging from 1.4 to 
2 fold (Daugaard et al., 2011; Vahle et al., 2008) for large 
animals and 1.1 to 3.8 fold (Reynolds et al., 2011; Sloan et 
al., 2010) for small animals. Thus teriparatide (PTH 1-34), 
the truncated PTH molecule, is a successful osteoporosis 
molecule with clear anabolic bone formation activity. 
In brief, PTH administration leads to increased bone 
formation and mechanical strength over time, possibly 
through a reduction in osteoclast number (Manabe et al., 
2007). Indeed, Nozaka et al. (2008) reported a 5.3-fold 
reduction in osteoclast number. However, other studies 
by O’Loughlin et al. (2009) and Takahata et al. (2012) 
reported contrasting results with a 2.5- to 4-fold increase 
in osteoclast number. Markers of bone formation such as 
osteocalcin and alkaline phosphatase were also shown 
to be increased between 1.2 and 3.1 fold (Komrakova 
et al., 2011; Qiu et al., 2013), indicating upregulation of 
osteoblast activity. PTH-enhanced osteoblast activity has 
been shown to reduce periodontal disease-induced bone loss 
by as much as 2.3 fold (Marques et al., 2005). Conversely, 
continuous PTH infusion, investigated by Ma et al. (2001), 
demonstrated a significant drop in bone formation markers 
(3 to 7.5-fold drop in osteoprotegrin which binds RANKL 
blocking RANK-induced osteoclastogenesis) and increase 
in RANKL expression (5.5 to 27 fold) leading to a 3 fold 
increase in osteoclast number. Consequently, the adopted 
administration regimen has significant implications for 
bone formation. Vahle et al. (2004; 2008) showed treatment 
withdrawal reversed bone enhancement after 3 years in 
sheep and 24 months in rat. Caution should therefore be 

taken when striking a balance between treatment period 
and, importantly, dosage, as Vahle et al. (2004) also 
demonstrated bone neoplasia with high dose PTH over 
prolonged periods in rats. However, the delivery vehicle 
may aid beneficial outcomes from continuous PTH 
administration, since Arrighi et al. (2009) demonstrated a 
maximum 3.4-fold increase in bone formation within sheep 
femoral and humeral defects following PTH fusion protein 
within fibrin glue. One interesting observation which may 
need future consideration for comparative purposes is the 
source of PTH under investigation. Li et al. (2001) reported 
a significant difference in the potency of two differently 
sourced PTH peptides, where bovine PTH was 4 to 6 fold 
more potent than rat PTH. As previously mentioned, some 
studies have investigated cartilage formation as a precursor 
to bone tissue generation. Following PTH treatment 
chondrogenesis/cartilage formation was increased 3 to 9.9 
fold (Kakar et al., 2007; O’Loughlin et al., 2009) leading 
to enhanced trabeculated callus formation (Reynolds et 
al., 2011). Bone architecture and structure are important 
quality indicators, yet many studies report only simple 
measurements of bone quantity.

Combination administration of PTH
PTH has been used in combination treatment of bone 
defects with growth factors including BMP-2 (Kempen 
et al., 2010), BMP-7 (Morgan et al., 2008), FGF-2 (Lane 
et al., 2003b), IL-6 (Rozen et al., 2007) and PTHrP (Xue 
et al., 2005), and bisphosphonates including alendronate 
(Campbell et al., 2011), ibandronate (Yang et al., 2013), 
pamidronate (Aspenberg et al., 2008), tiludronate (Delmas 
et al., 1995) and zoledronic acid (Li et al., 2013). Some 
studies have delivered PTH with cells, including periodontal 
ligament cells (Wolf et al., 2012), BMSCs (Pettway et al., 
2005) and MSCs (Yu et al., 2012b). Together, these studies 
have demonstrated increased bone formation between 1.3 
(Morgan et al., 2008) and 4.1 fold (Kempen et al., 2010) 
in small animals following dosages from 10 to 90 μg/
kg/day. One large animal study demonstrated between 2 
and 4 fold increased bone formation, following dosages 
of 0.015 µmol/kg (Delmas et al., 1995). Whilst bone 
formation was enhanced, it is important to note here that the 
same selection of studies together demonstrated enhanced 
bone formation between 1.2 (Niziolek et al., 2009) and 3.1 
fold (Pettway et al., 2008) following treatment with PTH 
alone. Combination treatment also augmented mechanical 
parameters of new bone tissue including strength and 
stiffness between 1.2 (Morgan et al., 2008) and 3.1 fold 
(Rozen et al., 2007). Wolf et al. (2012) demonstrated 1.2 to 
3 fold increased bone marker expression. One interesting 
study by Niziolek et al. (2009) delivered PTH with the 
antibiotic rapamycin and demonstrated reduced bone 
mineral density (BMD). This study highlights the need 
to standardise drug regimen between animal models as 
antibiotics are often administered during defect preparation 
and following surgery. Drug selection should be carefully 
considered so as not to hinder effective defect regeneration.

PTHrP
As a regulator of endochondral bone development, PTHrP 
maintains growth plate width and structure through 
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balanced inhibition of chondrocyte maturation (Kobayashi 
et al., 2002). In adults, PTHrP interferes with osteocyte-
mediated sclerostin inhibition of bone formation (Robling 
et al., 2008), and binds receptors of the osteoblast lineage 
inducing enhanced bone formation (Karaplis, 2001).

Direct administration of PTHrP
PTHrP analogues and truncated peptides have been utilised 
directly in small animal models, including mouse (Lozano 
et al., 2010), rabbit (Trejo et al., 2010), and rat (Stewart 
et al., 2000) (Supplementary Table 6). Bostrom et al. 
(2000) injected the PTHrP analogue RS-66271 within a 
rabbit ulna segmental defect (1 mm), whilst Trejo. et al. 
(2010) implanted the C-terminal PTHrP (107-111) epitope 
within a rabbit femur epiphyseal defect (5 mm). These two 
studies demonstrated a 2 to 10 fold increase in bone volume 
(Table 5). Analogues and truncated peptides have also 
been assessed in disease models. The C-terminal PTHrP 
(107-139) peptide (Lozano et al., 2010) and N-terminal 
PTHrP (1-36) peptide (Lozano et al., 2009) were examined 
within diabetic mice and found to reverse diabetic-induced 
bone loss when administered at 100 µg/kg every other 
day. Interestingly, the N-terminal PTHrP (1-36) peptide 
(40 µg/kg/day) and PTHrP analogue RS-66271 (80 µg/kg/
day) were investigated in ovariectomised rats (osteopaenia 
model) and found to reverse bone loss and enhance new 
bone formation exhibiting increased (3 fold) biomechanical 
strength (Stewart et al., 2000; Vickery et al., 1996).

Combination administration of PTHrP
Porto-Nunez et al. (2010) and de Castro et al. (2011) both 
used the N-terminal PTHrP (1-36) and the C-terminal 
PTHrP (107-139) peptides in combination in the 
ovariectomised and diabetic mice, respectively. Following 
injections at 80 and 100 µg/kg, bone loss was reversed and 
bone volume increased 1.5 fold. Although, different dosage 
regimes were implemented between these two studies, both 
observed an increase in BMD; 1.1 and 2.2 fold. Evidently, 
PTHrP plays an important role in bone formation and use 
of active analogues and peptides will not only augment 
bone healing, but can also reverse bone loss due to disease.

TGF-β3
A central component of the healing cascade in any bone 
defect is the formation of cartilage tissue, a precursor to 
immature bone, which subsequently becomes mineralised 
(Dimitriou et al., 2005). TGF-β3 is a potent chondrogenic 
growth factor enhancing hyaline cartilage formation in vivo 
(Ripamonti et al., 2009a; Tang et al., 2009).

Direct administration of TGF-β3
Ripamonti et al. (2009b; 2008) and Teare et al. (2008) 
investigated the direct delivery of TGF-β3 (5 to 125 µg) 
within adult Chacma baboons and demonstrated a 1.75- to 
3-fold increase in bone formation (Supplementary Table 
7). Direct TGF-β3 delivery (3 ng to 2.75 µg) within small 
animal models, including mouse (Kovacevic et al., 2011) 
and rat (Opperman et al., 2002), only showed a 1.05 fold 
increase in bone volume. However, cartilage formation 
showed a more robust augmentation of 1.23 fold (Table 
5). Low level bone formation was also observed by Rizk 

and Rabie (2013), following investigation of TGF-β3 
transduced cells within a mouse ectopic subcutaneous 
implant model; considerable cartilage constructs were 
generated without significant bone formation. Release 
of the chondrogenic factor TGF-β3 in vivo would be 
anticipated to induce cartilage formation. An appropriate 
osteogenic signal would then be required to drive 
mineralisation of this induced cartilage. Indeed, addition 
of OP-1 (Ripamonti et al., 2010) or MSCs (Mrugala et 
al., 2008) within large animal models has been shown to 
increase bone formation 5.3 fold; a vast improvement over 
TGF-β3 alone.

Combination administration of TGF-β3
Small animal studies have investigated TGF-β3 delivery in 
combination with BMP-2 (Oest et al., 2007), chondrocytes 
(Park et al., 2010b), MSCs (Park et al., 2010a), Sox9 (Park 
et al., 2012), and TGF-β1 (Kim et al., 2010a). Between 10 
and 100 ng/mL TGF-β3 was used within these studies and 
TGF-β3 in combination with BMP-2 induced 12.8 to 13 
fold more bone (Oest et al., 2007; Simmons et al., 2004) 
where combination with chondrocytes induced 1.6 to 22 
fold increased collagen (Na et al., 2006; Park et al., 2009). 
These studies confirm the combination of chondrogenic 
and osteogenic factors in a defined spatiotemporal pattern 
can lead to more enhanced bone tissue formation than 
application of TGF-β3 alone.

VEGF
VEGF constitutes a sub-family comprised of 5 members 
(VEGF-A to VEGF-D, and placental growth factor). 
VEGF-A is the most important of these members with a 
significant role in both vasculogenesis (de novo vasculature 
formation) and angiogenesis (vessel formation sprouting 
from existing vasculature) (Byrne et al., 2005). Hypoxia 
and necrosis are major concerns at sites of bone damage 
and contribute to healing failure. Formation of healthy 
vasculature through the use of VEGF-A to supply oxygen 
and nutrients at these sites is of paramount importance to 
efficient bone defect regeneration (Geiger et al., 2007).

Direct administration of VEGF
Currently only a limited number of studies have utilised 
VEGF for in vivo bone defect regeneration (Supplementary 
Table 8). Kanczler et al. (2008) implanted 1.7 μg rhVEGF165 
on poly(lactic acid) (PLA) scaffold within a mouse femur 
5 mm segmental defect. After 4 weeks, augmentation of 
blood vessel formation was observed alongside a 1.65-
fold increase in bone volume (Table 5). The same study 
implanted human BMSCs in combination with rhVEGF165 
but observed no further enhancement. A study by Wernike 
et al. (2010) observed enhanced vascularisation but 
negligible impact on bone regeneration within a mouse 
calvarial 4 mm drill defect.

Indirect administration of VEGF
A number of studies have investigated indirect delivery 
of VEGF165 through implantation of plasmid DNA within 
a mouse femur 8 mm defect (Keeney et al., 2010), or 
transfected cells within rabbit long bone 10 mm and 15 mm 
segmental defects (Geiger et al., 2007; Li et al., 2009b). 
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Together these studies demonstrated 1.6- to 2-fold increase 
in bone formation with augmented vascularisation.

Combination administration of VEGF
A number of studies have explored the application of 
angiogenic VEGF (0.2 to 20 μg) and osteogenic BMP-
2 (0.5 to 120 μg) in combination within large animals, 
including dog (Geuze et al., 2012) and pig (Ramazanoglu 
et al., 2011), and small animals, including mouse (Behr 
et al., 2012; Samee et al., 2008), rabbit (Hernandez et al., 
2012), and rat (Kempen et al., 2009). Roldan et al. (2010) 
and Zhang et al. (2010a) combined VEGF with BMP-7 
and observed neovascularisation in the absence of any 
significant increase in bone regeneration. Li et al. (2009a) 
investigated the use of VEGF with BMP-4 and observed 
impaired ectopic bone formation using a high VEGF ratio. 
Interestingly, when VEGF release was slow and sustained, 
impairment was no longer observed. Recruitment of blood 
vessels into the defect site, instructed by VEGF, typically 
complicates bone formation due to the increased localised 
bone remodelling and callus formation by osteoblasts. 
Zhang et al. (2011a) found that VEGF delivery using a 
hydrogel resulted in faster degradation, which ultimately 
has repercussions for controlled dual growth factor 
release profiles. It is thus self-evident that spatiotemporal 
control over select growth factor release for induction of 
angiogenesis, chondrogenesis, and osteogenesis is central 
for successful bone tissue repair.

Wnt Proteins
A diverse family of signalling glycoproteins (19 members; 
Wnt1 to Wnt16), Wnt proteins are involved in a myriad of 
cellular processes, including cell proliferation, migration 
and differentiation (De Boer et al., 2004).

Direct administration of Wnt proteins
Zhou et al. (2009) injected 100 ng Wnt3A into a mouse 
model of delayed skeletal development and observed both 
increased parietal bone volume and a 1.4 fold reduction 
in suture area (Supplementary Table 9). Only one other 
study, at the time of writing this review, had investigated 
Wnt3A utilisation, using liposomal vesicle injection for 
direct delivery of Wnt3A to 1 mm tibial mouse fracture 
model and demonstrated accelerate mineralisation and 
osteoid deposition’ (Minear et al., 2010).

Indirect administration of Wnt proteins
Given the cost of Wnt proteins, focus has centred on 
indirect delivery using transduced and transfected cells 
(Table 5). Nalesso et al. (2011) and Qiang et al. (2008) 
both injected Wnt3A-transfected cells within severe 
combined immuno deficient (SCID) mice and observed 
1.5 fold increased cartilage formation and 1.12 fold 
increased BMD. Liu et al. (2009) injected Wnt1 transduced 
cells within SCID mice and observed a dose dependent 
enhancement of bone formation (1.25 fold). Implantation 
of Wnt4 transduced MSCs in SCID mice with a 5 mm 
calvarial defect resulted in extensive integrated enhanced 
mineralised bone tissue (Chang et al., 2007). The same 
study implanted Wnt1 transduced cells within an alveolar 
defect in SCID rats and observed a 3- to 5-fold increase 

in bone formation. 1.75 fold increased bone formation 
was also observed by Bennett et al. (2005; 2007) within 
transgenic mice following Wnt10B plasmid injection into 
mouse embryos. These different studies indicate that Wnt 
proteins can augment in vivo bone formation, although 
success in bone tissue engineering will be dependent 
on Wnt protein selection. Injection of Wnt6 transfected 
cells within the chick limb bud inhibited chondrogenesis 
and promoted myogenesis (Geetha-Loganathan et al., 
2010). Wnt5A plasmid injection within mouse embryos 
generated transgenic mice exhibiting a variety of 
developmental defects, including reduced endochondral 
and intramembranous bone formation (van Amerongen et 
al., 2012), although control of spatiotemporal expression 
exhibited increased calvarial ossification.
 In summary, select exogenous factors can be 
successfully applied as part of a tissue-engineering regimen 
for in vivo bone regeneration. It is the opinion of the authors 
that BMP-2 provides the greatest bone regeneration in vivo, 
and that careful spatiotemporal release with additional 
factors may provide synergistic or additional signalling 
leading to further augmentation. Supporting literature 
discussed here details a maximum 50-fold increase in 
bone formation following BMP-2 administration (Table 
5). BMP-7 may provide a suitable alternative to BMP-2 
with similar osteogenic potency. However, many studies 
failed to quantify enhanced tissue formation or failed to 
record any changes therein and therefore recorded fold 
increases may indeed be higher. Nevertheless, these animal 
studies have informed clinical translation resulting in 
BMP-2, BMP-7/OP-1, PDGF, PTH and PTHrP transition 
from animals to humans. The current prohibitive protein 
production costs or minimal supporting in vivo literature 
may explain the lack of FGF, TGF-β3, VEGF and Wnt 
protein clinical translation to date.

Human Trials

In contrast to animal models, human patients display 
unpredictable idiopathic variations in their ability to form 
bone, inter and intra-family genetic variations, and systemic 
multifactorial inconsistencies derived from age, sex, 
weight, diet, disease, health status, lifestyle, medication, 
drug abuse/addiction, and numerous environmental factors 
(Sandhu et al., 1995). Consequently, large subject numbers 
are required in any clinical trial before examination can 
yield comparative data of value (Khan and Lane, 2004). 
That said, tissue engineering-based approaches to bone 
regeneration in humans have already been successfully 
translated.

BMP-2
Approval for the use of rhBMP-2 in humans was granted by 
the European Medicines Agency in 2002, and by the U.S. 
Food and Drug Administration (FDA) in 2004 (McKay et 
al., 2007), following a pivotal study by the BESTT (BMP-
2 evaluation in surgery for tibial trauma) study group 
(Govender et al., 2002). The study reported both a reduced 
need for secondary intervention, and enhanced fracture 
healing following treatment with rhBMP-2 on absorbable 
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collagen sponge (ACS). BMP-2 has subsequently 
become the subject of intense examination in vivo 
(Supplementary Table 1). Clinical studies have included 
facial reconstruction (cleft and mandible defects) (Cicciu 
et al., 2012; Dickinson et al., 2008; Herford and Boyne, 
2008), maxillary sinus floor augmentation (Triplett et al., 
2009), long bone non-unions (Tressler et al., 2011), tibial 
fractures (Jones et al., 2006; Swiontkowski et al., 2006), 
and lumbar fusions (Mladenov et al., 2010; Taghavi et al., 
2010). Facial reconstruction and bone augmentation studies 
all delivered rhBMP-2 on ACS at a concentration of 0.75 
to 1.5 mg/mL. Boyne et al. (2005) demonstrated increased 
bone formation suitable for dental implants. Fiorellini et 
al. (2005) and Triplett et al. (2009) performed similar 
dental studies revealing 2-fold increase in bone formation 
for dental implants and functional longevity, respectively. 
Dickinson et al. (2008) also demonstrated the efficacy 
of rhBMP-2/ACS for bone regeneration in vivo through 
improved healing and reduced morbidity in cleft defects. 
Treated patients exhibited 95 % closure compared to 63 % 
in non-treated patients. New bone formation and closure 
of non-union fractures was observed by Tressler et al. 
(2011) and Johnson et al. (1988b). Additional advantages 
of utilising rhBMP-2 on ACS over iliac crest autograft 
included 1.35 fold reduced operative time and 1.4 fold 
reduced intraoperative blood loss, both of which aided 
effective surgery (Tressler et al., 2011). 92.3 % to 98 % 
of treated patients (Burkus et al., 2009; Haid et al., 2004) 
compared with 70 % to 89 % of control patients (Dawson 
et al., 2009; Dimar et al., 2009) exhibited successful 
fusions of lumbar vertebrae, demonstrating enhancement 
of rhBMP-2-induced bone formation (Supplementary 
Table 1). Other rhBMP-2 studies reported reduced back 
and leg pain (Burkus et al., 2003a) and reduced arm and 
neck pain (Baskin et al., 2003). The major carrier utilised 
for rhBMP-2 was ACS, however alternative carriers were 
utilised including autograft and allograft bone (Buttermann, 
2008; Taghavi et al., 2010), gelatin (Johnson et al., 1988a), 
hydroxyapatite-tricalcium phosphate particles (Dawson et 
al., 2009), polyetheretherketone (Klimo and Peelle, 2009), 
and poly(lactic co-glycolic acid) (Johnson et al., 1988b; 
Katayama et al., 2009).
 However, in the last few years a number of studies 
have questioned adverse-free outcomes of rhBMP-2 for 
spinal fusion. Off label use of rhBMP-2, reported within 
several studies, has shown significant rhBMP-2-related 
side effects including urogenital and renal complications, 
wound complications, increased inflammation and 
increased cancer risk (Carreon et al., 2008; Mesfin et al., 
2013; Moshel et al., 2008). Fu et al. (2013) stated, “early 
journal publications misrepresented the effectiveness and 
harms through selective reporting, duplicate publication, 
and underreporting”, in their assessment of rhBMP-2 use in 
spine fusion surgery (Fu et al., 2013). Thus, standardisation 
of analysis methodology and readout parameters would 
benefit comparison between studies regarding BMP-2 
safety and efficacy.

BMP-7/OP-1
Early studies utilising BMP-7 in humans were first reported 
between 1999 and 2001 (Friedlaender et al., 2001; Geesink 

et al., 1999; Laursen et al., 1999; van den Bergh et al., 
2000). These studies investigated BMP-7 delivery on ACS 
to long bone osteotomy and non-union, lumbar interbody 
fusion and maxillary sinus augmentation (Supplementary 
Table 2). Van den Bergh et al. (2000) and Groeneveld et al. 
(1999) reported 1.2 to 9.7 fold increased osteoid formation 
following treatment with 2.5 mg BMP-7 for maxillary sinus 
augmentation. Less successful outcomes were reported by 
Laursen et al. (1999) and Jeppsson et al. (1999) regarding 
lumbar fusions, where enhanced bone resorption was 
observed and only 1 of 4 patients exhibited successful bone 
bridging. Conversely, Geesink et al. (1999) demonstrated 
new bone formation within tibial osteotomies as early as 
6 weeks following treatment with 2.5 mg BMP-7 in all 
but one patient. Friedlaender et al. (2001) demonstrated 
safe application of BMP-7 in vivo with non-union healing 
comparable to autograft controls. Together, these studies 
pioneered BMP-7 use in vivo and led to FDA approval for 
use in long bone non-unions in 2001 and posterolateral 
lumbar fusions in 2004 (Ong et al., 2010). Regarding 
lumbar fusion surgery, BMP-7 was delivered at 3.5 mg 
per vertebral side (7 mg in total). Vaccaro et al. (2003; 
2004; 2005) reported improved Oswestry scores measuring 
low back pain, radiographic fusion in 50 % to 55 % of 
patients, and bone bridging in 70 % to 91 % of patients. 
BMP-7 was repeatedly shown to increase bone formation 
similar to autograft (Johnsson et al., 2002; Kanayama et 
al., 2006; Vaccaro et al., 2004). However, over-zealous 
application of BMP-7 can have side effects, as Kim et al. 
(2010b) demonstrated significant ectopic bone formation 
along the surgical track following delivery of 17.5 mg. It 
is important to note that dosage is relative to defect site 
and that where high dose in one anatomic location may be 
excessive, in another location within a different size defect 
the same dose may be more appropriate. Indeed, 17.5 mg 
appeared excessive in lumbar fusion, but Hernandez-Alfaro 
et al. (2012) demonstrated safe administration of 2 g BMP-
7 within a 60 mm mandibular defect and reported stable 
osseointegration of titanium mesh implant after 1 year. 
Numerous pseudarthrosis and non-union fracture studies 
standardised BMP-7 dosage to 3.5 mg. Complete defect 
healing was observed in patients treated for pseudarthrosis, 
where treated bones were reportedly pain free and load 
bearing (Anticevic et al., 2006; Fabeck et al., 2006). 
However, Lee et al. (2006) did not observe new bone 
formation in any of the 5 patients that received treatment. 
A study by Ekrol et al. (2008) also demonstrated a lack of 
BMP-7 induced bone healing within radial osteotomies 
reporting decreased healing rates and reduced stability 
compared to autograft. Non-union fracture studies reported 
better results following administration of 3.5 mg BMP-7. 
75 % (Friedlaender et al., 2001) to 100 % (Giannoudis et 
al., 2009) of treated patients exhibited healed defects within 
3 (Kanakaris et al., 2008) to 16 months (Giannoudis et al., 
2009). This compared with only 68.3 % (Calori et al., 2008) 
to 85 % (Friedlaender et al., 2001) of patients who received 
autograft. These studies also reported decreased healing 
time (1.5 fold), hospital stay (3.4 fold) and treatment cost 
(1.9 fold) (Dahabreh et al., 2007; Ristiniemi et al., 2007). 
Taken together, current literature supports the application 
of BMP-7 within tissue engineering strategies for localised 
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bone defect repair and regeneration. However, dosage 
should be carefully considered with respect to the defect 
site to reduce unwanted side effects.

PDGF
Only one study, at the time of writing, was found to utilise 
PDGF for in vivo bone regeneration in humans. Nevins 
et al. (2003) administered between 0.5 and 5 mg/mL 
PDGF-BB to patients with advanced periodontitis and 
interproximal intrabony and/or molar class II furcation 
defects (Supplementary Table 4). As with all human 
studies, investigation of new bone is limited and analysis 
of specific bone parameters is restricted to non-invasive 
techniques. The study assessed defect regeneration through 
vertical probing depth and found a 1.12 fold reduction 
following PDGF treatment compared to xenograft bone in 
collagen. Clearly, PDGF treatment provides a functional 
alternative to xenograft for effective defect regeneration.

PTH
PTH has been administered in humans for many years 
investigating its efficacy for bone formation within healthy 
adults (Horwitz et al., 2011), adults with low BMD (Ryder 
et al., 2010), postmenopausal women (Schafer et al., 2013), 
mandibular defects (Kwon et al., 2012) and vertebral 
fractures (Nakamura et al., 2012) (Supplementary Table 
5). Continuous delivery has been shown to reduce bone 
formation markers and increase bone resorption. Horwitz 
et al. (2011) indeed demonstrated extensive bone resorption 
with high dose PTH (4 pmol/kg/h) delivered by continuous 
infusion pump, resulting in hypercalcemia. Intermittent 
delivery increased bone turnover within low BMD patients 
who exhibited 2.1 fold increased bone formation, and 
2.7 fold increased bone resorption (Ryder et al., 2010). 
Nakamura et al. (2012) also demonstrated increased BMD 
(2.3 to 6 fold) within vertebral fracture patients following 
intermittent administration (56.5 μg/week). Standard 
delivery of PTH at 20 μg/d to patients with mandibular 
defects resulted in 5.4 to 5.7 fold increased bone marker 
expression (Kwon et al., 2012), and 1.5 (Kuchler et al., 
2011) to 11.6 fold (Bashutski et al., 2010) increased 
bone formation with augmented implant integration (1.2 
to 4.7 fold). Most studies reviewed investigated PTH 
administration within postmenopausal women at dosages 
ranging between 20 and 100 μg/d. These studies reported 
reduced healing time (1.3 (Aspenberg et al., 2010) to 1.6 
fold (Peichl et al., 2011)) and fracture incidence (2.8 to 
7 fold) (Neer et al., 2001), whilst BMD and mechanical 
strength were reportedly increased 1.02 to 1.05 fold 
(Keaveny et al., 2012), and 4.2 to 7.7 fold (Keaveny et 
al., 2008), respectively. Clearly, PTH can augment bone 
defect repair and increase innate BMD.

PTHrP
PTHrP has been used clinically via subcutaneous or 
intravenous injection. Horwitz et al. (2011; 2005) 
published data detailing systemic delivery of N-terminal 
PTHrP (1-36) peptide within healthy adults at dosages 
between 2 and 28 pmol/kg/h led to profound suppression 
of bone formation (Supplementary Table 6). Another 

study revealed that 1.3- to 1.4-fold suppression in bone 
formation could be reversed following PTHrP analogue 
cessation. Consequently, continuous infusion can enhance 
bone resorption and decrease bone formation, whilst 
intermittent infusion can lead to a net increase in bone 
formation. Fraher et al. (1992) demonstrated increased 
serum calcium and urinary phosphate when healthy 
individuals were injected with N-terminal PTHrP (1-34) 
peptide at 8 or 80 pmol/kg/h. Thus, PTHrP translation from 
animal to human studies has, to date, not yielded similar 
responses, indeed the use of PTHrP analogues has had the 
opposite effect with increased bone resorption observed 
in the clinic. However, a study by Plotkin et al. (1998) 
using the N-terminal PTHrP (1-36) peptide delivered by 
subcutaneous injection within post-menopausal oestrogen 
deficient women observed activation of bone formation 
and a 1.3- to 1.45-fold reduction in bone resorption. The 
function of these analogues may be modified by the hosts 
hormonal status; pre or post-menopause. Minimal literature 
on the in vivo use of PTHrP analogues highlights the need 
for further investigation before definitive conclusions can 
be drawn.

Future directions

It is clear the use of select growth factors in vivo can 
augment bone formation and potentially repair defects. 
Utilisation of animal models has proven informative for 
clinical translation of bone tissue engineering strategies. 
However, complications associated with spatiotemporal 
release of growth factors regarding longevity, bioactivity 
and carrier release kinetics have impeded progress. Parallel, 
synergistic and consecutive delivery of multiple growth 
factors appears key to successful bone regeneration. 
The authors envisage coordinated spatiotemporal 
release of select growth factors recapitulating in vivo 
signalling cascades leading to bone tissue formation. 
The importance of understanding the developmental 
processes underpinning bone tissue formation, and their 
importance in contextualising signalling cascades and 
the growth factors involved in regenerative medicine is 
gaining prominence, as understanding these processes 
is vital to informed clinical bone therapies (Smith et 
al., 2013; Turner et al., 2013). The data presented here 
demonstrate the complex and convoluted interplay between 
administered growth factors with variable success for 
bone tissue formation dependent on species, dosage and 
combination. Thus, before robust bone tissue engineering 
can be achieved (and more importantly interpreted), it will 
be important to understand the functional interplay between 
growth factors and how this leads to bone formation under 
different conditions. For example, the chick model provides 
an ideal system for investigating bone development biology 
(Smith et al., 2013). Organotypic culture of embryonic 
chick femora ex vivo enables investigation and elucidation 
of processes involved in skeletal development and bone 
repair (Kanczler et al., 2012; Smith et al., 2014a; Smith et 
al., 2014b; Smith et al., 2012). Models such as the chick 
may indeed fulfil the requirement for a simple, relatively 
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high throughput and cost effective research tool with which 
to inform, create and optimise bone tissue engineering 
strategies.

Conclusions

Evaluation of the osteotropic factors presented here 
confirms the potential of these factors to augment bone 
formation in vivo cementing their selection for bone 
reparation. Current reports indicate that BMP-2 and BMP-
7 have significant potential to augment bone formation 
(up to 50 fold and 96 fold, respectively) through induced 
osteogenesis and osseointegration of tissue-engineered 
implants. However, lessons from off-label complications 
and issues surrounding potential adverse events associated 
with rhBMP-2 in spinal fusion need to be carefully 
considered. In order, FGF, PTH, Wnt proteins, PTHrP 
analogues, PDGF, TGF-β3 and VEGF have demonstrated 
up to 16.4, 13.1, 12, 10, 10, 3 and 2 fold increased bone 
formation following direct and indirect delivery. Although 
not as potent as BMPs, these growth factors clearly have 
important benefits in any tissue engineering strategy. 
Sequential release of these angiogenic, chondrogenic, and 
osteogenic factors recapitulating native environmental cues 
is undoubtedly critical to successful bone augmentation. 
Many studies have therefore investigated combinational 
growth factor delivery to further enhance bone regeneration. 
However, most combination treatments to date appeared 
to enhance bone formation to a lesser degree. In order, 
BMP-2, BMP-7, PTH, FGF and PTHrP combinations 
demonstrated 20, 15, 4.1, 3.3 and 3 fold increased bone 
formation, respectively. TGF-β3 and VEGF combination 
treatments conversely showed further enhancement with 
13 and 20 fold increased bone formation. Important to 
note here is that both TGF-β3 and VEGF were combined 
with BMP-2, which on the one hand improved their osteo-
inductive potential and yet, apparently, diminished the 
osteo-inductive potential of BMP-2. Combinational PDGF 
treatments demonstrated similar augmentation to PDGF 
treatments alone. Wnt proteins were not found to have been 
used for combination treatment. Considering reported bone 
formation following combination treatment, it is evident 
that suboptimal spatiotemporal delivery and complicated 
in vivo interplay is hindering further enhancement. Further 
understanding the complex spatiotemporal interactions 
between growth factors in vivo, through use of appropriate 
animal models, will aid generation of clinically transferable 
and effective bone tissue engineering strategies. A number 
of studies have demonstrated successful bone tissue 
engineering in humans using the growth factors discussed 
here. However, a lack of bone tissue quantification and 
adequate controls limits correlation between growth 
factor efficacy in animals and that in humans. This further 
highlights the need for standardised investigation with 
specified measurable parameters in vivo. Connecting 
observations in animal models to those in humans will, 
ultimately, further our understanding of growth factor 
induced bone formation. Controlled orchestration of 
clinically relevant and functional in vivo bone formation 

may finally deliver on the long heralded promise of bone 
regeneration for an increasingly aged population.
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Discussion with Reviewers

Reviewer I: Can biomaterials/scaffold influence the 
capability of stem cells to promote bone repair by 
themselves, without the use of growth factors? If yes, 
through which molecular mechanisms (biomechanics/
activation of particular signalling cascades)?
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Authors: Biomaterials are discussed briefly within the 
introductory section, to equip the reader with a basic 
understanding of current tissue engineering strategies 
and thereby position them better to understand the tables. 
Biomaterials were not the aim of this review, and further 
discussion of the biomaterials may be misleading as the 
cohort of studies are not representative of the field as 
they were negated from the original search parameters. 
References to mesenchymal stem cells are only made when 
specifically discussing individual publications that utilised 
them and other cells. However, we have added our recent 
review to provide a reference overview for the reader. 
Again, further discussion would not be representative of 
the entire field.

Reviewer I: Many of the biomaterials listed are used to 
deliver and release growth factors both in bone and articular 
cartilage. Did anyone study whether a specific biomaterial 
can influence in different ways the activity of the same 
growth factor in these tissues?
Authors: To cross compare all parameters within the data 
tables is a significant undertaking and would increase the 
overall review size extensively. However, the data are 
present in all supplementary tables for the reader to assess 
as required. Comments have been made throughout the 
text, highlighting these differences between studies and 
that interpretation should be carefully considered.


