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Abstract

Runt-related transcription factor 2 (RUNX2) is a 
transcription factor closely associated with the osteoblast 
phenotype. While frequently referred to, the complexity 
of its regulation and its interactions within the osteoblast 
differentiation pathway are often overlooked. This review 
aims to summarise the knowledge of its regulation at the 
transcriptional, translational and post-translational level. In 
addition, the regulation of RUNX2 by factors commonly 
used during osteogenic studies will be discussed.
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Runt-related Transcription Factor Family

RUNX2 belongs to the family of runt-related transcription 
factors, generally agreed to be termed RUNXs (Van 
Wijnen et al., 2004). Mammalian RUNXs encode for the 
DNA-binding α subunit of the heterodimeric RUNXs. The 
family of RUNXs encompasses three members, RUNX1, 
RUNX2, and RUNX3 that are proteins with the common 
and defining characteristic being a 128-amino acids long 
‘Runt domain’ which is responsible for both the binding 
to DNA (Ogawa et al., 1993b) and the heterodimerisation 
with the non-DNA binding β subunit (Kagoshima et al., 
1993; Ogawa et al., 1993b; Golling et al., 1996). The ‘Runt 
domain’ is an evolutionarily conserved domain located at 
the N-terminal site which derives its name from the fact 
that the pair rule gene runt in Drosophila melanogaster 
is the founding member of the Runt domain family of 
transcription factors (Nusslein-Volard and Wieschaus, 
1980).
 Runt domain proteins exhibit a high homology in 
amino acids 1-20 at the N-terminus, along with a common 
5-amino acids long domain (VWRPY) located at the 
C-terminus, which was reported to be responsible for the 
interaction with Drosophila Groucho or the mammalian 
TLE (transducin-like Enhancer of split) homologues, 
thereby mediating transcriptional repression (Aronson et 
al., 1997).
 Furthermore, Runt domain proteins have in common 
that they are able to bind DNA as heterodimer with the 
β subunit. Although Runt domain proteins, i.e., the α 
subunits, bind to DNA as monomers, the association with 
the non-DNA binding β subunit both enhances the DNA 
binding affinity of Runt domain proteins and stabilises the 
interaction between the α subunit and the DNA (Ogawa et 
al., 1993a; Golling et al., 1996).
 To date, only one gene has been identified which 
encodes core binding factor β (CBFβ) (also referred to as 
PEBP2β) that acts as non-DNA binding β subunit (Adya et 
al., 2000). The Drosophila homologues of CBFβ are called 
brother and big brother (Golling et al., 1996). They serve 
as dimerisation partners for Drosophila Runt proteins.
 In mammals, three genes (Cbfa1/Pebp2αA, Cbfa2/
Pebp2αB, and Cbfa3/Pebp2αC) have been identified that 
encode the CBFα subunits (Bae et al., 1993; Ogawa et 
al., 1993b; Bae et al., 1995). On the basis of the function, 
the genes have been independently identified multiple 
times in the past, leading to different names for the 
same gene. Originally, the α subunit was identified as 
a sequence-specific DNA-binding protein of polyoma 
virus enhancer (Piette and Yaniv, 1987; Kamachi et al., 
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1990). Therefore, the protein has been named polyoma 
virus enhancer-binding protein 2 (PEBP2). PEBP2 was 
found to be identical to CBF, which binds the conserved 
core site in enhancers in the Moloney murine leukemia 
virus (Wang and Speck, 1992). Furthermore, PEBP2αB 
was demonstrated to be identical to the acute myeloid 
leukemia 1 protein (AML1) (Bae et al., 1993), the gene of 
which is involved in the chromosomal translocation t(8; 21) 
associated with acute myeloid leukemia (AML). Due to the 
mentioned history of the different genes encoding CBFα 
subunits, the nomenclature has been inconsistent. In the 
meantime, it has been decided that the gene names as well 
as the protein names should be referred to as RUNX1-3 
according to the introduced standard nomenclature (Van 
Wijnen et al., 2004):

RUNX1, its synonyms are: AML1, CBFA2, or PEBP2αB
RUNX2, its synonyms are: AML3, CBFA1, or PEBP2αA
RUNX3, its synonyms are: AML2, CBFA3, or PEBP2αC

Gene knock-out (KO) studies revealed well-defined 
biological roles of the Runx proteins. Runx1 has been 
found to be indispensable for definitive haematopoiesis, as 
demonstrated by findings that Runx1-deficient mice lack 
foetal liver-derived definitive haematopoiesis (Wang et al., 
1996), although yolk sac-derived primitive haematopoiesis 
was unaffected (Okuda et al., 1996). Furthermore, Runx1-
deficient mice showed haemorrhaging within the central 
nervous system, indicating a crucial role of Runx1 in blood 
vessel formation (Okuda et al., 1996; Wang et al., 1996).
 A first important role of Runx3 was revealed to 
be neurogenesis. Runx3 KO mice exhibit loss of 
proprioceptive neurons in dorsal root ganglia, resulting in 
the development of severe limb ataxia due to disruption of 
monosynaptic connectivity between intraspinal afferents 
and motoneurons (Inoue et al., 2002; Levanon et al., 
2002). Further phenotypic defects of Runx3 deficiency 
are demonstrated in thymopoiesis and in the control of 
cell proliferation and apoptosis of gastric epithelium (Li 
et al., 2002; Woolf et al., 2003). Runx3-deficient mice 
display hyperplastic gastric epithelium owing to increased 
proliferation and decreased apoptosis of the epithelial cells, 
and the cells of the gastric epithelium lose responsiveness 
to anti-proliferative and apoptosis-inducing signals of 
TGF-β (Li et al., 2002).

Runt-related transcription factor 2 - RUNX2

Gene, genomic structure/organisation
The human RUNX2 gene was identified and localised 
on chromosome 6p21 (Levanon et al., 1994), mouse 
Runx2 gene on chromosome 17 (Bae et al., 1994). The 
chromosomal location of human RUNX2 indicates an 
association of the gene to cleidocranial dysplasia (CCD), an 
autosomal dominant bone disease, which has been mapped 
to chromosome 6p21 (Mundlos et al., 1995). CCD is an 
autosomal, dominantly inherited disorder affecting skeletal 
ossification and tooth development (Jarvis and Keats, 
1974). Typical characteristics include hypoplasia or aplasia 
of clavicles, patent cranial sutures and fontanelles, and 
moderately short stature (Jarvis and Keats, 1974; Mundlos 

et al., 1995). The prevalence of CCD is about 1 per million 
individuals worldwide (Mundlos et al., 1995). Further 
evidence for an association between the RUNX2 gene and 
CCD comes from the phenotype of heterozygous (Runx2+/-) 
mice, which exhibit hypoplastic clavicles and nasal bones 
along with retarded ossification of parietal, interparietal, 
and supraoccipital bones (Komori et al., 1997). These 
skeletal changes resemble those of CCD (Komori et al., 
1997; Otto et al., 1997). Even more interestingly, there 
is another mouse model that shows similarities to human 
CCD (Sillence et al., 1987). The radiation-induced mouse 
mutant was found to carry the mutation in chromosome 17 
in the same region where the mouse Runx2 gene is located 
(Mundlos et al., 1996). For all these reasons, RUNX2 
is commonly considered as the gene that is mutated in 
human CCD. If not otherwise stated, all the information 
that follows about RUNX2 concerns RUNX2 in general 
and is irrespective of the species, although the references 
have used a particular model system to base their results 
on. However, it should be noted that species differences 
do occur.
 Runx2 gene expression is transcriptionally regulated by 
two promoters: the distal promoter P1 and the proximal 
promoter P2, leading to two different mRNAs differing 
in the 5’ regions: type I Runx2 mRNA by the proximal 
promoter P2, type II Runx2 mRNA by the distal promoter 
P1. While the 5’ ends of the Runx2 mRNA isoforms differ, 
their 3’ ends are identical (Fig. 1a).
 Type I Runx2 encodes for a 513-amino acid protein, 
starting with the N-terminal amino acid sequence MRIPVD 
(Ogawa et al., 1993b; Satake et al., 1995). This isoform 
was reported to be expressed in only a few tissues and cell 
lines, including thymus, Ha-ras-transformed NIH3T3 cells, 
and murine T cell lines (Ogawa et al., 1993b; Satake et al., 
1995).
 Type II RUNX2 isoform, starting with the N-terminal 
amino acid sequence MASNSL, has been found to be 
expressed in the T47i lymphoma cell line and in osteoblast 
and osteosarcoma cell lines (Stewart et al., 1997). This 
isoform encodes a 528-amino acid protein in rodents but 
a 521-amino acid protein in humans.
 The human RUNX2 gene spans a region of approximately 
200 kb (Levanon et al., 1994). The human RUNX2 gene 
comprises eight exons that have been numbered differently, 
depending on the authors (Geoffroy et al., 1998; Xiao et al., 
1998b; Otto et al., 2002); herein the exons are referred to 
as exon 1 till 8 (Fig. 1b). Exons 2 till 8 encode the putative 
ATP binding site, the glutamine/alanine-rich (QA) domain, 
the runt homology domain (RHD) region, a nuclear-
localisation signal (NLS), a proline, serine, threonine-rich 
region, and a nuclear matrix targeting signal (NTMS). The 
translation start codon of type I RUNX2 (the ‘MRIPVD’ 
isoform) is located within exon 2 (Mundlos et al., 1997). 
The second main RUNX2 isoform, the ‘MASNSL’ isoform, 
originates from the alternative translation start codon 
within exon 1 (Mundlos et al., 1997; Xiao et al., 1998b).
 Expression of the two major RUNX2 isoforms results 
from two different promoters, referred to as P1 and P2 
(Drissi et al., 2000; Xiao et al., 2001). The upstream 
promoter P1 accounts for the expression of the ‘MASNSL’ 
isoform (type II Runx2 mRNA), which is the most abundant 
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Fig. 1. (A) Expression of Runx2 isoforms in human. 
The two Runx2 mRNA types are derived from two 
different Runx2 promoters, P1 and P2: promoter 
P2 accounts for the expression of type I mRNA 
(MRIPVD isoform), while P1 accounts for the 
expression of type II mRNA (MASNSL isoform). 
(B) Gene structure of RUNX2. The major isoforms 
MASNS and MRIPV are transcribed from promoters 
P1 and P2, respectively, with ATG indicating the start 
codon. The MASNSL (Type II) isoform is encoded 
from all eight exons, while the MRIPVD (Type I) 
isoform is only encoded from exons 2-8. The Runt 
homology domain (RHD – aa 99-233) is encoded 
from exons 2, 3, 4 and 5 (orange). (C) Protein 
structure of RUNX2. The bone-associated Type II/
p57 isoform comprises 521 amino acids in humans 
and begins with the N-terminal MASNS polypeptide. 
It has a glutamine/alanine (QA) rich region and 
a proline/serine/threonine (PST) rich region. The 
protein also possesses a RHD DNA-binding domain, 
a nuclear-localisation signal (NLS) which partially 
overlaps with the RHD, a nuclear matrix targeting 
signal (NMTS), and a C-terminal VWRPY domain 
for TLE/Groucho interactions. (Calculated from 
NM_001024630.3 and NP_001019801).

A

B
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RUNX2 protein in osteoblastic cells (Drissi et al., 2000). 
The downstream promoter P2 regulates the expression 
of the ‘MRIPVD’ isoform (type I Runx2 mRNA), which 
is mainly expressed in T cells, but also was found to be 
expressed in osteoblasts (Harada et al., 1999). Type I Runx2 
mRNAs is expressed in osteoblasts and chondrocytes, 
whereas type II Runx2 mRNA is mainly expressed in 
osteoblasts (Enomoto et al., 2000; Banerjee et al., 2001). 
The two isoforms have similar functions, but differ in their 
dependency on the co-factor Cbfβ (Kanatani et al., 2006). 
Further isoforms result from alternative splicing (Geoffroy 
et al., 1998; Xiao et al., 1998b; Ogawa et al., 2000).

Runt-related transcription factor 2: protein
RUNX2 is known to act as a transcription factor, i.e., a 
protein that binds to specific DNA sequences within target 
genes (often referred to as response elements) and then 
influences transcription of its target genes either positively 
or negatively (Latchman, 1997). In fact, transcription 
factors are frequently classified based on their DNA binding 
domains. RUNX2 protein contains the highly conserved 
Runt domain that acts as the DNA binding domain (Ogawa 
et al., 1993b). In addition, the Runt domain is responsible 
for the heterodimerisation with CBFβ (Kagoshima et al., 
1993; Golling et al., 1996). In addition to the defining DNA 
binding domain, transcription factors contain additional 
protein domains necessary to regulate transcription. Several 
more protein domains in RUNX2 have been identified, and 
the ones shared by the two major RUNX2 isoforms are 
described in the following (Fig. 1c).

 N-terminal to the Runt domain, the QA domain 
consisting of glutamine-alanine repeats is located. This 
domain is composed of 23 glutamine repeats on the 
N-terminal side and 17 alanine repeats on the C-terminal 
side. It was revealed to act as a transactivation domain 
(Thirunavukkarasu et al., 1998). A more detailed 
deletion analysis showed that within the QA domain, 
it is the glutamine stretch that bears the transactivation 
ability (Thirunavukkarasu et al., 1998). Furthermore, 
the QA domain was found to prevent heterodimerisation 
of the ‘MASNSL’ isoform of RUNX2 with CBFβ 
(Thirunavukkarasu et al., 1998). Another transactivation 
domain comprising the first 19 amino acids at the 
N-terminus could be identified (Thirunavukkarasu et al., 
1998).
 C-terminal to the Runt domain, the PST domain rich 
in proline-serine-threonine is located. In general, the 
PST domain has been considered to have a function as 
transactivation domain (Bae et al., 1994). A more detailed 
deletion analysis suggested that the N-terminal half of 
the PST domain has transactivation ability, whereas the 
C-terminal half of the PST domain bears transcription 
repression ability. Similarly, solely the last five amino 
acids at the C-terminus, the VWRPY motif, which are 
conserved amongst all runt proteins, were found to act as 
transcriptional repression domain (Thirunavukkarasu et 
al., 1998). In addition, the VWRPY motif was shown to 
mediate the interaction with the transcriptional repressor 
transducin-like Enhancer of split 2 (TLE2) that is expressed 
in osteoblasts (Thirunavukkarasu et al., 1998). TLE2 is 

(MASNSL) (MRIPVD)

(Xiao et al., 1998b)

(Stewart et al., 1997a)

(Ogawa et al., 1993b)
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a mammalian homologue of Groucho, and Groucho has 
been reported to repress the transactivation ability of 
Runt domain proteins by means of the VWRPY motif in 
Drosophila (Aronson et al., 1997). Another domain, found 
at the transition from the Runt domain to the PST domain, 
which consists of a 9-amino-acid stretch (PRRHRQKLD), 
and was identified to act as nuclear localisation signal (NLS) 
and to be related to the NLS of c-Myc (Thirunavukkarasu 
et al., 1998). The NLS mediates the signal for the transport 
of a protein into the nucleus. In RUNX2, the function as 
NLS could be assigned to the mentioned stretch of 9 amino 
acids by means of DNA cotransfection experiments using 
Runx2 cDNA with deleted NLS (Thirunavukkarasu et al., 
1998). Runx2 cDNA with deleted NLS showed a loss of 
transactivation of an OSE2-dependent luciferase reporter 
construct (p6OSE2luc), which in further experiments 
could be attributed to the failed translocation of the NLS-
deleted RUNX2 protein (Thirunavukkarasu et al., 1998). 
Within the PST domain, a 38-amino-acid sequence referred 
to as nuclear matrix targeting signal (NMTS) could be 
identified that mediates the targeting of RUNX2 to distinct 
subnuclear locations that are associated with the nuclear 
matrix (Zaidi et al., 2001). Furthermore, the specific 
targeting of RUNX2 to nuclear matrix-associated regions 
was revealed to be essential for proper transactivation of 
the osteocalcin gene (Zaidi et al., 2001).

Runt-related transcription factor 2: expression
Initially, detection of Runx2 expression at the mRNA level 
was reported in Ha-ras-transformed NIH3T3 cells and 
murine T cell lines, but found to be absent in murine B 
cell lines, as shown by Northern blot analysis (Ogawa et 
al., 1993b). Runx2 was also found in murine thymus and T 
cells as well as in testis, whereas other tissues analysed such 
as brain, lung, heart, liver, and kidney lacked expression 
of Runx2 (Satake et al., 1995). These findings led to the 
assumption that RUNX2 is a T cell-specific transcriptional 
regulator (Satake et al., 1995). Elucidation of the function 
of RUNX2 in vivo, which was then reported by several 
different research groups, resulted in the demonstration of a 
crucial role of RUNX2 in osteoblast differentiation and bone 
formation (Komori et al., 1997; Otto et al., 1997). Mice 
with a homozygous mutation in Runx2 died just after birth 
and showed complete absence of bone formation, whereas 
the development of cartilage was nearly normal (Komori 
et al., 1997; Otto et al., 1997). Thorough examination 
and analysis of the heterozygous and homozygous Runx2 
mutant mouse models revealed that Runx2 is crucial for 
both intramembranous and endochondral ossification, 
and that RUNX2 plays an essential role in both osteoblast 
differentiation and expression of osteoblast-specific genes 
(Komori et al., 1997; Otto et al., 1997). Further evidence 
for the involvement of RUNX2 in osteoblast differentiation 
came from Ducy and colleagues (Ducy and Karsenty, 1995; 
Ducy et al., 1997). They investigated the mechanisms of 
osteoblast-specific gene expression by analysing the cis-
acting elements of the mouse osteocalcin gene, the most 
osteoblast-specific gene (Ducy and Karsenty, 1995). In the 
osteocalcin promoter, they found two osteoblast-specific 
cis-acting elements, referred to as osteoblast-specific 
element 1 (OSE1) and 2 (OSE2), present in the osteocalcin 

promoter; these elements are responsible for its osteoblast-
specific expression. Investigation of the OSE2 sequence 
showed it to be identical to the DNA binding site of the 
runt-related transcription factors, and one member of the 
family of runt-related transcription factors was revealed 
to bind specifically to OSE2 and to be immunologically 
related to runt-related transcription factors (Geoffroy et al., 
1995; Merriman et al., 1995). Eventually, a new isoform 
of RUNX2 (MLHSPH) was cloned as the factor that 
bound to OSE2 with the sequence ACCACA, according to 
(Geoffroy et al., 1995). In that paper, RUNX2 was not only 
identified as the transcriptional activator of the osteoblast-
specific gene osteocalcin, but also Runx2 expression was 
identified to mark cells of the osteoblast lineage (Ducy 
and Karsenty, 1995; Ducy et al., 1997). Furthermore, a 
key role of RUNX2 in osteoblast differentiation has been 
substantiated by the findings that RUNX2 both regulates 
the expression of several osteoblast marker genes in 
osteoblasts and induces expression of osteoblast marker 
genes osteocalcin, collagen type I alpha 1 (Col1α1), bone 
sialoprotein (BSP), and osteopontin in non-osteoblastic 
cells (Ducy et al., 1997).
 Summing up their findings with regard to Runx2 
expression during mouse development (Ducy et al., 
1997), the earliest occurrence of Runx2 expression is 
in mesenchymal condensations early during skeletal 
development. These cells of the mesenchymal condensations 
represent the common precursors of osteoblasts and 
chondrocytes. In the course of differentiation of these 
mesenchymal cells, expression is maintained in those 
cells giving rise to osteoblasts. In bones that arise through 
intramembranous ossification, Runx2 expression is 
detected until the differentiation into osteoblasts. In bone 
that arises through endochondral ossification, expression 
is restricted to those cells located at the periphery of 
mesenchymal condensations, which differentiate into 
osteoblasts. The centrally located cells, however, which 
give rise to chondrocytes, gradually lose Runx2 expression. 
Runx2 expression in resting and proliferating chondrocyte 
layers is low and it is upregulated in prehypertrophic 
and hypertrophic chondrocyte layers. However, Runx2 
expression in the cells of the mesenchymal condensations 
is not reproducibly reported and needs to be further 
investigated. Furthermore, in postnatal stages, the function 
of RUNX2 is still discussed and remains to be clarified. In 
line with the capability of RUNX2 to induce the expression 
of bone matrix genes (Ducy et al., 1997), expression of 
dominant-negative Runx2 under the control of osteocalcin 
promoter completely abrogated the expression of major 
bone matrix protein genes in postnatal bone development 
(Ducy et al., 1999). However, transgenic mice that express 
Runx2 under the control of the Col1α1 promoter thereby 
directing transgene expression in immature and mature 
osteoblasts, revealed osteopenia (Liu et al., 2001; Geoffroy 
et al., 2002).
 Taken together, all these findings have led to the 
generally accepted view that RUNX2 is a master 
transcription factor of osteoblast differentiation (Schinke 
and Karsenty, 2008) (for review, see Lian and Stein (2003)).
 Pathways in which RUNX2 protein is involved have 
started to be elucidated. In the following, pathways 
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that control the expression of RUNX2, pathways that 
lie downstream of RUNX2, and interacting partners of 
RUNX2 will be described in detail.

Regulation of Runt-related transcription factor 2 
gene expression
Several pathways have been described that regulate 
Runx2 gene transcription and RUNX2 activity on a post-
translational level, respectively.

Runx2 as target gene – regulation of Runx2 gene 
transcription
The Runx2 gene is known to be transcribed from two 
different promoters P1 and P2 present in the 5’-flanking 
region of the human RUNX2 gene, whereby both promoters 
are linked by a purine-rich sequence. DNA sequence 
analysis revealed that the promoter region contains binding 
sites for several transcription factors (Drissi et al., 2000; 
Tou et al., 2003). Especially, two AP1 and six OSE2 
binding sites identified in the proximal promoter along 
with three AP1 sites in the distal promoter region (Tou et 
al., 2003), and a NF1 binding site identified in a different 
study (Zambotti et al., 2002) are of particular importance as 
direct binding of the respective transcription factors to the 
binding site and transactivation have been reported (Drissi 
et al., 2002; Zambotti et al., 2002). Additionally, the distal 
promoter was revealed to contain a single OSE1 binding 
site, a single C/EBP binding site, and a consensus Smad 
binding site (Tou et al., 2003). Interestingly, Drissi and 
colleagues demonstrated that forced expression of RUNX2 
protein is able to downregulate rat Runx2 promoter activity 
in NIH3T3 cells, and that a single RUNX2 binding site is 
sufficient for the downregulation of transcription (Drissi 
et al., 2000). While these findings showed that RUNX2 
protein mediates autosuppression, others found a positive 
autoregulation of its own promoter, which was studied in 
non-osteoblastic COS-7 cells though (Ducy et al., 1999). 
Other studies reported Runx2 autoregulation even in a 
pre-osteoblast cell line (Tou et al., 2003). The AP1 binding 
site, through binding of JunD/FosB AP1 complex present 
in osteoblastic cells, has been reported to affect Runx2 
promoter activity and thus Runx2 expression in a positive 
fashion. The NF1 binding site, through binding of NF1-A 
isoform present in non-osteoblastic cells, acts in a inhibitory 
way on Runx2 promoter activity (Zambotti et al., 2002). 
Additionally, several other transcription factors have been 
reported to regulate Runx2 expression, without evidence 
of direct binding to the Runx2 promoter: the homeobox 
proteins HOXA-2 (inhibitory), BAPX1 (stimulatory), and 
MSX2 (stimulatory), as well as the regulator of adipocyte 
differentiation peroxisome proliferator-activated receptor 
γ2 (PPARγ2) (inhibitory) (Kanzler et al., 1998; Tribioli 
and Lufkin, 1999; Lecka-Czernik et al., 1999; Satokata 
et al., 2000).

Interaction of RUNX2 with TGF-β superfamily signalling 
molecules
Extracellular signalling by different members of 
growth factor families is involved in the regulation of 
osteoblastic differentiation mediated by RUNX2. RUNX2 

is a component of the bone morphogenetic protein/
transforming growth factor β (BMP/TGFβ) signalling 
pathways (for review, see Wharton and Derynck (2009)). 
TGFβ and BMPs bind to specific receptors, TGFβ type 
I and II receptors in the case of TGFβ, and BMP type I 
and II receptors in the case of BMPs. These receptors are 
serine/threonine kinase receptors. Ligand binding causes 
receptor phosphorylation, and subsequent phosphorylation 
of Smads, the effectors of the signalling, that translocate 
into the nucleus and ultimately regulate the transcription 
of target genes. While Smad2 and Smad3 are activated 
by TGFβ, BMPs activate Smad1, Smad5 and Smad8. As 
regards the functions of TGFβ and BMPs in osteogenesis, 
in general, these factors have been assigned opposed effects 
(for review, see Bonewald and Dallas (1994)). BMPs 
have been reported to act beneficially on the osteoblast 
phenotype. Recombinant human BMP-2 both induces 
the osteoblast phenotype in the non-osteogenic mouse 
pluripotent cell line C3H10T1/2 as well as in C2C12 
mesenchymal precursor cells (Katagiri et al., 1990; Lee 
et al., 2000), and also stimulates osteoblast maturation of 
a rat osteoblast precursor cell line ROB-C26 (Yamaguchi 
et al., 1991). TGFβ signalling can also inhibit progression 
of osteoblast differentiation (for review, see Bonewald and 
Dallas (1994)). Strictly speaking, TGFβ varies its influence 
on osteoblast biology depending on the differentiation 
stage of the cells: TGFβ stimulates proliferation of 
osteoblasts and early osteoblast differentiation, while it 
inhibits terminal differentiation (for review, see Bonewald 
and Dallas (1994)). This inhibition turned out to involve 
TGFβ-mediated inhibition of Runx2 and osteocalcin 
expression (Alliston et al., 2001). Elucidation of the 
mechanism showed that Smad3, a known effector of 
TGFβ signalling, interacts with RUNX2 and represses 
its transcriptional activity at the OSE2 binding sequence 
present in the promoters of many osteoblast-specific 
genes (Alliston et al., 2001). Not only did TGFβ lead to 
the inhibition of RUNX2 transcriptional activity, but it 
also inhibited Runx2 transcription, which was shown to 
require both the presence of RUNX2 and its binding to 
the Runx2 promoter (Alliston et al., 2001). In brief, these 
findings provide an explanation for the TGFβ-mediated 
inhibition of osteoblast differentiation (Alliston et al., 
2001). In contrast, interaction of Smad3/4 and RUNX2 
led to enhanced RUNX2 transcriptional activation of the 
mouse germline Ig Cα promoter in response to TGFβ 
(Zhang et al., 2000). These conflicting findings suggest 
that the effect of TGFβ on Smad3 to either repress or 
enhance transcriptional activation is dependent, amongst 
other things, on the promoter sequence (Zhang et al., 2000; 
Alliston et al., 2001).
 Using the C2C12 mesenchymal precursor cell model 
system, Lee and colleagues identified Runx2 as a common 
target that can be induced by both TGFβ1 and BMP-2 
signalling (Lee et al., 2000). However, induction of 
osteoblast-specific gene expression additionally requires 
BMP-specific Smad5 (Lee et al., 2000). Furthermore, 
induction of Runx2 transcription by BMP-2 was shown to 
involve BMP-specific Smads as well (Lee et al., 2000). 
Another study reported that BMP4/7 also induces Runx2 
expression (Tsuji et al., 1998).
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 The differentiation process follows the activation 
of expression of a set of bone-specific genes such as 
alkaline phosphatase and osteocalcin. RUNX2 regulates 
the expression of both genes and cooperates with BMP-
specific R-Smads. Furthermore, BMP transcriptionally 
activates Runx2 in C2C12 mesenchymal progenitor cells 
(Lee et al., 2000). Importantly, mutation studies revealed 
that RUNX2 holds an essential function to transmit the 
BMP signalling to regulate osteoblast-specific downstream 
target genes (Zhang et al., 2000). In summary, BMPs and 
TGFβ exert their effects on Runx2 expression via specific 
Smad proteins, leading to the inducing effect in the case 
of BMPs and the inducing or repressing effects in the case 
of TGFβ.

Runx2 and FGF
Another family of growth factors reported to positively 
regulate Runx2 expression are fibroblast growth factors 
(FGF) (Zhou et al., 2000). Mice carrying an activating 
Pro250Arg mutation in Fgf receptor 1 (Fgfr1) showed 
premature fusion of calvarial sutures due to accelerated 
bone formation and osteoblast proliferation (Zhou et al., 
2000). Moreover, mutated Fgfr1 resulted in increased 
expression of Runx2 and other osteoblast differentiation-
related genes in the sutures compared to those of wild-type 
mice. In vitro, treatment of C3H10T1/2 cells with FGF2 
and FGF8 was shown to induce Runx2 expression (Zhou 
et al., 2000).

Further regulation of Runx2 expression
As a positive regulator, all-trans retinoic acid has been 
reported to induce Runx2 expression (Jimenez et al., 2001).
 Amongst the important negative regulators of Runx2 
expression are 1,25(OH)2-vitamin D3 and TNF-α (Gilbert et 
al., 2002). The steroid hormone 1,25(OH)2-vitamin D3 has 
been shown to suppress Runx2 transcription both in mouse 
MC3T3 osteoblasts and rat ROS 17/2.8 osteosarcoma cells, 
by binding to the vitamin D3 responsive element present 
in the proximal promoter of Runx2 (Drissi et al., 2002). 
TNF-α has been documented to dose-dependently suppress 
Runx2 transcription in MC3T3-E1 clonal pre-osteoblastic 
cells (Gilbert et al., 2002).
 Further important regulators of Runx2 expression are 
glucocorticoids, although their effects have been shown to 
differ amongst species (Prince et al., 2001). Glucocorticoid 
rapidly suppresses functional RUNX2 in nuclear extracts 
from rat osteoblast cultures (Chang et al., 1998). However, 
they reported the negative effect of glucocorticoids on 
RUNX2 only at the protein level (Chang et al., 1998). 
In a human cell model, the synthetic glucocorticoid 
dexamethasone induced an increase in both protein level 
and DNA binding activity of RUNX2 in human osteoblast 
(HOB) cell lines, while the RUNX2 mRNA levels stayed 
unchanged (Prince et al., 2001). In contrast, rodent 
osteoblasts responded differently upon treatment with 
dexamethasone: rat osteoblasts showed decreased RUNX2 
protein levels, while the RUNX2 protein level in mouse 
osteoblasts was not affected (Prince et al., 2001).
 Consistent with the essential role in osteoblast 
differentiation, RUNX2 is tightly controlled. In addition 
to the transcriptional regulation of Runx2 expression, 

regulation of translation and post-translational regulation 
have been demonstrated as well. Furthermore, RUNX2 
participates in many protein-protein interactions. Most 
of them either activate or repress RUNX2 transactivation 
capability.
 The suggestion of RUNX2 post-translational regulation 
originated from studies about the osteoblast-specific 
transcriptional response of MC3T3-E1 preosteoblasts 
to ECM signals. The studies found that collagen matrix 
production, induced by the addition of ascorbic acid, 
increased OSE2-dependent osteocalcin transcription, and 
interestingly, the increased transcriptional activity was 
not associated with changes in Runx2 mRNA or RUNX2 
protein levels (Xiao et al., 1997; Xiao et al., 1998a). 
These findings raised the issue that post-translational 
modifications may be required for RUNX2 activation (Xiao 
et al., 1998a).

Post-transcriptional regulation of RUNX2 expression

Translational regulation of RUNX2
Translation has been shown to be another level of regulation 
of Runx2 gene expression. Studies using human osteoblast 
(HOB) cell lines that were treated with dexamethasone 
to induce differentiation revealed discordance between 
RUNX2 protein and mRNA levels (Prince et al., 2001). 
These findings set the base for further experiments, which 
essentially showed that while both Runx2 mRNA isoforms 
were detected in osteoblastic cells, osteoblast precursors, 
as well as non-osteoblastic cells of both human and 
rodent origin, Runx2 mRNA was polysome-associated 
in differentiated osteoblastic cells, but polysome-free in 
osteoblast precursors and non-osteoblastic cells (Sudhakar 
et al., 2001). Accordingly, only osteoblastic cells were 
found to express RUNX2 protein, where both isoforms 
were found (Sudhakar et al., 2001). These results provide 
evidence that Runx2 expression is regulated at the level 
of translation (Sudhakar et al., 2001).

Regulation of RUNX2 intracellular localisation
Protein level can be affected by regulating the protein 
transport and in this way changing the intracellular 
localisation of the corresponding protein.
 RUNX2 exerts its effects as a transcription factor 
within the nucleus. Transport into the nucleus is mediated 
by a NLS, which is located on the C-terminal side of the 
‘Runt domain’ (Thirunavukkarasu et al., 1998). Within 
the nucleus, RUNX2 has been reported to be targeted to 
distinct subnuclear regions, which are associated with 
the nuclear matrix (Zaidi et al., 2001). For this nuclear 
matrix-associated subnuclear localisation, a nuclear-
matrix-targeting signal (NMTS) is responsible (Zaidi et al., 
2001). Functionally, the NMTS has been demonstrated not 
only to be essential for RUNX2 transactivation capability 
in vitro, but also mice lacking NMTS and the remaining 
C-terminus do not generate bone, owing to maturational 
arrest of osteoblasts, indicating that this region is required 
for RUNX2 function in vivo (Zaidi et al., 2001; Choi et 
al., 2001). In these studies, the lack of the NMTS region 
left RUNX2 DNA binding ability and nuclear import 
unaffected.
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 NLS and NMTS are not merely required for RUNX2 to 
exert its full activity, but also the relevance of modifications 
in the NLS and NMTS for pathological situations has 
been reported (Quack et al., 1999; Javed et al., 2005). 
Mutations in the single amino acid R225, which resides 
in the NLS, represent frequently occurring mutations in 
CCD patients, and completely abolish the function of 
the NLS in accumulating RUNX2 in the nucleus (Quack 
et al., 1999). As regards NMTS, perturbing the RUNX2 
subnuclear localisation in human breast cancer cells by 
insertion of point mutations into the part of the RUNX2 
gene that encodes for NMTS inhibited the formation of 
osteolytic lesions in bone in vivo (Javed et al., 2005).
 Post-translational modifications are well documented to 
alter the activity and function of many proteins including 
transcription factors. Amongst the most important post-
translational regulation mechanisms are phosphorylation, 
acetylation, and ubiquitination.

Regulation of RUNX2 by phosphorylation
Phosphorylation constitutes an essential mechanism to 
change the activity of proteins post-translationally. Usually, 
serine, threonine, and tyrosine residues are the amino acids 
that undergo phosphorylation.
 In human bone marrow stromal cells, RUNX2 activity 
has been demonstrated to be positively regulated upon 
phosphorylation, and this increased protein activity in turn 
is associated with a more advanced stage of osteoblastic 
differentiation (Shui et al., 2003).
 In vitro experiments using MC3T3-E1 preosteoblasts 
demonstrated that phosphorylation of RUNX2 regulates its 
transactivation potential of the osteocalcin gene (Xiao et 
al., 2000). Thereby, RUNX2 phosphorylation was shown 
to be controlled by the mitogen-activated protein kinase 
(MAPK) pathway (Xiao et al., 2000). Since then several 
groups have reported that RUNX2 is phosphorylated 
via the MAPK pathway, and this pathway mediates the 
response of osteogenic cells to different external stimuli 
including ECM signals, osteogenic factors such as FGF-
2 and IGF-1, as well as mechanical signals (Xiao et al., 
1998a; Xiao et al., 2002; Qiao et al., 2004; Ziros et al., 
2002; Kanno et al., 2007). Furthermore, a stimulatory 
in vivo function in bone development for the MAPK 
pathway and its involvement in RUNX2 stimulation by 
phosphorylation has been demonstrated (Ge et al., 2007).
 The stimulatory role of MAPK signalling in RUNX2 
phosphorylation and transactivation capability has been 
well documented (Xiao et al., 2000; Ge et al., 2009; Zou 
et al., 2011; Ge et al., 2012; Li et al., 2012). However, an 
inhibitory effect has also been attributed to the MAPK 
signalling (Huang et al., 2012). This group reported that 
RUNX2 is negatively regulated upon phosphorylation by 
c-Jun N-terminal kinase 1 (JNK1), another MAPK, induced 
by BMP2 treatment (Huang et al., 2012).
 In addition, phosphorylation and activation of RUNX2 
has been documented to be mediated by other kinases 
including protein kinase A (PKA), protein kinase C δ 
(PKCδ), Akt (also referred to as protein kinase B (PKB)), 
homeodomain-interacting protein kinase 3 (HIPK3), and 
cyclin-dependent kinase 1 (CDK1) (Selvamurugan et al., 
2000; Kim et al., 2006; Qiao et al., 2006; Sierra and Towler, 

2010; Pierce et al., 2012; Pande et al., 2013). In contrast, 
RUNX2 inhibiting phosphorylation has been reported to be 
mediated by cyclin D1/cyclin-dependent kinase 4 (CDK4) 
as well as glycogen synthase kinase-3ß (GSK-3ß) (Shen 
et al., 2006; Kugimiya et al., 2007).
 RUNX2 comprises multiple phosphorylation sites, and 
phosphorylation at different sites has either stimulatory or 
inhibitory effects on RUNX2 activity. In contrast to the 
stimulatory effects of MAPK-mediated phosphorylation 
mentioned above, RUNX2 comprises several serine 
residues that are constitutively phosphorylated and of 
which two are reported to inhibit RUNX2 activity (Wee 
et al., 2002). One of these two negatively regulated serine 
residues is the same one reported by Zou and colleagues, 
who conversely attributed a stimulatory effect to the 
phosphorylation of that serine residue (Zou et al., 2011). 
Additionally, dexamethasone was reported to decrease 
RUNX2 phosphorylation level on a serine residue in a 
rat cell model, and in this way, at least partly, induces 
osteogenesis (Phillips et al., 2006). This residue represents 
the same one reported by two independent studies, 
substantiating the negative effect of phosphorylation of 
that particular serine residue (Wee et al., 2002; Huang et 
al., 2012).
 Taken together, RUNX2 activity is regulated in 
opposite ways by phosphorylation of different amino acid 
residues.
 Certain protein domains of RUNX2 could be assigned 
a function in phosphorylation by means of deletion studies. 
In this way the PST domain, as well as the Runt domain, 
have been reported to contain amino acid residues that 
are phosphorylated upon FGF-2 stimulation and by Akt 
kinase, respectively (Xiao et al., 2002; Pande et al., 
2013). However, the specific amino acid residues being 
phosphorylated are only incompletely known.
 As the phosphorylation of RUNX2 is a central element 
in its regulation the amino acids residues undergoing 
phosphorylation are listed in Table 1.

Regulation of RUNX2 by acetylation
Acetylation represents the process of introducing an 
acetyl group into a compound. Protein acetylation has 
an important role in the regulation of the chromatin 
structure and gene expression in general, and it occurs 
both co-translationally and post-translationally. Whereas 
co-translational acetylation is an irreversible process 
(Polevoda and Sherman, 2000), post-translational 
acetylation of lysines is reversible and has emerged as 
a significant post-translational regulation mechanism, 
reported to occur in histones, transcription factors and 
other proteins (for review, see Yang (2004)). Lysine 
acetylation of histones leads to reduction of their DNA 
affinity within the chromatin structure and in turn makes 
the DNA more accessible for transcription factors (for 
review, see Shahbazian and Grunstein (2007)). The process 
of histone acetylation is controlled by the activity of 
histone acetyltransferases (HAT) and histone deacetylases 
(HDAC), of which the latter remove the acetyl moiety 
from the histones, leading to transcriptional repression. 
HATs, of which certain ones have been reported to even 
acetylate non-histone proteins such as transcription factors, 
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belong to a large group of enzymes generally referred to as 
lysine acetyltransferases, which are categorised into several 
protein families (for reviews, see: Kouzarides (2000), 
Sterner and Berger (2000) and Yang (2004)).
 HATs, lysine acetyltransferases in general, as well 
as HDACs have been documented to interact with and 
even to acetylate RUNX2. The general conclusion is that 
acetylation results in a stimulatory effect on RUNX2 
stability and transactivation capability.
 The p300 protein, also referred to as E1A-associated 
300 kDa protein, which functions as a transcriptional 
co-activator possessing intrinsic HAT activity, is able to 
acetylate several non-histone proteins (Kouzarides, 2000). 
Jeon and colleagues reported that p300 mediates RUNX2 
acetylation upon BMP-2 signalling, thereby increasing 
RUNX2 transactivation activity as well as stability (Jeon et 
al., 2006). Furthermore, inhibition of HDAC4 and -5 which 
deacetylate RUNX2, enforced BMP-2 stimulated in vitro 
osteogenic differentiation and bone formation in vivo (Jeon 
et al., 2006). RUNX2 acetylation and stabilisation induced 
by BMP-2 were shown to depend on MAPK signalling 
(Jun et al., 2010). Upon PTH treatment, RUNX2 has been 
reported to recruit p300 to the MMP-13 promoter, both 
of which are required for acetylation of histones H3 and 
H4, and led to transcriptional activation of the target gene 
MMP-13 in rat osteoblastic UMR 106-01 cells (Boumah 
et al., 2009).

Regulation of RUNX2 by ubiquitination
Protein ubiquitination plays a crucial role in protein 
degradation by the proteasome (for review, see Hershko 
and Ciechanover (1998)). This degradation pathway takes 
place in a cascade-like manner governed by E1 ubiquitin-

activating enzymes, E2 ubiquitin-conjugating enzymes, 
and E3 ubiquitin ligases (for review, see Pickart (2001)). 
E3 ubiquitin ligases account for the specificity of protein 
ubiquitination, and proteins polyubiquitinated by these 
enzymes are targeted to degradation by the proteasome (for 
review, see Hershko and Ciechanover (1998)).
 It has been shown that RUNX2 is degraded through 
an ubiquitination-dependent pathway by the proteasome 
(Tintut et al., 1999). An E3 ubiquitin ligase responsible 
for targeting RUNX2 to proteasomal degradation has 
been revealed to be Smad ubiquitin regulatory factor 1 
(Smurf1) (Zhao et al., 2003). Consistently, the suppressing 
role of Smurf1 in osteoblast differentiation in vitro and in 
vivo bone formation has been reported, whereby Smurf1 
overexpression had inhibitory effects, whereas Smurf1-
deficient mice exhibited increased bone formation through 
control of proteasomal degradation of MEKK2, also known 
as MAPK kinase kinase 2, a major upstream kinase of the 
MAPK pathway (Zhao et al., 2004; Yamashita et al., 2005).
 Additional E3 ubiquitin ligases reported to promote 
RUNX2 ubiquitination and proteasomal degradation as 
well as to negatively regulate osteoblast differentiation are 
C terminus of Hsc70-interacting protein (CHIP) as well 
as WW domain-containing E3 ubiquitin protein ligase 
1 (WWP1) together with the adaptor protein Schnurri-3 
(Shn3) (Jones et al., 2006; Li et al., 2008).
 In addition to E3 ubiquitin ligase-induced RUNX2 
ubiquitination and degradation, another mechanism leading 
to ubiquitination and subsequent proteasomal degradation 
has been reported to be induced by cyclin D1/CDK4 and 
acts phosphorylation-dependently (Shen et al., 2006).
 In summary, although the different post-translational 
regulation mechanisms of RUNX2 have been individually 

Table 1: Published and known phosphorylation sites of human RUNX2. The compilation of RUNX2 phosphorylation 
sites is based on cited references as well as the open, web-based bioinformatics database of protein post-translational 
modifications, PhosphoSitePlus (www.phosphosite.org) (Hornbeck et al., 2012). The amino acid residue numbering 
is according to human type II RUNX2 isoform with the N-terminus ‘MASNSL’ (521 amino acids, 56.648 kDa), and 
phosphorylation sites identified in species other than humans are listed in the renumbered form to correspond to the 
human amino acid numbering for the sake of consistency.

Amino 
acid 

residue Effect of phosphorylation References
S28 Stimulatory (Selvamurugan et al., 2009;Zou et al., 2011)
S43 Stimulatory (Ge et al., 2009)
S118 Inhibitory (Huang et al., 2012;Phillips et al., 2006;Wee et al., 2002)
S196 Stimulatory (Pande et al., 2013)
T198 Stimulatory (Pande et al., 2013)
T200 Stimulatory (Pande et al., 2013)
S237 Stimulatory (Zou et al., 2011)
S240 Stimulatory (Kim et al., 2006)
S275 Stimulatory (Zou et al., 2011)

S294 Stimulatory (Zou et al., 2011;Ge et al., 2009;Sierra and Towler, 2010;Li et al., 
2012;Park et al., 2010)

S312 Stimulatory (Zou et al., 2011;Ge et al., 2009;Ge et al., 2012;Li et al., 2012)
T319 Stimulatory (Sierra and Towler, 2010)
S347 Stimulatory (Selvamurugan et al., 2009)
S465 Inhibitory, Stimulatory (Pierce et al., 2012;Zou et al., 2011;Qiao et al., 2006;Wee et al., 2002)
S503 Stimulatory (Ge et al., 2009)
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investigated, they are not unconnected by any means, 
which is exemplified by the following three studies.
 Jeon and colleagues have found that acetylation protects 
RUNX2 from Smurf1-mediated degradation, clearly 
suggesting a molecular link between acetylation and 
ubiquitination-mediated proteasomal degradation (Jeon 
et al., 2006).
 Furthermore, it is worth mentioning that although many 
phosphorylation sites and kinases involved have been 
investigated, it is still poorly understood how RUNX2 
phosphorylation is linked to enhanced transcriptional 
activity and protein stability.
 Recently, Park and colleagues concluded that serine 
phosphorylation, exemplified with one particular serine 
residue (S294), triggers RUNX2 acetylation, which in turn 
accounts for RUNX2 transcriptional activity as well as 
stabilisation by inhibiting ubiquitin-dependent degradation 
(Park et al., 2010). This study indicates an additional link 
of the different post-translational regulation mechanisms.
 Thirdly, cyclin D1/CDK4 has been reported to 
phosphorylate RUNX2 at S472 (Shen et al., 2006). 
However, cyclin D1/CDK4 induced not only RUNX2 
phosphorylation, but also triggered subsequent 
ubiquitination and proteasomal degradation (Shen et 
al., 2006). Thus, this study suggests a phosphorylation-
dependent proteasomal degradation of RUNX2, another 
link between different post-translational regulation 
mechanisms.

Interaction partners of RUNX2
Activity of RUNX2 is modulated by the interactions with a 
variety of regulatory proteins. The best-known interacting 
partner of RUNX2 is the non-DNA binding β subunit 
CBFβ. It interacts with RUNX2 by binding to the Runt 
domain (Kagoshima et al., 1993; Ogawa et al., 1993b; 
Golling et al., 1996). The association of RUNX2 with 
CBFβ both enhances the DNA binding affinity of Runt 
domain proteins and stabilises the interaction between 
RUNX2, the α subunit, and the DNA (Ogawa et al., 1993a; 
Golling et al., 1996). In Drosophila, it could be shown that 
the interaction between Runt domain proteins and CBFβ 
additionally impacts the transactivation potential of Runt 
domain proteins (Li and Gergen, 1999).
 Next, TLE proteins (the mammalian homologues of 
Drosophila Groucho) interact with the VWRPY motif at the 
C-terminus of RUNX2 and in this way act as transcriptional 
co-repressors (Thirunavukkarasu et al., 1998; Javed et al., 
2000). Osteocalcin is an example of a RUNX2 target gene 
whose activation by is repressed by TLE proteins (Javed 
et al., 2000).
 Further interacting partners encompass the basic helix-
loop-helix protein Hairy and Enhancer of split 1 (HES-
1) which is expressed in rat osteoblastic osteosarcoma 
ROS17/2.8 cells (Matsue et al., 1997). HES-1 was shown to 
physically interact with RUNX2 and in this way modulates 
RUNX2 transactivation function (McLarren et al., 2000). 
Yes-associated protein (YAP) acts as a transcriptional co-
activator of RUNX2 (Yagi et al., 1999), and Smads (Hanai 
et al., 1999; Zhang et al., 2000; Lee et al., 2000).
 In addition, CCAAT/enhancer-binding Proteins (C/
EBP) were revealed to physically interact with RUNX2 

and to synergistically activate osteocalcin gene expression 
(Gutierrez et al., 2002). Interaction of the homeobox 
protein Msx2 with RUNX2 leads to the repression of 
transcriptional activity of RUNX2 (Shirakabe et al., 
2001). The repressive activity of Msx2 gets counteracted 
by another homeobox protein Dlx5 (Shirakabe et al., 
2001). Furthermore, c-Fos and c-Jun, the protein subunits 
making up the heterodimeric activator protein (AP-1), were 
identified as interaction partners of RUNX2 through the 
Runt domain, and this interaction was demonstrated to be 
required to activate rat collagenase 3 promoter (D’Alonzo 
et al., 2002).
 In conclusion, the presence of so many co-regulators 
that govern RUNX2-mediated transcription indicates a 
complex regulation of gene expression that RUNX2 holds 
as a master transcription factor of osteogenesis.

Target genes of RUNX2
RUNX2 is essential for osteoblast differentiation (Banerjee 
et al., 1997; Ducy et al., 1997; Komori et al., 1997; Otto 
et al., 1997). RUNX2 regulates expression of several 
genes related or specific to osteoblast differentiation. 
For RUNX2 to be able to regulate the expression of a 
particular gene, the target genes require binding sites for 
RUNX2 in their promoter region and regulatory elements, 
respectively. OSE2, which was originally identified as 
a cis-acting element present in the mouse osteocalcin 
promoter accounting for its osteoblast-specific expression 
(Ducy and Karsenty, 1995), is found in the promoters of 
many RUNX2 target genes, is recognised by RUNX2 
and serves as a RUNX2 binding site (Geoffroy et al., 
1995). Originally, OSE2 was reported to comprise the 
sequence ACCACA (Geoffroy et al., 1995). Nucleotide 
sequence comparison between human, rat, mouse, rabbit 
collagenase 3 promoter regions and human, rat, mouse 
osteocalcin promoter regions showed sequence identity in 
the sequence AACCACA, which is generally considered 
as the consensus RUNX2 binding site (Jimenez et al., 
1999). Strictly speaking, the term ‘OSE2’ is designated 
for the corresponding RUNX2 binding site in mice (Ducy 
and Karsenty, 1995).
 Initially, RUNX2 was reported to transactivate the 
expression of osteocalcin (Ducy and Karsenty, 1995; 
Geoffroy et al., 1995; Merriman et al., 1995). Since then 
osteocalcin as a target gene of RUNX2 has been addressed 
and documented in more detail by many studies (Banerjee 
et al., 1997; Ducy et al., 1997; Frendo et al., 1998; Javed 
et al., 1999).
 Furthermore, RUNX2 was found to both regulate the 
expression of several osteoblast marker genes in osteoblasts 
and induce expression of several osteoblast marker genes 
in non-osteoblastic cells in addition to osteocalcin: Col1α1, 
BSP, and osteopontin (Ducy et al., 1997). As regards 
BSP as RUNX2 target gene, conflicting results have 
been reported (Javed et al., 2001). Javed and colleagues 
reported that the Gallus BSP promoter, which contains 
seven functional RUNX2 binding sites, is repressed by 
RUNX2 both in rat and Gallus osteoblasts (Javed et al., 
2001). They proposed that the repression takes place by 
a mechanism different from the known transcriptional 
repression mechanism involving TLE proteins and their 
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interaction with the VWRPY domain at the C-terminus of 
RUNX2 (Aronson et al., 1997; Thirunavukkarasu et al., 
1998).
 Col lagenase 3 ,  a lso referred to  as  matr ix 
metalloproteinase 13 (MMP-13), was revealed as another 
target of RUNX2, as evidenced by both in vitro and in vivo 
experiments (Jimenez et al., 1999). Furthermore, the TGFβ 
type I receptor was revealed as another RUNX2 target 
gene. At least six RUNX2 binding sites were identified 
in the TGFβ type I receptor promoter and were shown to 
regulate expression of TGFβ type I receptor, by physically 
associating with RUNX2 (Ji et al., 1998). Moreover, 
in accordance with (Ducy et al., 1997), the ability of 
RUNX2 to directly regulate the transcriptional activation 
of osteopontin gene was substantiated by another study 
(Sato et al., 1998). Transactivation was revealed to be 
dependent on OSE2; any change in its nucleotide sequence 
AACCACA abolished its ability for RUNX2 binding (Sato 
et al., 1998). In short, most of the identified target genes 
of RUNX2 are regulated in a positive fashion by RUNX2 
and are coding for bone ECM proteins.
 Another ECM protein RUNX2 target gene is 
ameloblastin (Dhamija and Krebsbach, 2001). Transcription 
of the ameloblastin gene, which encodes a tooth-specific 
ECM protein, has been shown to be regulated in a positive 
fashion by RUNX2 (Dhamija and Krebsbach, 2001). The 
ameloblastin promoter region contains RUNX2 binding 
sites, mediating their physical interaction with RUNX2 
(Dhamija and Krebsbach, 2001).
 RUNX2 has been documented to regulate the expression 
of the osteoprotegerin gene whose promoter has been 
revealed to contain 12 OSE2 elements (Thirunavukkarasu 
et al., 2000). These findings indicate a molecular connection 
between osteoblastogenesis and osteoclastogenesis, 
in which RUNX2, in addition to its role in osteoblast 
differentiation, inhibits osteoclast formation by positively 
regulating osteoprotegerin, which in turn inhibits osteoclast 
differentiation (Thirunavukkarasu et al., 2000).
 Another gene involved in osteoclastogenesis was 
identified as a RUNX2 target gene, namely receptor 
activator of NF-κB ligand (RANKL) (Geoffroy et al., 
2002). This was underlined by the fact that the RANKL 
promoter exhibits a putative RUNX2 binding site 
(Kitazawa et al., 1999). These findings offer an explanatory 
approach for the elevated bone resorption rate that exceeds 
bone formation observed in transgenic mice overexpressing 
Runx2 (Geoffroy et al., 2002).
 During endochondral ossification, hypertrophy of 
chondrocytes in the cartilaginous template is followed 
by invasion of blood vessels into cartilage. As a result, 
osteoblast as well as chondro-/osteoclasts are brought 
into the cartilaginous template, ultimately remodelling 
the cartilaginous template into bone. In hypertrophic 
chondrocytes, RUNX2 was reported to increase the activity 
of a BMP-responsive region of the promoter of collagen 
type X (Leboy et al., 2001). Together with the fact that 
the BMP-responsive region of the promoter of collagen 
type X contains a RUNX2 consensus binding site (Leboy 
et al., 2001), RUNX2 was found to directly regulate 
the expression of the commonly known hypertrophic 

chondrocyte marker collagen type X through interaction 
with its cis-enhancer (Li et al., 2011). Moreover, invasion 
of blood vessels into the cartilage comes along with VEGF 
upregulation in hypertrophic chondrocytes (Haigh et al., 
2000). Vegf was revealed as another gene, the expression 
of which gets upregulated upon RUNX2 in hypertrophic 
chondrocytes (Zelzer et al., 2001).
 Identification of further putative RUNX2 target genes 
was approached by searching for genes differentially 
expressed in C3H10T1/2 mesenchymal precursor cells 
overexpressing Runx2 compared to wild type cells, using a 
differential hybridisation technique and cDNA microarray 
analysis (Stock et al., 2004). The candidate target gene 
with the strongest difference in expression between 
Runx2-overexpressing and wild type cells was pituitary 
tumour-transforming 1 interacting protein (Pttg1ip) (Stock 
et al., 2004). Furthermore, Pttg1ip was not only shown 
to be expressed in osteoblast-like MC3T3-E1 cells and 
in primary mouse calvarial cells, but RUNX2 also binds 
to the 5’ flanking region of murine Pttg1ip and directly 
transactivates expression of Pttg1ip (Stock et al., 2004). 
These findings provided the presumption that PTTG1IP 
is under transcriptional control of RUNX2 (Stock et al., 
2004). However, human PTTG1IP has been reported to 
be ubiquitously expressed in human adult tissues, and its 
exact function remains blurred (Chien and Pei, 2000). The 
Pttg1ip expression patterns both in different murine cell 
lines, as well as in mouse embryos, revealed that Pttg1ip 
expression is regulated by RUNX2 in a temporal and tissue-
specific manner, but also indicated that other transcription 
factors must be involved in the transcriptional regulation 
of Pttg1ip. Additionally, RUNX2 has been reported to 
regulate the transcription of galectin-3, whose promoter 
contains RUNX2 binding sites (Stock et al., 2003). The 
expression pattern of galectin-3 includes several tissues 
and developmental stages. Amongst others, galectin-3 had 
been attributed a role in chondrocyte maturation (Colnot et 
al., 2001). This finding is in line with the fact that RUNX2 
functions as a positive regulator on galectin-3 transcription, 
since RUNX2 is expressed in growth plate chondrocytes. 
However, RUNX1 and RUNX3 exhibit overlapping 
expression patterns with galectin-3 expression expressed in 
growth plate cartilage as well and bind to same consensus 
sequences like RUNX2. Therefore, galectin-3 expression, 
both at skeletal and extra-skeletal sites, might not be 
regulated exclusively by RUNX2, but rather galectin-3 
represents a common target of the different RUNXs (Stock 
et al., 2003). In addition, galectin-3 has been implicated 
in tumourigenesis, tumour progression and metastasis 
formation (Takenaka et al., 2004; Liu and Rabinovich, 
2005). More recently, RUNX2 has been revealed to be 
expressed in human glioma cells and RUNX2-mediated 
galectin-3 expression was suggested to functionally 
contribute to glial tumour malignancy (Vladimirova et al., 
2008).
 In summary, the opposing regulation of osteoblast 
marker genes highlights the importance of the promoter 
context of RUNX2 binding sites, making up the 
transcriptional control of the RUNX2 target genes.
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Biological functions
RUNX2 is best known as the master regulator of osteoblast 
differentiation and osteoblast marker gene expression as 
well as osteoblast function. In fact, the osteogenic activity 
of bone marrow stromal cells was reported to be enhanced 
upon Runx2 overexpression, both in vitro and in vivo 
(Zhao et al., 2005). Primary murine MSCs transduced with 
RUNX2-producing AdRunx2 formed more ectopic bone 
in vivo than cells transduced with control virus. However, 
one drawback arose to be the formation of osteosarcoma 
(Zhao et al., 2005).

A variety of additional biological functions of RUNX2 
have been demonstrated, which include:
• antiproliferative role in (pre)osteoblasts (Pratap et al., 

2003; Galindo et al., 2005)
• tooth development (D’Souza et al., 1999)
• chondrocyte maturation and hypertrophy (Takeda 

et al., 2001; Yoshida et al., 2004), as evidenced by 
the induction of collagen type X (Col10a), a marker 
specific for hypertrophic chondrocytes (Enomoto et 
al., 2000)

• tumour metastasis to bone (Pratap et al., 2006)
• inhibition of rRNA transcription (Young et al., 2007)
• endothelial cell biology as well as angiogenesis (Namba 

et al., 2000; Sun et al., 2001; Sun et al., 2004).

In osteoblast biology, RUNX2 regulates the process of 
osteoblast differentiation at different stages. Regulation by 

RUNX2 takes place in a positive manner at early stages of 
differentiation, while RUNX2 inhibits the process at later 
stages (Fig. 2). The whole process from an undifferentiated 
MSC to an osteoblast occurs in different phases, and each 
of these phases is characterised by a particular pattern 
of expressed osteoblast marker genes. RUNX2 controls 
expression of osteoblast marker genes by binding to OSE2, 
the RUNX2 binding site, found in the promoter region 
of all major osteoblast marker genes. The functions of 
RUNX2 in osteoblast and chondrocyte differentiation are 
depicted in Fig. 2.
 Regulation of osteoblast differentiation by RUNX2 
overall demonstrates a stage-dependent shift of Runx2 
from a positive to negative regulator of osteoblastic 
differentiation. In addition, the different RUNX2 isoforms 
have been assigned the regulation of distinctive stages of 
osteoblast differentiation. In mice, the two major RUNX2 
isoforms, type I and II, have been revealed to possess 
distinct sub-functions within osteoblast biology. First, 
as regards the regulation of different stages of osteoblast 
differentiation, expression of both RUNX2 type I and 
II isoform have been detected in osteoblasts. However, 
RUNX2 type I isoform also existed in osteoprogenitor 
cells and preosteoblasts (Choi et al., 2002). Thus, RUNX2 
type I has been found to have an exclusive role in early 
osteoblastogenesis, while RUNX2 type II is necessary 
for terminal stages of osteoblastic maturation (Choi 
et al., 2002; Xiao et al., 2004). Second, while it has 
been demonstrated that type I isoform is sufficient for 

Fig. 2. Regulation of osteoblast and chondrocyte differentiation by Runx2. During the process of osteoblast 
differentiation, Runx2 is crucial for the commitment of mesenchymal stem cells to the osteoblast lineage and 
positively influences early stages of osteoblast differentiation. Osterix (OSX) starts playing an important role in 
osteoblast differentiation following Runx2-mediated mesenchymal condensation. During the process of osteoblast 
differentiation, Runx2 is involved in the expression of bone matrix genes Col1, osteopontin (OPN), BSP, and 
osteocalcin (OCN) and maintains the expression of OPN and BSP. For further bone maturation, Runx2 expression 
has to be downregulated. During the process of chondrocyte differentiation initiated by Sox9-mediated mesenchymal 
condensation, Runx2 is crucial for chondrocyte maturation from immature to terminal hypertrophic chondrocytes, and 
inhibits immature chondrocytes from adopting the phenotype of permanent cartilage. Runx2 induces expression of 
ColX in hypertrophic chondrocytes and is involved in the matrix production of terminal hypertrophic chondrocytes.
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intramembranous ossification, both intramembranous and 
endochondral ossification have been revealed to be affected 
in selective deficiency of type II Runx2 (Xiao et al., 2004).

Conclusion

Taken together, it is clear that RUNX2 is a tightly regulated 
factor and the specific context in which an analysis is 
performed needs to be considered when using RUNX2 as 
a marker for in vitro studies. Particularly when detecting 
mRNA message, the particular isoforms need to be 
considered. 
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Discussion with Reviewers

R. Porter: You have provided many examples of how 
Runx2 activity is regulated both physiologically and 
pathologically, ranging from transcriptional control to 
post-translational modification. Does the existing literature 
point to one or more particular points of regulation that 
can be exploited for pro-osteogenic applications, such as 
bone tissue engineering using mesenchymal stem cells?
Authors: There are a number of points of regulation that 
have been proposed. The main issue is due to the fact that 
Runx2 expression has differing effects depending on the 
developmental stage of the cell. In addition, its interaction 
with other factors, such as Sox9, means that targeting one 
specific factor may not be sufficient to induce a stable 
change in phenotype.

R. Porter: Conversely, what about cartilage tissue 
engineering applications, when Runx2 activity in stem 
cells may be detrimental to the production of hyaline 
cartilage? Is there evidence that Runx2 inhibition can 
prevent the hypertrophic maturation of MSCs in vitro, or 
is the interaction of Runx2 with other transcription factors, 
namely Sox9, too complex for completely ablating its 
activity within MSCs?
Authors: Surprisingly little has been published on 
chondrogenic induction. Inhibiting Runx2 expression 
does reduce hypertrophy, but as most methods do not 
completely ablate Runx2 it is not clear whether Sox9 
becoming more dominant is sufficient or if Runx2 still 
plays a role in maintenance of the chondrocyte phenotype. 
It is unlikely that downregulation of Runx2 in itself will 
act as a trigger for chondrogenesis. We have demonstrated 
that knock-down of Sox9 mildly enhances osteogenesis 
but only when an osteogenic signal is present (Loebel et 
al., 2014, additional reference). It has also been shown 
that chondrocytes isolated from rib cartilage of Runx2 

null mice have an increased tendency to undergo in vitro 
adipogenesis in a process related to IL-11 (Enomoto et 
al., 2004, additional reference). This would suggest that 
the interplay may involve more than just two transcription 
factors. 

Reviewer IV: Most cited references are from the period 
around 2000. Why are there so few recent references?
Authors: The reason why most of the references are late 
1990s and early 2000s is that this was the time when most 
of the seminal breakthroughs were made. Runx2 research 
still proceeds but with fewer more recent breakthroughs.

Reviewer IV: Could you provide a reference for the thesis 
by the first author to which you refer?
Authors: The reference is Bruderer (2014) (additional 
references).
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