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Abstract

Repair of dental pulp and periodontal lesions remains 
a major clinical challenge. Classical dental treatments 
require the use of specialised tissue-adapted materials with 
still questionable efficacy and durability. Stem cell-based 
therapeutic approaches could offer an attractive alternative 
in dentistry since they can promise physiologically 
improved structural and functional outcomes. These 
therapies necessitate a sufficient number of specific stem 
cell populations for implantation. Dental mesenchymal 
stem cells can be easily isolated and are amenable to in 
vitro expansion while retaining their stemness. In vivo 
studies realised in small and large animals have evidenced 
the potential of dental mesenchymal stem cells to promote 
pulp and periodontal regeneration, but have also underlined 
new important challenges. The homogeneity of stem cell 
populations and their quality control, the delivery method, 
the quality of the regenerated dental tissues and their 
integration to the host tissue are some of the key challenges. 
The use of bioactive scaffolds that can elicit effective tissue 
repair response, through activation and mobilisation of 
endogenous stem cell populations, constitutes another 
emerging therapeutic strategy. Finally, the use of stem cells 
and induced pluripotent cells for the regeneration of entire 
teeth represents a novel promising alternative to dental 
implant treatment after tooth loss. In this mini-review, 
we present the currently applied techniques in restorative 
dentistry and the various attempts that are made to bridge 
gaps in knowledge regarding treatment strategies by 
translating basic stem cell research into the dental practice.
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Introduction

The tooth is composed of the highly mineralised tissues 
of enamel, dentin and cementum, as well as by the soft 
connective tissues of dental pulp and periodontium 
(Mitsiadis and Graf, 2009; Nanci, 2012). Enamel is 
formed by the epithelium-derived ameloblasts, while 
ectomesenchymal cells give rise to all other tooth 
components. Dental pulp cells differentiating into 
odontoblasts produce the dentin matrix, while periodontal 
cells are involved in cementum and alveolar bone 
formation. The periodontal space contains specific fibres 
(i.e., periodontal ligament fibres) that stabilise teeth, since 
they connect root cementum to the alveolar bone, as well as 
a variety of cell types such as fibroblasts, epithelial rests of 
Malassez, neuronal and endothelial cells (Mariotti, 1993; 
Sonoyama et al., 2007).
 Traumatic injuries, periodontal disease and caries are 
mainly responsible for pathologies affecting teeth and their 
surrounding tissues (Caton et al., 2011). These pathologies 
remain a major clinical challenge, due mainly to the limited 
self-healing capability of dental tissues. The reparative 
mechanisms following dental or periodontal lesion involve 
highly conserved genetic programs that are active during 
embryonic tooth development (Aberg et al., 1997; About 
and Mitsiadis, 2001; Giannobile and Somerman, 2003; Jin 
et al., 2004; Magloire et al., 2001; Mitsiadis and Rahiotis, 
2004; Ripamonti, 2007). For example, in severe dental pulp 
injury or inflammation (i.e., pulpitis), stem cells or/and 
progenitors give rise to a new generation of odontoblasts 
that replace the disintegrated odontoblasts. Signalling 
molecules released at the pathologic sites may attract 
these stem cells and progenitors, thus initiating the healing 
process that includes the reparative dentin formation 
(Nakashima and Iohara, 2014). However, the reparative 
capability of the dental pulp and periodontium is often 
insufficient to restore the totality of the damaged tissues. 
If untreated, these lesions compromise tooth integrity that 
can lead to more severe pathologies and tooth loss.
 The increased knowledge on the reparative events within 
dental tissues has contributed to the proposal of alternative 
methods for the treatment of dental pathologies. However, 
traditional treatments continue to be applied in dental 
clinics since most of the proposed therapeutic approaches 
are still at the experimental level. For example, partial 
dental tissue repair techniques involve specialised dental 
materials with uncertain effectiveness and durability, while 
high-tech dental implants are used for tooth replacement 
(Esposito et al., 2013; Fron Chabouis et al., 2013). These 
materials are often used in conjunction with growth factors 
and molecules to enhance the regenerative capacity of 
dental and periodontal tissues (Pilipchuk et al., 2015). 
Recent advances in tissue engineering and regenerative 
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medicine offer the potential for a long-term solution by 
means of biological repair or replacement of damaged 
teeth. The aim of this mini-review is to present the currently 
applied tissue repair techniques and their limitations in 
restorative dentistry and to introduce stem cell-based 
approaches as promising tools for the regeneration of 
injured and pathological teeth. Therefore, the different 
sources of dental stem cells, their differentiation potential 
and the current state of stem cell-based strategies for dental 
tissue regeneration are discussed. From a translational point 
of view, we summarise the various preclinical models used 
for the evaluation of stem cell-based therapies in dentistry 
and report on the recent developments and challenges 
related to clinical applications of human stem cells in 
situations that necessitate pulp and periodontal tissue 
regeneration.

Current therapeutic interventions in dentistry

Contemporary techniques to replace damaged dental hard 
tissues consist of direct tooth restorations using resin-based 
composites, or indirect restorations using composite or 
ceramic inlays and onlays (Ferracane, 2011; Fron Chabouis 
et al., 2013). While adhesion of these materials to enamel is 
stable over time, adhesion to dentin is weaker and unstable 
because of the higher levels of organic matrix of dentin 
when compared to enamel (Lehmann et al., 2009).
 Endodontic therapy is a procedure implying the 
removal of contaminated or necrotic dental tissues within 
the pulp. In case of pulp exposure or infection, the damaged 
part of the pulp has to be removed, leaving intact the 
healthy part of the pulp at the tooth root level, a process 
called pulpotomy (DeRosa, 2006). In selected cases, this 
method preserves the vitality of pulp located at the root 
canal, thus allowing the accomplishment of the root growth 
(Fuks, 2008). Traditionally, the damaged pulp is entirely 
replaced with inorganic materials such as gutta-percha, 
after root canal treatment (Ricketts, 2001). Since dental 
pulp provides nutrition, sensation, and defence against 
the various pathogens, devitalised teeth are subject to 
various complications causing tooth fragility and fracture 
(Ricketts, 2001). Therefore, maintaining of dental pulp 
vitality is of prime importance and this is highlighted by 
the emergence of new stem cell-based techniques focusing 
on pulp regeneration (Potdar and Jethmalani, 2015).
 Currently, missing teeth are replaced with dental 
implants (Esposito et al., 2013). Their retention requires 
close contact of implants with the alveolar bone, a process 
called osseointegration (Branemark et al., 1977). Most 
of dental implants are made of biocompatible titanium 
alloy and they are inserted into the bone after surgical 
intervention. The clinical success of implants depends on 
alveolar bone quality and dimensions, primary implant 
stability, time of masticatory loading, infections, and 
implant surface characteristics (Esposito et al., 2013; 
Esposito et al., 2007). Recent regenerative technologies 
using scaffolds, stem cells, and growth factor delivery have 
enhanced host tissue response and implant osseointegration 
(Naddeo et al., 2015; Pilipchuk et al., 2015). Recent 
clinical trials have demonstrated that stem cells seeded in 

specific scaffolds are able to generate adequate amounts 
of bone in order to achieve primary implant stability 
(Kitamura et al., 2011; Windisch et al., 2012). These 
new approaches are contributing to the progress of dental 
treatments, but should be further studied using controlled 
randomised clinical trials.

Stem cells within teeth

The theoretical basis for dental tissue repair is the 
activation of stem and progenitor cells that will enhance 
the regenerative process (Bluteau et al., 2008; Caton et al., 
2011). Mesenchymal stem cells (MSCs) were originally 
isolated from bone marrow (Friedenstein et al., 1970). 
MSCs are fibroblast-like cells capable of adhering to 
plastic dishes, to form colonies derived from single cells 
(colony forming unit fibroblasts), and to differentiate into 
mature cells of mesenchymal lineages such as osteoblasts 
and chondrocytes (Caplan and Bruder, 2001; Friedenstein 
et al., 1970; Pittenger et al., 1999; Prockop, 1997; Sudo 
et al., 2007; Weissman et al., 2001). The discovery that 
human adult teeth contain cells with similar functions to 
MSC indicated that these organs are important reservoirs 
of adult stem cell populations (Gronthos et al., 2000). 
Therefore, dental mesenchymal stem cells (DMSCs) can 
be used for regeneration of teeth, or other organs that have 
limited intrinsic repair potential (Di Scipio et al., 2014; 
Gandia et al., 2008; Graziano et al., 2008; Kerkis et al., 
2008; Nosrat et al., 2001). Besides their capacity to give 
rise to various cell types such as chondrocytes, osteocytes 
and adipocytes (Bluteau et al., 2008; Gronthos et al., 
2000), DMSCs may act as cellular modulators to support 
endogenous reparative mechanisms tissue by secretion 
of bioactive molecules (Choi and Reddy, 2014; van den 
Akker et al., 2013).
 Cultures of DMSCs and MSCs are indistinguishable, 
and at present no markers permit selective identification of 
either cell type from culture-expanded DMSC populations 
(Pagella et al., 2015). Likewise, it is not yet known whether 
DMSC properties reside in distinct cell subpopulations. 
Similarly to MSCs, DMSCs are heterogeneous in their 
phenotype, and this could possibly reflect a coexistence 
of functionally distinct cell subsets (Jiang et al., 2002; 
Muraglia et al., 2000). Markers alone would not be 
sufficient to rule out the presence of other than DMSCs 
within dental tissues. Studies using single cell-derived 
clonal populations will be needed to determine whether 
DMSCs differentiation potency is inherent in individual 
cells from dental tissues.
 Despite similar phenotypic characteristics, DMSCs 
from different locations have significant functional 
heterogeneity both in vitro and in vivo, thus indicating 
distinct physiological roles within teeth (Caton et al., 
2011; Pagella et al., 2015). In the dental pulp, DMSCs 
are located mainly in two niches: the apical niche and 
the perivascular niche (Mitsiadis et al., 2011; Zhao et al., 
2014). In these two niches, DMSCs could have distinct 
functions and still be geographically interchangeable, but 
a temporo-spatial hierarchy between the two DMSC niches 
remains to be investigated. Furthermore, the identification 
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and characterisation of other dental stem cell niches, 
and the examination of how niche-derived signals are 
orchestrated towards tooth homoeostasis and repair is of 
prime importance.
 The developmental origins of DMSCs in adult teeth 
are not known yet. They could be directly derived from 
dental tissues (e.g., pulp, periodontium), but a contribution 
from blood-derived circulating MSCs has not to be 
excluded. Indeed, MSCs are found in the circulation and 
are likely to engraft in all tissues of the body (Kuroda et 
al., 2014; Lemoli et al., 2006). The embryonic origins of 
circulating MSCs are different from those of DMSCs (La 
Noce et al., 2014; Pagella et al., 2015), thus suggesting 
distinct properties and functions for these two stem cell 
populations. The various dental stem cell populations and 
their potencies are described in Fig. 1.
 Dental pulp stem cells (DPSCs) were first isolated from 
human teeth in 2000 and are the most common source of 
DMSCs (Gronthos et al., 2000). Due to the lack of specific 
DMSCs markers, generic MSC markers such as STRO-1, 
CD146 and CD44 are commonly used for the isolation and 
identification of DMSCs (Pittenger et al., 1999). DPSCs are 
capable of differentiating into odontogenic (Gronthos et al., 
2000; Hayashi et al., 2015; Miura et al., 2003), osteogenic 
(d’Aquino et al., 2009; de Mendonca Costa et al., 2008), 
chondrogenic (Waddington et al., 2009), adipogenic 
(Gronthos et al., 2002; Waddington et al., 2009), myogenic 
(Kerkis et al., 2008; Pisciotta et al., 2015), and neurogenic 
(Martens et al., 2014; Nosrat et al., 2001) cells in vitro and 
in vivo.

 Stem cells from human exfoliated deciduous teeth 
(SHEDs) are isolated using the same procedure as for 
DPSCs. SHEDs express the surface molecules STRO-1 and 
CD146, and several neural and glial markers such as nestin 
and β-III tubulin (Miura et al., 2003). SHEDs proliferate 
very fast, are capable of differentiating into odontogenic, 
osteogenic, chondrogenic, adipogenic, myogenic, and 
neurogenic cells in vitro, and induce bone and dentin 
formation in vivo (Kerkis et al., 2008; Miura et al., 2003).
 Stem cells from the apical part of the dental papilla 
(SCAPs) are located at the root apex of the developing 
teeth, are highly proliferative, and exhibit increased 
migratory and regenerative potentials (Sonoyama et al., 
2006; Sonoyama et al., 2008). SCAPs express the same 
DMSCs surface markers, as well as CD24 for which 
DPSCs are negative, and are able to form dentin in vivo 
(Huang et al., 2009; Sonoyama et al., 2006).
 Periodontal ligament stem cells (PDLSCs) express 
the cell-surface markers STRO-1, CD146 and CD44, and 
are able to differentiate into adipogenic and osteogenic 
cells, under defined culture conditions in vitro (Seo et al., 
2004). PDLSCs can contribute to the regeneration of the 
periodontium by giving rise to cementum and PDL tissues 
in vivo (Seo et al., 2004). Alveolar periodontal ligament 
stem cells (aPDLSCs) form another PDLSC population 
that locates close to the alveolar bone and shows great 
osteogenic and adipogenic capabilities (Wang et al., 2011).
 Stem cells from the dental follicle (DFSCs) are 
progenitor cells for the PDL, alveolar bone, and cementum, 
and express the STRO-1 and CD44 markers (Morsczeck 

Fig. 1. Schematic representation of the main populations of mesenchymal stem cells found 
in human teeth. Abbreviations: DPSCs, dental pulp stem cells; PDLSCs, periodontal 
ligament stem cells; SCAPs, stem cells from the apical papilla; SHEDs, stem cells from 
human exfoliated deciduous teeth.
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et al., 2005). DFSCs are able to form cementum and bone 
tissues in vitro and in vivo (Kemoun et al., 2007; Yokoi et 
al., 2006).
 Human dental epithelial stem cells (hDESCs) can be 
isolated from the third molar that develops late after birth 
(Honda et al., 2007; Honda et al., 2005). Another source 
of hDESCs is the epithelial root sheath that disintegrates 
into strands of epithelial cells, also known as epithelial 
rests of Malassez (ERM). ERM cells express epithelial 
stem cell markers such as Bmi-1, E-CAM, and p75, as well 
as embryonic stem cell markers such as Oct-4 and Nanog 
(Nam et al., 2011).
 Induced pluripotent stem cells (iPSCs) may represent 
another source of hDESCs. Indeed, iPSCs have the capacity 
to differentiate into various cell lineages (Takahashi and 
Yamanaka, 2006) and can be technically produced from 
patient’s cells. iPSCs technology can be progressively 
applied for the regeneration of dental tissues. iPSCs 
are able to differentiate into ameloblast-like cells in the 
presence of ameloblastin expressing cells (Arakaki et 
al., 2012). Also, iPSCs are capable of differentiating into 
mesenchymal odontogenic cells (Otsu et al., 2014).

Stem cell-based regenerative treatments in dentistry

Although basic research into dental stem cells is well 
documented, only very recently efforts are emerging to 
bridge the gap with translational research. Regenerative 
dentistry aims to regenerate the damaged dental tissues and 
to fully restore tooth anatomy and function. The functions 
of exogenously administered dental stem cells go beyond 
their differentiation potential and the replacement of cells 
lost due to injury or disease. Dental stem cells may create 
a repair-conducive microenvironment, stimulating the 
recruitment of endogenous stem cells or progenitors at 
the injury site. This insinuates that accurately designed 
bioactive scaffolds could generate effective dental tissue 
repair responses through activation and mobilisation of 
endogenous stem and progenitor cells, thus avoiding 
exogenous stem cell administration (Hayashi et al., 2015; 
Lee et al., 2010; Mitsiadis et al., 2012). Such innovative 
strategies would be easier to apply clinically and likely 
to encounter fewer regulatory obstacles. This raises the 
possibility of repairing entire dental tissues through 
stimulation of endogenous dental stem and progenitor cells. 
However, several studies in other organs – exploring the 
possibility of repairing tissues with the exclusive usage 
of scaffolds impregnated with chemotactic or growth 
factors – gave uncertain results, judging by the irregular 
and fibrotic appearance of the regenerated tissue (Lee et 
al., 2010; Zhang et al., 2013).
 The main approaches using stem cells for the repair of 
specific dental tissue, such as the pulp and the periodontium 
as well as for entire tooth regeneration, are described in 
Fig. 2.

Regeneration of pulp-dentin complex
Regenerative endodontics represents a new treatment 
modality that relies on the intracanal delivery of stem 
cells and focuses on re-establishment of pulp vitality 

and continued root development (Chrepa et al., 2015; 
Peters, 2014). Numerous attempts, using human DMSCs 
(hDPSCs), have been made in a variety of animal models 
in order to achieve complete pulp regeneration. Proper 
regeneration requires re-vascularisation and re-innervation 
of the pulp and allows new dentin formation (Peters, 2014). 
The very first experimental study using hDMSCs showed 
that these cells can differentiate into odontoblasts, which 
form dentin-like structures when transplanted together 
with HA/TCP ceramic powder in immunocompromised 
mice ex vivo (Gronthos et al., 2000) (Fig. 2). Other, more 
recent studies, using hDPSCs and SCAPs seeded on poly-
D,L-lactide/glycol scaffolds have confirmed the ability of 
human DMSCs to regenerate vascularised pulp tissues 
when transplanted into the empty mouse tooth root canal 
(Hayashi et al., 2015; Huang et al., 2010; Volponi et al., 
2010) (Fig. 2). However, these experimental attempts 
using DMSCs transplantation were performed in ectopic 
locations and therefore, stem cell-based therapeutic 
approaches for entire pulp regeneration cannot be directly 
translated into the clinics. For this reason, new experimental 
strategies have been elaborated, where DMSCs or other 
stem cell population, combined with scaffolds and/or 
bioactive molecules, fully fill the empty pulp chamber after 
pulpotomy (partial pulp removal) or pulpectomy (total pulp 
removal) (Iohara et al., 2011; Iohara et al., 2013; Zheng et 
al., 2012 ; Chrepa et al., 2015; Lovelace et al., 2011) (Fig. 
2). Indeed, DPSCs transplanted together with granulocyte-
colony stimulating factor (G-CSF), in pulpectomised 
teeth of dogs, were able to regenerate the entire pulp 
and to form new dentin (Iohara et al., 2013). Similarly, 
bone morphogenetic proteins (BMPs) were used, a long 
time ago, in order to stimulate the regenerative response 
of the pulp. While these procedures appear to improve 
tissue regeneration, their true effectiveness for achieving 
durable repair is still unclear. For example, the fibrotic 
tissue that has been obtained in experiments focusing on 
dental pulp regeneration may not sustain a long-lasting 
therapeutic effect. Indeed, this fibrous pulp tissue can 
undergo degeneration over time or be replaced with bone.
 Recent regenerative endodontic procedures that have 
been successfully applied in clinics are based on the 
bleeding technique, where the blood clot acts as a scaffold 
that delivers MSCs into the root canal of both immature 
teeth with pulp necrosis and mature teeth with apical 
lesions (Chrepa et al., 2015; Deepak and Nandini, 2012; 
Lovelace et al., 2011; Sonmez et al., 2013). However, the 
current status of stem cell-based endodontic therapy is still 
characterised by an empirical approach (Peters, 2014).

Regeneration of periodontal tissues
Human PDLSCs have been shown to improve 
periodontal tissue regeneration when transplanted into 
immunocompromised mice, indicating their big potential 
for future cell-based therapies in dentistry (Seo et al., 
2004) (Fig. 2). The regenerative potential of autologous 
and allogeneic PDLSCs, as well as of DPSCs, SHEDs and 
bone marrow stem cells for the treatment of periodontitis 
has been also demonstrated in other animal models, such 
as the miniature swine and dog models (Ding et al., 2010; 
Du et al., 2014; Fu et al., 2014; Khorsand et al., 2013). In 
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Fig. 2. Schematic representation of various stem cell-based strategies used for dental pulp, periodontium, and 
entire tooth regeneration. Transplantation of stem cells combined with scaffolds in the kidney or dorsal skin of 
immunocompromised mice is commonly used for regenerative purposes. Abbreviations: DE, dental epithelium; DM, 
dental mesenchyme; DECs, dental epithelial cells; DMCs, dental mesenchymal cells; DMSCs, dental mesenchymal 
stem cells; DPSCs, dental pulp stem cells; DSCs, dental stem cells; PDLSCs, periodontal ligament stem cells; SCAPs, 
stem cells from the apical papilla.

an attempt of improving stem cell-based therapies, growth 
factors such as platelet-derived growth factors (PDGFs) 
and BMPs have been used. PDGFs have been proven to 
stimulate periodontal regeneration (Howell et al., 1997; 
Lynch et al., 1989), while BMPs enhance alveolar bone 
and cementum formation (Selvig et al., 2002). However, 
BMPs may have undesirable effects on periodontal tissues 
and provoke tooth ankylosis. Commercialised amelogenin 
extracts have been also used in dental clinics with success 
for periodontal tissue regeneration, but their mode of action 
is still unclear (Veis et al., 2000).
 Regeneration of alveolar bone defects, caused by 
periodontal diseases, is one of the major challenges for 
clinicians. The first clinical trial using autologous human 
DPSCs, combined with collagen scaffolds, for alveolar 
bone reconstruction was performed successfully several 
years ago (d’Aquino et al., 2009). However, a three 
years follow-up study using in-line holotomography 
and conventional evaluation procedures has shown that 
the regenerated bone at the grafted sites was entirely 
compact and thus completely different from the normal 
spongy alveolar bone found in the mandibles (Giuliani 

et al., 2013). Another study, with a significant and stable 
clinical outcome, was performed in a patient suffering 
from advanced periodontitis. Autologous bone marrow 
mononuclear cells (BMMNCs) embedded in a thermo-
reversible gelation polymer scaffold were used successfully 
for alveolar bone regeneration, which was validated by 
clinical and radiographic evaluation in this three year 
follow-up trial (Sankaranarayanan et al., 2013).

Regeneration of the entire tooth
Regeneration of the entire tooth would be the ideal 
therapeutic approach after tooth loss. The association of 
DESCs and DMSCs in vitro allows the formation of tooth 
germs that can be transplanted into the alveolar bone, 
where the germs will develop, erupt, and finally become 
functional teeth (Ikeda and Tsuji, 2008) (Fig. 2). In a 
similar assay, dental bud cells were seeded into platelet-
rich fibrin scaffolds for tooth regeneration in the miniature 
swine model (Yang et al., 2012). Another approach to 
obtain new brand teeth is the implantation into the jaw 
of tooth-shaped polymeric biodegradable scaffolds filled 
with DESCs and DMSCs (Oshima and Tsuji, 2014) (Fig. 

pulpotomised
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2). The three-dimensional structure of the scaffolds should 
drive the differentiation of the transplanted stem cells 
into odontoblasts and ameloblasts. Indeed, bioengineered 
teeth using human stem cells have been formed, but only 
in ectopic sites, to date. Furthermore, these teeth are 
missing some essential tooth elements such as correct 
crown morphology and accomplished root formation. 
However, recent experiments in mice, using bioengineered 
approaches, have showed that it is possible to obtain 
functional teeth with entire roots (Oshima and Tsuji, 
2014). In fact, tooth germs formed by dental epithelial 
and mesenchymal cells seeded into collagen drops gave 
rise to new functional teeth after their implantation into 
the mandible of adult mice. Formation of all dental tissues 
allows the eruption and full integration of these teeth into 
the recipient alveolar bone.
 Recent studies have shown that re-aggregation of 
iPSCs-derived neural crest cells and mouse odontogenic 
epithelial tissues results to the generation of entire teeth 
ex vivo (Otsu et al., 2014). Although further technical 
improvements may be needed, the iPSCs technology is 
expected to open new horizons in regenerative dentistry.
 However, such results have not yet been obtained 
with human cells. Various populations of human DMSCs 
are still under investigation, while human DESCs have 
not been fully studied. Moreover, time represents a great 
challenge for tooth regeneration: the whole process of 
odontogenesis in humans takes more than 7 years. This 
long-term physiological procedure may be discouraging for 
individuals missing teeth and look forward to immediate 
treatment outcomes.

Conclusions and perspectives

During recent decades, several stem cell lines with 
significant variability in potency have been isolated from 
human adult teeth. Considerable heterogeneity exists 
between individual cells isolated from the same dental 
stem cell pool that may affect the clinical outcomes. 
Therefore, the identification and purification of stem cell 
subpopulations with improved potency is a necessary step 
before application of cell-based treatment in dental clinics. 
In addition to the choice of dental stem cell populations, a 
variety of factors such as the lesion size and depth, health 
status of the surrounding tissues, as well as the delivery 
methods are also likely to impact on the success of therapy. 
There is still a need for understanding the mechanisms 
that control the fates and functions of stem cells after their 
transplantation into the pathological or injured dental pulp 
and/or periodontal tissues. Although applications using 
dental stem cells for pulp and periodontal regeneration have 
been reported in animal models, the number of clinical trials 
with long-term follow-up is very limited, if not inexistent. 
The translation of basic and preclinical stem cell research 
to the dental clinics is very slow, since technical, safety, 
regulatory and ethical concerns exist. It is obvious that 
patients will not benefit from these regenerative treatments 
until most of the above mentioned issues and concerns 
will be resolved, and the possible clinical restrictions will 
be well examined and taken seriously into consideration. 

Several clinical trials using autologous stem cells for pulp 
and periodontal tissue regeneration have already been 
approved and initiated, but the outcome of these studies 
has not yet been communicated. For example, a clinical 
trial sponsored by the Fourth Military Medical University 
in China will evaluate the effects of PDLSCs in periodontal 
tissue regeneration (https://clinicaltrials.gov/ct2/show/
NCT01357785). Similarly, another clinical trial in Japan 
deals with dental pulp regeneration by transplantation of 
autologous pulp stem cells (http://www.stemcellsaustralia.
edu.au/About-Stem-Cells/Stem-Cell-Clinical-Trials/
Dental-treatments/Periodontitis.aspx).
 It is obvious that stem cell-based regenerative 
approaches in dentistry are just at the beginning, but have 
the potential to benefit millions of patients worldwide. 
Other emerging technologies, such as nanotechnology, 
imaging systems and mathematical modelling should be 
incorporated in the stem cell research field in order to 
obtain faster, reliable and qualitative advancements and 
outcomes in dental clinics.
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Discussion with Reviewer

Jean Christophe Farges: What might be the most 
important hurdles and limits of regenerative endodontics 
in the future?
Authors: As in every dental speciality, since no generally 
accepted standardised protocol concerning therapies using 

stem cells in dentistry is available, the approaches may be 
very variable and as a result, the outcomes can be variable 
as well. For this reason, the most significant hurdles and 
limitations include:
1. Standardisation of clinical operation protocols for 
endodontic treatments using stem cells
2. Sources and standardisation of stem cells for use in 
clinics
3. Adaptation of endondontic techniques according to the 
specific anatomical shape of the roots, volume of the pulp 
chamber, age of the patient, status of the general health 
of the patient
4. Necessity of post-operative follow up 
5. Cost of the treatment
6. Specialised manufactures (industrialisation) for covering 
large-scale treatment for all individuals

Editor’s Note: Scientific Editor in charge of the paper: 
Juerg Gasser.


