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Abstract

Bacterial vaccines have made dramatic impacts upon 
morbidity and mortality caused by a number of common 
pathogens, but a vaccine to prevent Staphylococcus aureus 
infections has proven to be illusive. With successful 
bacterial vaccines, the organisms are all part of the transient 
flora, whereas, S. aureus is part of the normal human 
flora. This means that S. aureus has had a prolonged time 
to adapt to the host milieu and its defences. The failure 
of several staphylococcal antigens to protect humans 
from infection in vaccine clinical trials using active or 
passive immunisation has stimulated a re-examination 
of the fundamental assumptions about staphylococcal 
immunity in humans vs. animals, especially rodents. This 
has spurred an active debate about the appropriate models 
for vaccine development and an examination of our current 
understanding of the protective immunity in humans. A 
major factor in the development of previous bacterial 
vaccines was a biomarker that predicted human protection, 
e.g., antibodies to tetanus toxoid or to pneumococcal 
polysaccharide. While antibodies against a number of 
staphylococcal antigens have proven to be an excellent 
biomarker for protection in rodents, these have not been 
translated to human infections. Thus, while much work 
remains, there is a growing consensus that T-cell immunity 
plays an important role in protecting humans. Moreover, 
the presence of anti-staphylococcal toxin antibodies 
correlates with reduced disease severity in humans. The 
most important recent advances concerning potential 
biomarkers, and the role of pre-existing immune status of 
vaccines in vaccine-associated mortality are considered 
in this review.
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Introduction

The epidemiology of S. aureus establishes a need for a 
vaccine. S. aureus is the number one cause for children 
requiring hospitalisation and surgery, and the leading cause 
of bacteraemia in people > 65 years old (Proctor 2012a; 
Proctor 2012b). Another recent review (Tong et al., 2015) 
notes the impressive rates of S. aureus infections /100,000 
population/y. Over that past decade bacteraemia rates = 20-
38, which jump to > 100 for people over age 70; 1,960 
for HIV positive adults, and 66.5 for Blacks (as compared 
to Whites =  27.7) When considering either MSSA or 
MRSA, there is a 25  % 12-week mortality in cardiac 
device infections and a 7-21 % mortality with intravascular 
catheter blood stream infections (Tong et al., 2015). The 
rates of invasive S. aureus infections are comparable to the 
pre-vaccine rates for Haemophilus influenzae (David and 
Daum, 2010; Millar et al., 2005). With skin and soft tissue 
infections, the rates for patients coming from community or 
basic training recruits range from 0.35/1000 to 4/1000 per 
year (Liu et al., 2008; Morrison-Rodriguez et al., 2010). A 
large multi-city study in the USA established a mortality 
rate of 18,650 MRSA deaths/year in the USA (Klevens 
et al., 2007). Finally, staphylococci are the most frequent 
pathogen involved in joint infections (Fisher et al., 2015; 
Kapadia et al., 2015; Lin et al., 2015; Parvizi et al. 2015). 
Therefore, there is clearly a need for a vaccine to protect 
against staphylococcal infections.
	 When considering vaccines, there are different levels of 
protective efficacy. The highest level would be prevention 
of infection. The next level would be reduced mortality. 
The lowest barrier would be reduced severity. Clearly, 
the last two levels are often directly related. A particular 
challenge comes with implant infections as the presence 
of biomaterials dramatically reduces the inoculum needed 
to establish an infection. This was first demonstrated 
in humans when Elek showed that the inoculum was 
reduced by at least 105 fold when a suture was placed in 
the wound as compared to subcutaneous inoculation into 
skin (Elek and Conen, 1957). The presence of a foreign 
body also increases the difficulty in treating with antibiotics 
as biofilms of organisms show resistance even when the 
bacteria are susceptible in the microbiology laboratory 
(reviewed in McCarthy et al., 2015).
	 When considering bacterial vaccines, all successful 
vaccines have been developed when a biomarker for 
protective immunity was established. For example, anti-
capsular antibody against Streptococcus pneumoniae 
and anti-toxin antibody against tetanus toxoid correlated 
directly with protection against human S. pneumoniae and 
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Clostridium tetani. Much of the difficulty in developing 
a preventive S. aureus vaccine stems from the fact that 
biomarker(s) for human protective immunity are unknown 
(Fowler and Proctor, 2014). In contrast, we do know that 
anti-toxin antibodies have been associated with reduced 
severity of human infections (Fowler and Proctor 2014; 
Fritz et al., 2013; Rasigade et al., 2011; Spalding et al., 
2012). With 90 % effectiveness for anti-toxin antibodies, 
one would anticipate that differences between controls 
and immunised to be achieved with 300 subjects in 
each group (Aman and Adhikari, 2014). Finally, another 
challenge for producing a S. aureus vaccine has been the 
fact that S. aureus produce many diseases and the strains 
of bacteria producing those diseases are dissimilar in terms 
of virulence factors (Laabei et al., 2015; Lowy, 1998). 
Hence, one could reasonably ask which S. aureus disease 
does one want to address rather than trying to address all 
infections? As the goal of this review is to consider the 
role for vaccines in implant infections, it will focus upon 
the prevention of disease, and the challenges for achieving 
this goal.

Completed clinical trials

What have we learned from the many clinical trials of 
various vaccine candidate antigens? To date, all of the 
clinical vaccine trials have been aimed at preventing or 
treating S. aureus diseases (Proctor 2012a; Proctor 2012b). 
Detailed reviews of the clinical trials have recently been 
reviewed and specifics will not be repeated in this article 
(Fowler and Proctor, 2014). Both passive and active 
immunisation has been tried (Fowler and Proctor, 2014; 
Jansen et al., 2013). The clinical trials have been based 
upon protective efficacy in animals, usually mice, and 
the immune marker has been opsonophagocytic antibody 

(Fowler and Proctor, 2014; Jansen et al., 2013; Proctor, 
2012a; Proctor, 2012b). All of the active immunisations 
showed increases in opsonophagocytic antibodies in human 
volunteers, as well as in subjects in the clinical trials. 
Nevertheless, all clinical trials have failed, despite strong 
protective responses in animals (Fowler and Proctor, 2014; 
Proctor 2012a; Proctor 2012b).
	 Developing a vaccine that prevents implant infections 
has been a goal for vaccine production (Montanaro, 2011). 
This might be accomplished by reducing adhesion and/or 
biofilm formation to the foreign body, and this has been 
tested against a small number of antigens within some of 
the clinical vaccine trials wherein anti-ClfA, anti-SdrG, 
anti-capsular polysaccharide (types 5 and 8) were tested 
using either active or passive immunisation (DeJonge 
et al., 2007; Rupp et al., 2007; Shinefield et al.. 2002; 
Weems et al., 2006). None of these antigens have proven 
successful in human vaccine trials. However, an anti-alpha 
toxin antibody (Brady et al., 2013), anti-glucosaminidase 
antibody (Varrone et al., 2014) and accumulation protein 
antibody (Yan et al., 2014) have shown efficacy in murine 
models. Perhaps one of these new antigens will prove 
successful. While complete prevention is a very high 
hurdle, the strategy to combine antibodies with antibiotics 
may be efficacious as the antibodies will reduce biofilm 
and clumping of bacteria and thereby enhance antibiotic 
activity.

On-going clinical human vaccine trials

Some comments can be made about the five vaccine 
trials and the human host response to invasive S. aureus 
infections where data are still pending (Table 1).
	 The Pfizer trial is examining protection from infections 
in patients undergoing lumbar spinal fusion. Except for 

Company Antigens Phase Comments
Pfizer ClfA, MntC, CP 5, CP8 II (Lumbar surgery) 3 of 4 Ags already tested before

NovaDigm rAls3p-N (NDV-3) for 
Ab and T cell responses IIb Single, novel antigen for S. aureus and C. albicans 

RVVC 

NABI/GSK rLukS-PV, α-toxin I Secreted proteins; no longer listed in March 2015 
pipeline report

GSK Tetravalent I Unknown antigens; no longer listed in March 2015 
pipeline report

Novartis 4 proteins I Based upon opsonophagocytic Ab; no data are 
available

Vaccine 
Research Intl Whole cell (SA75) I Measured Ab against CAN, ClfA, FnBP, Eap; no 

data provided on thefunction of the Abs

Ab = antibody; Ag = antigen; rAlsp-N = recombinant N terminus of C. albicans protein; CAN = collagen binding 
protein; ClfA = clumping factor; CP5 and CP8 = capsular polysaccharide types 5 and 8; Eap = extracellular adhesion 
protein; MntC = manganese transport protein C; rLukS-PV = a recombinant PVL = Panton-Valentine leukocidin; RVVC 
= recurrent vulvovaginal candidiasis; Th17 = T helper 17 cell; TLR = toll-like receptor. These are surface antigens on 
S. aureus that are being developed as vaccine components.

Table 1. Information from the clinical trials.gov web site (https://clinicaltrials.gov/ct2/results?term=staphylococcus&
Search=Search) searched for the term “staphylococcus” and from company web sites, e.g., GSK Pipeline report (see 
Web References). All of the trials have demonstrated the production of antibodies, and no safety concerns in the Phase 
I and II trials (where applicable) as reported by data at the web sites
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MntC, the other three antigens (Nissen et al., 2015) have 
been tested in other vaccine trials and failed. There are no 
study results posted on the web sites. However, a follow-
up Phase III trial was just published on the types 5 and 8 
capsular antigens as vaccine candidates wherein a second 
dose was added at 35 weeks for patients on haemodialysis, 
and this trial failed to show protection as well (Fattom et al., 
2015). The NDV-3 trial sponsored by NovaDigm is using a 
novel recombinant protein from C. albicans that was found 
to provide cross protection against S. aureus infections that 
was mediated by Th17 cells in mice (Schmidt et al., 2012; 
Spellberg et al., 2008). The Phase I trial is followed up with 
a Phase II trial aimed at preventing recurrent vulvovaginal 
candidiasis. One assumes that clinical trials for S. aureus 
will be forthcoming, but none are yet scheduled. Two 
trials involving GSK antigens (rLukS-PV/a-toxin and a 
Tetravalent vaccine) have finished phase I, but the March 
2015 pipeline report no longer has these trials listed as on 
going. Only the safety data from phase I have been released. 
A Novartis clinical trial using four proteins, which have not 
been specified, may also be on-going, but no data beyond 
the phase I trial are available. The basis for the Novartis 
trial is opsonophagocytic activity, whose limitations have 
been discussed above. Vaccine Research International is 
studying a whole cell vaccine, based upon S. aureus 75, 
and the data available report on antibodies directed against 
staphylococcal adhesins. There are no data provided about 
the functional activity of these antibodies, but the goals are 
prevention of infection; therefore, one assumes that the 
function would be prevention of colonisation. Finally, a 
NIAID-sponsored trial conducted through the University 
of Maryland started in 2009 and was completed in Sept 
2014. The goals of this trial were to examine white blood 
cell responses using microarrays, Th17 activity, and TLRs 
responses. While this trial should provide human immune 
response data in invasive S. aureus infections, these much-
needed results have not yet been published.

Conclusions from clinical trials

Several conclusions may be drawn explaining the poor 
outcomes of the clinical trials. First, the protective immune 
response (opsonophagocytic antibodies) found in the 
animal models used to date have not predicted efficacy in 
humans. Second, excess mortality was seen in the V710 
(anti-IsdB antigen) vaccinated and S. aureus infected 
group, which was associated with systemic inflammatory 
response and multi-organ failure (Fowler et al., 2013). A 
similar disturbing finding occurred with anti-type 5 and 
8 pooled human anti-capsular antibodies (Altastaph), 
wherein there was a trend toward higher mortality in the 
vaccinated group (23 % vs. 11 %, p = 0.42) as well as more 
adverse events (95  % in Altastaph group) (Rupp et al., 
2007). Third, anti-S. aureus antibodies are not a biomarker 
for protection against human S. aureus infections (Fowler 
and Proctor, 2014; Montgomery et al., 2014; Salgado-
Pabón and Schlievert, 2014; Verkaik et al., 2010). Fourth, 
S. aureus causes a very wide variety of diseases, and it 
may be asking too much for a single vaccine to prevent 
all of them as different strains of S. aureus have differing 

propensity for causing certain types of infections. Finally, 
S. aureus is a part of the normal flora and has evolved many 
mechanisms for thwarting the human immune response, 
especially opsonophagocytic processes (Bestebroer et al., 
2010; Lu et al., 2014; Pauli et al., 2014; Serruto et al., 
2010; Spaan et al., 2013; van Kessel et al., 2014). In these 
reviews, we see that S. aureus has essentially every step of 
the immune response blocked by its vast array of proteins. 
Examples include, inhibition of neutrophil attachment to 
endothelial cells by SSL-5, SSL-6 and Eap; inhibition of 
neutrophil interaction with chemoattractants by SSL-10, 
CHIPs, and FLIPr; blocking of antibody interactions with 
neutrophils by SSL-7, SSL-8, and protein A; and inhibition 
of complement by Ecb, SCIN, and CHIPS. A more complex 
vaccine approach might include neutralising several of the 
staphylococcal factors that inhibit the immune system as 
well as adding vaccine antigens.
	 In retrospect, the failure of opsonophagocytic 
antibodies to protect humans is not surprising. While 
opsonophagocytic antibodies are a clear biomarker 
for H. influenzae and S. pneumoniae, patients with 
agammaglobulinaemia (genetic or acquired complete lack 
of immunoglobulins) show no increase in the incidence of 
S. aureus infection (reviewed in Fowler and Proctor, 2014). 
Of course, neutralising antibodies to staphylococcal toxins 
have correlated with reduction in the severity of S. aureus 
infections (Fowler and Proctor, 2014; Salgado-Pabón and 
Schlievert, 2014), but these antibodies are less likely to 
prevent infections. Moreover, the use of rodent models for 
predicting human responses to staphylococcal infections 
for either protective efficacy (Proctor 2012a; Proctor 
2012b; Salgado-Pabón and Schlievert, 2014) or human 
inflammatory responses to sepsis (Seok et al., 2013), have 
been poor.
	 A very recent review by (Pozzi et al., 2015) attempts to 
address the role of antibody and animal models in the design 
of staphylococcal vaccines. Unfortunately, this review 
contains major errors because of a lack of understanding 
of clinical medicine and basic epidemiology. In particular, 
there are major problems with the associations drawn 
between hypogammaglobulinaemia and the increased 
incidence of S. aureus infections. For example the authors 
fail to separate the occurrence of S. aureus pneumonia 
in some patients with XLA and an increased incidence. 
The rate of Staphylococcus sp. was not increased above 
background. Moreover, patients with disorders in their 
skin (atopic dermatitis, juvenile pityriasis rubra, etc.) have 
a failure of the barrier function of the skin; therefore, they 
have more S. aureus infections. This happens in all people 
with loss of barrier function and hypogammaglobulinaemia 
again is not the cause of the more frequent infections. 
Heavy colonisation with S. aureus is a risk factor for 
invasive S. aureus infections so skin barriers are important. 
In another paper cited in the (Pozzi et al., 2015) review, an 
IgG infusion used by (Castanet et al., 1994) was claimed 
to cause improvement of S. aureus folliculitis. This is a 
single anecdotal case. More importantly, this case report 
has multiple shortcomings. First, there is no description of 
the organism. Is it a heavy toxin producer? Production of 
leukocidins and haemolysin has been associated with more 
severe skin infections. Clearly, this and previous reviews 
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have emphasised that neutralisation of toxins can reduce 
the severity of S. aureus disease (Proctor, 2012a; Proctor 
2012b, Fowler and Proctor, 2014). However, anti-toxins 
have not yet been shown to prevent S. aureus infections. 
Second, as noted in the Castanet case report, people with 
these skin diseases have more viral and bacterial infections 
due to loss of barrier function of the skin. There were no 
viral cultures taken in this patient; therefore, the IVIG 
may have treated a concurrent viral infection, which then 
allowed clearing of the S. aureus infection. Third and 
most importantly, there was no testing of the patient’s 
neutrophils in the presence and absence of the IVIG 
against the S. aureus isolated from the patient. Hence, the 
assertion that hypogammaglobulinaemia played a role in 
clearing the infection is simply speculation. Fourth, T-cell 
dysfunction has been reported with juvenile pityriasis 
rubra pilaris (Shvili et al., 1987), which might account 
for the cutaneous S. aureus infections. (Castanet et al., 
1994) examined the numbers of T-cell subsets, but they 
did not test the function of the T cells. Fifth, the IVIG 
may have altered the skin disease thereby improving the 
barrier function, and it is noteworthy that no biopsy of the 
skin is reported after the IVIG therapy. In support of this 
idea is the fact that it took over 2 months for the IVIG 
to bring improvement to the S. aureus skin infections. 
If the IVIG were acting to improve opsonic activity in 
the patient, then the response should have been almost 
immediate (certainly within a week) rather than after 
two months. Thus, this single case was poorly studied 
and complicated because the patient continued to receive 
antibiotics; therefore, the impact of IgG cannot be linked 
directly to the clearance of S. aureus. Other statements are 
made about IgG infusions improving S. aureus infections, 
but these are non-referenced in the (Pozzi et al., 2015) 
review. Further attempts are made to implicate IgG, for 
example, patients with chronic lymphocytic leukaemia 
(CLL) are mentioned, but these patients are often treated 
with agents that cause neutropaenia and with prednisone, 
which suppresses T-cell immunity. In addition, in the later 
stages of CLL there is often a decrease in cell-mediated 
immunity. The CLL data are not at all convincing that 
hypogammaglobulinaemia had anything to do with their 
S. aureus infections. Finally, “rheumatologic disorders” 
are thrown-in to support of hypogammaglobulinaemia as 
a cause of S. aureus infections, but there are clearly other 
immunological reasons for S. aureus infections in these 
patients, such as rheumatoid factor, that blocks neutrophil 
function; treatment with prednisone that depresses cell-
mediated immunity, and neutropaenia is frequent in a 
number of “rheumatologic disorders”. In summary, the 
information in the (Pozzi et al., 2015) review is not at all 
convincing that hypogammaglobulinaemia plays any role 
in increasing the incidence of S. aureus infectious diseases.
	 Other arguments are made by (Pozzi et al., 2015) for the 
value of antibodies based upon animal models, but we have 
ample clinical data from the failed human clinical vaccine 
trials that these models do not predict success in humans. 
Another argument for antibodies being important is that 
people develop antibodies to staphylococcal antigens after 
S. aureus infections and after colonisation shortly following 
birth. This only shows that the patients had an immune 

response, which would involve T-cell immunity, but it 
does not establish antibodies are being protective. Finally, 
data for the protective effect of anti-toxin antibodies are 
provided, and these comments are in agreement with this 
and previous reviews as being valuable.
	 The (Pozzi et al., 2015) review continues with a very 
large amount of elegant murine immunology, which has 
not been shown to be relevant to human immune response 
against S. aureus. Demonstration that phagocyte subsets 
and lymphocyte clonal deletion are key elements in the 
failure of the staphylococcal vaccines would be a major 
step in developing a preventive S. aureus vaccine, but 
this will require considerable work to show that it has 
occurred in the failed human clinical vaccine trials or in a 
prospective clinical trial.
	 The lack of biomarkers and predictive animal models 
strongly makes the case for having more research into 
the human immune response before going ahead with 
more vaccine trials. What do we know about the human 
protective immune response against S. aureus?

Human adaptive immunity against S. aureus

A model showing the immune cells and cytokines involved 
in human adaptive immunity to S. aureus is provided 
in Fig. 1. This model does not show the plethora of 
staphylococcal extracellular factors used to thwart the 
actions of antibodies, complement, and phagocytes because 
these have been extensively recently reviewed (Bestebroer 
et al., 2010; Spaan et al., 2013; Serruto et al., 2010; van 
Kessel et al., 2014).
	 People with defects in cellular immunity have an 
increased incidence of S. aureus infections (Crum-
Cianfione et al., 2009; Ishigame et al., 2009). Similarly, 
people with neutropaenia or defects in neutrophil function 
develop more S. aureus infections than normal people 
(Donabedian and Gallin, 1983; Ma et al., 2008; Minegishi 
et al., 2009; Quilty et al., 2009; White and Gallin, 1986) as 
neutrophils play a major role in killing invasive S. aureus 
(Kobayashi et al., 2010). Where do cellular immunity and 
neutrophil problems coincide? This occurs in people who 
have defects in Th17 cells because the Th17/IL-17 arm 
of the immune system is used to call in and to activate 
neutrophils at sites of S. aureus invasion (Ishigame et al., 
2009; Ma et al., 2008; Minegishi et al., 2009). Moreover, 
Th17 activation also primes mucosal and skin surfaces to 
produce cationic antimicrobial peptides, which enhances 
the protective barrier against S. aureus invasion (Minegishi 
et al., 2009). Cytokines IL-6 activates Th17 while IL-10 
reduces Th17 activation (Maródi et al., 2012; Puel et al., 
2008). Phenol soluble modulins (PSMs) produced by S. 
aureus stimulate macrophages to produce more IL-10 
(Schreiner et al., 2013), thereby down-regulating Th17 
activation. Blockage of IL-6 with autoantibodies and 
increased levels of IL-10 are associated with more S. 
aureus infections in humans (Maródi et al., 2012; Puel et 
al., 2008). Very recently, IL-26, which is a downstream 
cytokine in the Th17 pathway, not only functions as a 
cytokine, but it also has antimicrobial peptide activity 
(Braum et al., 2012; Meller et al., 2015). Also recently, 



319 www.ecmjournal.org

RA Proctor                                                                                                                            S. aureus vaccine challenges

bone marrow dendritic cells and macrophages, which 
normally kill S. aureus, were found to be a safe haven for 
S. aureus strains that displayed high activity of the Agr 
quorum-sensing system (O’Keeffe et al., 2015). Finally, 
the staphyloccidal activity of dendritic cells is enhanced 
by vitamin D and patients that are vitamin D deficient are 
more likely to have more nasal carriage, skin infections, 
and more invasive infections (Olsen et al., 2012; Thomason 
et al., 2015; van der Does et al., 2014; Wang et al., 2015).
	 Some of the antibodies tested in clinical trials have 
aimed at staphylococcal adhesins (Fowler and Proctor, 
2014; DeJonge et al., 2007; Weems et al., 2006). The 
antibodies must bind these ligands and prevent attachment 
to host tissues. While higher affinity monoclonal antibodies 
have been produced, they have failed in clinical trials in 
terms of preventing or treating infections (Bebbington 
and Yarranton, 2008). The affinity of S. aureus adhesins 
directly correlates with the development of invasive 
infection (Casillas-Ituarte et al., 2012; Lower et al., 2011); 
hence, this may have clinical relevance. One factor that 
may contribute to the failure of monoclonal antibodies to 
prevent infections is that S. aureus surface proteins have 
multiple binding sites with very high dissociation constants 
(Provenza et al., 2010; Ross et al., 2012); therefore, even 
relatively high affinity MAbs may not be able to compete 

with the staphylococcal adhesins for host proteins. Affinity 
constants of staphylococcal adhesins and toxins show a 
direct correlation with the production of human disease 
(Lower et al., 2011; Tkaczyk et al., 2012). This problem 
may be complicated by the observation that human and 
animal proteins do not bind staphylococcal adhesins 
identically (Foster et al., 2014). The situation is made 
more difficult when one considers that even preventing 
99  % of staphylococci binding to an implanted device 
may not prevent infection because of the relatively low 
inoculum needed to cause infection of foreign bodies (Elek 
and Conen, 1957). Thus, asking monoclonal antibodies to 
prevent infection by competing with adhesins is a tall order.
	 The clinical problem is different when this approach 
is applied to the neutralisation of staphylococcal toxins, 
wherein efficacy in animal models can be directly correlated 
with monoclonal antibody affinity (Tkaczyk et al., 2012) 
and levels of anti-toxin antibodies in humans correlate with 
reduced severity of infections (Foster et al., 2014). These 
anti-toxin antibody actions are summarised within a box 
in Fig. 1. In addition, antibody-staphylococcal interactions 
can also activate the IFN-g pathway for clearance of S. 
aureus in mouse models (Pancari et al., 2012). A model 
for S. aureus adaptive immunological responses in humans 
is shown (Fig. 1).

Fig. 1. A model for S. aureus adaptive immunological responses in humans. The exceptions are for SEB (staphylococcal 
enterotoxin B) wherein it interacts with regulatory T cells (Treg; CD4+Foxp3+) and V710 MAb in the liver, which is 
based upon murine data. For the most part, toxin responses are similar between human and animal model responses. 
Positive actions are indicated with arrows, whereas inhibitory responses are with blocked arrows. Abbreviations MF 
macrophage; PSM, phenol-soluble modulins; IL, interleukin; TGF-b, transforming growth factor-b; Th17, T helper 
type 17 cells; mAb, monoclonal antibody; V710, IsdB (iron-regulated surface determinant) antigen used in Merck 
Vaccine trial; C’, complement; SAE, S. aureus enterotoxin E; RORgt, retinoid-related orphan receptor c; STAT3, signal 
transducer and activator of transcription 3; Hla, a-toxin; TSST-1, toxic shock syndrome toxin-1; Luk, leucocidin; 
PVL, Panton-Valentine leucocidin (two component toxin made up of LukS-PV and LukF-PV); IFN-g, interferon-g; 
VitD = vitamin D.
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Limitations and dangers of immune activation

When considering activation of Th17 as the answer to S. 
aureus vaccine production, several cautions are needed. 
First, while the evidence for T cells and especially Th17 
playing an important role in human immunity against S. 
aureus is gaining support (Kolata et al., 2015; Misstear et 
al., 2014; Montgomery et al., 2015), Th17 immunity has 
not been shown to be a biomarker for protection. Second, 
high levels of IL-10 and low levels of IL-1 and TNF-a 
have been associated with worse outcomes in bacteraemia, 
including S. aureus bacteraemia (Burke et al., 2013; 
Rose et al., S (2013a) [Biomarkers in Staphylococcus 
aureus bacteraemia predicting bacteraemia duration or 
patient mortality. ICAAC Abstract B-1432]; Rose et 
al., 2013b [Differential whole blood killing and IL-1 
response in Staphylococcus aureus isolates from patients 
with persistent and rapidly cleared bacteraemia. ICAAC 
Abstract B-490]; van Dissel et al., 1998). These cytokines 
can be related to Th17, but whether or not these cytokines 
will serve as biomarkers still needs to be tested in clinical 
vaccine trials before being accepted as biomarkers for S. 
aureus immunity. Third, the duration of Th17 immunity 
may be relatively short. When our standard B. pertussis 
vaccine went from a whole-cell to a subunit vaccine, the 
protection also shifted from being antibody-dependent 
to Th17-mediated immunity (Dunne et al., 2010). The 
duration of immunity also changed from being very 
long-term with the whole cell vaccine to being relatively 
short-lived immunity with the acellular vaccine such 
that as children reach their early teenage years, they are 
developing whooping cough (Lavine et al., 2012; McGirr 
et al., 2015). There are no data about the duration of a 
Th17-based human immune response to S. aureus, but 
it might be equally short-lived, which would be fine for 
prevention of infections in ICU or implant surgeries, but it 
would not provide longer-term protection. Fourth, the IsdB 
antigen (V710 vaccine trial) did stimulate and protect by 
Th17, and not antibody-dependent, mechanisms (Joshi et 
al., 2012). However, patients receiving the V710 vaccine 
that developed invasive S. aureus infections unexpectedly 
showed an increased incidence of multi-organ failure and 
death (Fowler et al., 2013). Examination of cytokines in 
the sera from the twelve V710 recipients who died were 
compared to the single death amongst the, thirteen placebo 
recipients (McNeely et al., 2014). All twelve vaccines 
had undetectable levels of IL-2 prior to vaccination and 
surgery, but only one placebo recipient with undetectable 
IL-2. Furthermore, nine of ten V710 recipients that had 
undetectable IL-17a levels preoperatively died with 
postoperative S. aureus infections. Of course, IL-2 is 
important for the activation of T cells, including regulatory 
T cells (Treg) (Smigiel et al., 2014). Patients with defects 
in Treg have problems in maintaining immune homeostasis 
and develop autoimmune diseases. Other cytokines, such 
as Il-1 that is released during bacterial infections, can 
drive the conversion of Treg into Th-17 cells (Chung 
et al., 2009; Li et al., 2010). One hypothesis for the 
systemic inflammatory response syndrome seen in the 
vaccines might relate to an imbalance of Treg activity. 
While the mechanisms are unknown, these data suggest 

that the preoperative immune status and host response 
may predispose patients to death after priming of the 
immune system with vaccination. This provides a note of 
caution about vaccines directed at Th17 activation because 
Th17 has also been implicated in autoimmune diseases 
(Marwaha et al., 2012). Such a caution is implicit in the a 
statement about the immune response in infection in the 
(Smigiel et al., 2014) review: “Too much Treg cell activity 
can result in immunosuppression and impaired pathogen 
clearance, whereas too little Treg cell activity can impair 
effector T-cell mobilisation and avidity during infection 
and unleash potentially fatal inflammatory and autoimmune 
diseases. Identifying the cellular and molecular signals that 
control Treg cell homeostasis and function is essential for 
understanding how Treg cells influence the outcome of 
normal and pathological immune responses.” Clearly, the 
model in the Fig. 1. is simply an outline of the adaptive 
human immune response to S. aureus, but a detailed 
and mechanistic explanation is desperately needed for 
the protective response in humans. Progress on the 
development of a safe and efficacious S. aureus vaccine 
will certainly be facilitated by investment in studies of the 
basic immunology of humans with S. aureus infections.

Conclusions

Both active and passive immunisations have been 
attempted, and all clinical trials have failed. These trials 
were based upon increased opsonophagocytic antibodies 
in animal models (mostly rodent) and in humans. Several 
more trials are ongoing, but these also are based upon 
opsonophagocytic antibodies, except for the rAls3p-N 
antigen, which focuses on Th17-mediated immunity. 
Previous clinical trials have used antigens (IdsB, ClfA) that 
stimulated the Th17 pathway and where the protection was 
shown to be mediated by Th17, and not antibody, have also 
failed to demonstrate protection (Cho et al., 2010; Joshi et 
al., 2012; Lin et al., 2009; Narita et al., 2010). The note of 
caution about active immunisation that stimulates Th17 is 
noted above. Similar caution applies to passive immune 
therapy. Anti-ClfA monoclonal antibody (tefibazumar/
Aurexis) showed a hypersensitivity reaction in one of thirty 
vaccine recipients (Weems et al., 2006). Development of a 
much needed and safe staphylococcal vaccine may require 
a much deeper understanding of the human immune system 
and the development of biomarker(s) that signify protection 
against staphylococci.
	 While prevention of infection is the ultimate goal 
of a staphylococcal vaccine, which will be the most 
difficult with biomaterial infections, we may need to 
accept reduced morbidity via an anti-toxin approach for 
the near future. Currently, decolonisation and enhanced 
efforts at infection control prior to surgery appear to be 
the best immediate answer to reducing implant infections 
(Allen et al., 2014; Chen et al., 2013; Colling et al., 2015; 
Huang et al., 2013; Kim et al., 2010; Mehta et al., 2013; 
Schweizer et al., 2013). The most studied drug for use in 
nasal decolonisation is mupirocin, but rapid emergence of 
plasmid-mediated resistance occurs where it is widely used, 
which reduces its value (Lee et al., 2013; McDanel et al., 
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2013; Miller et al., 1996; Seah et al., 2012; Vivoni et al., 
2005; Walker et al., 2003). Combined resistance between 
the topical antibiotics mupirocin and retapamulin is of great 
concern (McNeil et al., 2014). Newer agents such as XF-
73 are currently being tested in phase II trials, which have 
a lower propensity for development of resistance (Farrell 
et al., 2011). For example, retapamulin and mupirocin 
exhibit resistance in 3-5 passages, whereas XF-73 shows 
no resistance after 55 passages (Farrell et al., 2011). The 
lack of XF-73 resistance is perhaps due to it extremely 
rapid rate of killing: > 105 S. aureus killed in 15 min at 
twice the minimal inhibitor concentration (Farrell et al., 
2010). Thus, while we await a much needed staphylococcal 
vaccine, screening, decolonisation and infection control are 
immediately available solutions to reduce the problem of 
prosthetic joint infections.
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Discussion with Reviewer

Reviewer I: The author’s thesis that the greatest challenge 
in developing a protective vaccine is that “S. aureus is 
part of the normal human flora” is accepted. However, 
from a practical standpoint, an equal challenge is that S. 
aureus infection rates are too low for the clinical research 
needed to discover biomarkers of protective immunity. This 
challenge deserves some attention, perhaps by citing the 
well document ~1 % surgical site infection rates in total 
joint replacement and heart valve replacement.
Authors: The development of biomarkers is not dependent 
upon the infection rates, as one can search for biomarkers 
in patients with bona fide infections. For example, in 
a series of patients with S. aureus bacteraemia, some 
cytokines (high TNF-a, high IL-6, and low IL10) have 
been found to be markers for higher mortality (Rose W et 
al., 2012). However, the number of subjects and the need 
for a large prospective trials to define these as biomarkers 
for severe disease are still needed. Therefore, even if only 
1 % of surgical site infections were studied, presence of a 
cytokine or particular lymphocyte subset that correlated 
with cure would indicate protective immunity, and it could 
be found in 90 % of the 1 % of patients. Of course, I do not 
share the view that the infection rates are low as S. aureus 
bacteraemia is the number one cause of bacteraemia in 
people over 65 years old, the number one cause of children 
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being admitted to hospitals, and the number one cause of 
children having surgery. Therefore, there are plenty of cases 
for the study of S. aureus infections.

Reviewer II: Biomarkers in rodent models of S. aureus 
infections but also well-known biomarkers for H. 
influenzae and S. pneumonia infections in humans, have 
either no effect or can even have an adverse effect in S. 
aureus infections in humans. Where to your opinion do we 
need to look for biomarkers that will solve this problem?
Authors: We need to look to human disease responses for 
biomarkers. There is already human data for anti-toxin 
antibodies being protective against toxic shock syndrome 
and there are clinical trials underway examining the value 
of anti-alpha toxin antibodies in human disease. These 
antibodies are most likely to reduce disease severity. Of 
note, animal models and human responses are parallel, 
suggesting that these models will be predictive of human 
outcomes. Where we lack biomarkers are for disease 
prevention. Because animal models have performed so 
poorly (high levels of protection in animal models and 
failure to protect in human vaccine trails), one will need 
to look to human studies for the discovery and vetting of 
biomarkers.

Reviewer III: Considering the obvious challenges in 
developing vaccines for S. aureus, as outlined in the 
review, should we revise downwards our expectation for 
a successful vaccine in this context? For example, should 
we accept that a reduction in severity of infection be the 
target goal? With this in mind, would any of the current 
“failed” vaccines satisfy such reduced criteria?
Authors: I agree that we should revise our expectations for 
a successful vaccine, wherein reduction of disease severity 
would be the goal. Presumably, this might produce fewer 
ICU admissions, shorter time in ICU, shorter hospital stays, 
and reduced hospital costs. Clearly, these would be highly 
desired outcomes. To date, none of the clinical trials has 
been designed to examine these outcomes, but none of 
the clinical trials found evidence for this, except for the 
use of Anti-ClfA monoclonal antibodies (tefibazumab = 
Aurexis by Inhibitex) as passive immunisation for S. aureus 
bacteraemia in a phase 2 trial showed decreased relapses 
and complications of the infection. Unfortunately, there 
was no reduced mortality and hypersensitivity developed in 
1 of 30 patients (Weems et al.). Two other trials using ClfA 
as an antigen have not been reported to show this result.

Editor’s Note: Scientific Editor in charge of the paper: R. 
Geoff Richards.


