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Abstract

Despite the high innate regenerative capacity of bone, large 
osseous defects fail to heal and remain a clinical challenge. 
Healing such defects requires the formation of large 
amounts of bone in an environment often rendered hostile 
to osteogenesis by damage to the surrounding soft tissues 
and vasculature. In recent years, there have been intensive 
research efforts directed towards tissue engineering 
and regenerative approaches designed to overcome this 
multifaceted challenge. In this paper, we describe and 
critically evaluate the state-of-the-art approaches to 
address the various components of this intricate problem. 
The discussion includes (i) the properties of synthetic 
and natural scaffolds, their use in conjunction with cell 
and growth factor delivery, (ii) their vascularisation, (iii) 
the potential of gene therapies and (iv) the role of the 
mechanical environment. In particular, we present a critical 
analysis of where the field stands, and how it can move 
forward in a coordinated fashion.
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Introduction

The healing of large bone defects is a major clinical 
challenge. Although bone possesses remarkable repair 
and regenerative powers of its own, there are numerous 
clinical conditions in which the size, location, and/or local 
environment of the bone defect results in impaired healing. 
Large bone defects are a problem in craniomaxillofacial 
surgery, as well as in orthopaedics more generally. 
Examples of large bone defects include tumour resections, 
infection, fractures accompanied by substantial soft tissue 
trauma, congenital deformities and segmental loss. In each 
of these cases, the large volume of tissue that needs to be 
replaced makes it very challenging to achieve sufficient 
quantity and quality of new bone formation. In addition, 
the healing of larger defects is critically dependent on 
the presence of an appropriate vascular supply to support 
regeneration and remodelling of new bone tissue.
	 In clinical practice the standard treatment for large 
bone defects is the use of autogenous or allogenic bone 
grafting to provide an osteogenic and/or osteoconductive 
stimulus, and thereby promote bone regeneration and 
union. However, insufficient volume of available tissue, 
donor site morbidity (autogenous), inconsistent osteogenic 
activity, late biomechanical failures, and the possibility of 
allogenic disease transmission reduce enthusiasm for their 
use. While great progress has been made with the use of 
osteoconductive bone graft substitutes and distraction 
osteogenesis, it is clear that complex clinical cases 
where novel therapies are required still exist. Finally, the 
challenging wound healing environment in which large 
bone defect restoration often needs to take place, mandates 
a strategy that both fills the bone gap and promotes 
vascularisation and repair. Although vascularised free flaps 
are currently an important and successful clinical option to 
address these concerns, it requires a long involved and often 
risky operation, with attendant extended hospitalisation and 
high cost. These challenges have motivated the field of 
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musculoskeletal tissue engineering to find a solution that 
will aid the surgeon and the patient in tackling some of the 
most difficult and challenging reconstructive conundrums 
in both orthopaedic and craniofacial surgery. The general 
strategy was elegantly summarised in the Giannoudis 
Diamond concept, whereby the final outcome is dictated 
by the combination of osteogenic cells, osteoconductive 
scaffolds, growth factors and the mechanical environment 
(Giannoudis et al., 2007).
	 This review covers the techniques and strategies 
that have been developed to address the multifaceted 
challenges posed by the complicated problem of large 
bone defect healing (Fig. 1). The term “large bone defect” 
is used here in the sense of defects that are too large to 
heal spontaneously i.e. are of critical size. The review 
emphasises strategies based upon tissue engineering and 
regenerative medicine, sometimes abbreviated collectively 
as TERM to emphasise their overlapping nature. Unlike 
fractures, critical size segmental defects have no natural 
healing process and thus no native biology to model. 
Rather, TERM for large bone defects engages a variety of 
approaches, including scaffold design and selection, drug 
and morphogen delivery, cell- and gene-based therapies, 
vascularisation strategies, and mechanical environments 
that can be used to promote regeneration of bone. The 
uniqueness of large bone defects is the size of the void that 
needs to be filled and vascularised, all in the absence of 
local endogenous osteogenic signals. The goal here is to 
give an overview of the components that have been applied 
to the problem to date, as well as to provide insight into 
how these components can be combined in future more 
advanced therapies.

Scaffolds

Requirements for a bone regeneration scaffold include 
mechanical properties (e.g. desired stiffness and 
compression resistance), degradability, macro- and micro-
porosity, and nanometre-scale topography. Encompassing 
all of these requirements into one material or composite 
is challenging and limits the number of suitable base 
materials that would also have an expeditious route to 
clinical application. In the following we describe some of 
the materials being actively investigated for use in large 
bone defects. The examples used are far from being an 
exhaustive list.

Natural scaffolds
Many tissue engineering strategies employ scaffold 
materials to provide both mechanical support and 
biological function. A logical approach to scaffold design 
is to mimic the materials and architectures found in native 
tissues. To this end, a variety of extracellular matrix (ECM) 
proteins, polysaccharides and other “naturally-derived” 
materials have been used to create scaffolds for bone tissue 
engineering. ECM-derived scaffolds have the advantage 
that cells can recognise and bind to them by specific cell 
surface receptors, and thereby can receive biochemical 
signals directly from the scaffold (Shekaran and Garcia, 
2011; Siebers et al., 2005). In most cases, cells can also 

degrade, synthesise, and remodel these natural matrices 
in response to environmental cues (Ferreira et al., 2012). 
For the repair of large bone defects, the mechanical and 
space-filling attributes of the scaffold are of primary 
importance. Pure naturally-derived materials, such as 
collagen scaffolds, typically have inferior mechanical 
properties relative to both the tissues from which they are 
derived and to synthetic polymer scaffolds (Gibbs et al., 
2014). Accordingly, their use in large bone defects without 
additional structural support is challenging. For this reason, 
there is a growing interest in decellularisation of harvested 
tissues for use as scaffolds, in an effort to keep the native 
architecture and compositional complexity intact (Cheng 
et al., 2014). In addition, a variety of composite materials 
that combine the desirable features of specific protein 
and polysaccharide components of the ECM have been 
developed and used as scaffolds in bone tissue engineering 
(Wang and Stegemann, 2010).
	 The collagen superfamily of proteins consists of over 
25 molecular isoforms. The most common form is type I 
collagen, which is a main structural constituent of many 

Fig. 1. Large bone defect: a multifaceted challenge. Bone 
healing is a complex process involving the interplay of 
many factors and well-orchestrated mechanisms. Tissue 
engineering approaches aim to resume the complexity 
of these events by combining scaffolds, cells, growth 
factors and mechanical environment. The choice of cells, 
their association or not with scaffolds, the local delivery 
of growth factors, the application mechanical stimulation 
of the defect (e.g. active dynamisation and timing), but 
also the patient condition and the surgical approach are 
as many factors influencing the healing outcome. Here, 
we give an overview of the techniques and strategies that 
have been developed in the past 10 years to address the 
complex situation of large bone defects.

osteogenesis
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tissues, and is the predominant non-mineral component 
of bone. Collagen “sponges” are typically generated by 
freeze-drying collagen based slurries, creating a porous 
architecture (O’Brien, 2011). Such sponges are used 
widely as haemostatic agents, and also have been used in 
bone repair as a delivery vehicle for bone morphogenetic 
proteins (BMPs) (Geiger et al., 2003; Wei et al., 2012) or 
as gene delivery platforms (Curtin et al., 2012; Tierney 
et al., 2013).. Their expanded use is being investigated in 
preclinical studies for a variety of orthopaedic applications 
(d’Aquino et al., 2009; Hosseinkhani et al., 2006). Type I 
collagen has also been reconstituted into fibrillar form by 
electrospinning (Huang et al., 2001; Matthews et al., 2002). 
Efforts to further mimic the composition and function 
of bone have led to collagen-ceramic composites (Wahl 
and Czernuszka, 2006). Hydroxyapatite or tricalcium 
phosphates are often used in this application to represent 
the mineral content of bone (Gleeson et al., 2010; Zheng 
et al., 2014).
	 Chitosan is an aminated polysaccharide that is derived 
from the deacetylation of chitin, a structural component of 
the exoskeleton of crustaceans and some fungi. Chitosan 
can be made water soluble, and has been used in ways 
similar to collagen to make sponges, meshes and scaffold 
materials for bone tissue engineering (Costa-Pinto et al., 
2011; Heinemann et al., 2010). In scaffold form, pure 
chitosan allows cell attachment and has been suggested to 
be osteoinductive (Di et al., 2005). Composites of chitosan, 
with other matrix components to improve its mechanical 
properties, are more commonly used for orthopaedic 
applications (Venkatesan et al., 2012). Blends of chitosan 
and other materials have been electrospun into fibre meshes 
(Chen et al., 2011; Zhang et al., 2008), and composites have 
been used in sponge format, including combination with 
other polysaccharides (Park et al., 2013), proteins (Wang 
et al., 2013), and mineral (Pighinelli and Kucharska, 2013). 
The free amine groups on the chitosan molecule allow it 
to be crosslinked with the same agents as used for protein 
matrices (Reves et al., 2013; Wang and Stegemann, 2011), 
which can increase its mechanical strength and resistance 
to degradation. In addition, the positive charge on the 
chitosan molecule allows the material to be used for drug 
and gene delivery directly from the scaffold (Cao et al., 
2012b; Goncalves et al., 2012).
	 Hydrogels form another class of natural polymer 
scaffolds. These materials are hydrated, interconnected 
networks of polymer chains. An inherent advantage of such 
hydrogels is that they can be delivered using minimally 
invasive techniques, will fill defects of complex shapes 
and can be combined with cells and/or osteoinductive 
factors (Drury and Mooney, 2003). Alginate hydrogels 
have been used for gene (Krebs et al., 2010) and growth 
factor delivery (Kolambkar et al., 2011) and such systems 
have been shown to promote functional repair of critically-
sized bone defects. Promising results have been obtained 
using natural hydrogels such as fibrin (Chung et al., 2007; 
Woodruff et al., 2007) and gelatin (Yamamoto et al., 2003; 
Yamamoto et al., 2006) as delivery vehicles for therapeutic 
factors for bone regeneration. One concern with certain 
classes of hydrogels for large bone healing is insufficient 
degradation of hydrogel (Rizzi et al., 2006), which may 

impede vascularisation of the implant. Such problems can 
potentially be overcome by modulating the hydrogel to 
accelerate its rate of degradation (Alsberg et al., 2001; Jeon 
et al., 2009). Hydrogels typically do not have compression-
resistant mechanical properties, but can be included within 
other common orthopaedic devices (e.g. titanium cages) 
and used to stimulate new bone formation.
	 Demineralised bone matrix (DBM) is an example of a 
natural biomaterial that is commonly used clinically as a 
bone graft substitute (Urist, 1965). Such grafts are typically 
produced by the acid extraction of the mineral content 
from allogeneic bone and contain growth factors, other 
non-collagenous proteins and type I collagen (Sawkins 
et al., 2013). The rigorous processing and sterilisation 
that such grafts must undergo prior to implantation can 
negatively impact their osteoinductive properties which 
may at least partially explain the variable results seen 
with DMB (Gruskin et al., 2012; Peterson et al., 2004). 
To overcome such limitations, DBM can also be used as a 
delivery system for novel therapeutics (Lieberman et al., 
1999). Decellularised ECM derived from other mammalian 
tissues such as small intestine submucosa have been used 
as biological scaffolds for bone regeneration (Badylak 
et al., 2009; Kim et al., 2010; Moore et al., 2004). It has 
also been demonstrated that bone-like ECM synthesised 
in vitro by osteoblastic cells can enhance osteogenesis of 
mesenchymal stem cells (MSCs) (Datta et al., 2005), and 
MSC-derived ECM enhances the retention of implanted 
cells into the remodelling phase of healing, resulting in 
reproducible and complete repair of critical-sized bone 
defects in mice (Zeitouni et al., 2012).

Synthetic scaffolds
Investigators have developed a variety of synthetic 
scaffolds for large bone defect healing, and a common 
approach involves mimicry of some aspects of the native 
bone ECM.
	 The catalogue of synthetic bone biomaterials used in 
critical sized defects features a wide range of biominerals, 
including hydroxyapatite, β-tricalcium phosphate, 
amorphous calcium phosphate, calcium silicate bioactive 
glasses, and biphasic calcium phosphates. The bone-like 
mineral layer formed on the surface of these materials 
has been shown to influence critical components of 
the bone formation process, including proliferation of 
bone-precursor cells (Chou et al., 2005), osteogenic 
differentiation of bone-forming cells (e.g. marrow-
derived MSCs, adipose-derived MSCs, pre-osteoblasts, 
and osteoblasts) (Barradas et al., 2012; Chou et al., 
2005; Murphy et al., 2005), and localised sequestering 
of bone growth factors (Suarez-Gonzalez et al., 2012). 
Recent studies suggest that released mineral ions (e.g. 
calcium (Barradas et al., 2012), phosphate (Shih et al., 
2014), magnesium (Hussain et al., 2012; Schwartz and 
Reddi, 1979), strontium (Yang et al., 2011)) may be partly 
responsible for the behaviour of bone precursor cells. 
These mineral ions have been associated with expansion 
of bone precursor cells, osteogenic differentiation of 
marrow-derived MSCs (Barradas et al., 2012; Shih et al., 
2014), and optimised non-viral transfection of multiple 
bone precursors (Choi et al., 2013).
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	 Common synthetic polymer materials used to form 
scaffolds for bone healing include poly(alpha-hydroxy 
esters) (Yu et al., 2010), poly(urethanes) (Guelcher, 
2008), poly(propylene fumarate) (Wang et al., 2006), and 
poly(carbonates) (Kim et al., 2012; Luangphakdy et al., 
2013). Thermoplastics such as poly(L-lactide), poly(lactide-
co-glycolide), poly(ε-caprolactone), poly(propylene 
fumarate, and poly(urethanes) can be readily processed to 
allow for interconnected macroporosity, with control over 
the pore size, structure, and interconnectivity. In addition, 
these materials can be formed via diverse manufacturing 
schemes, including casting, injection moulding, and 3-D 
printing. All have been applied within large bone defects, 
both as void filler and as an osteoconductive matrix.
	 Synthetic hydrogels composed of poly(ethylene 
glycol), poly(propylene fumarate-co-ethylene glycol), and 
hyaluronic acid have each been used for bone precursor 
cell culture in vitro or to enhance critical bone defect 
healing in vivo. In each case the materials can be loaded 
with bone precursor cells and/or pro-osteogenic molecules 
to stimulate bone formation (Cartmell, 2009; Salinas and 
Anseth, 2009). One attractive feature of these hydrogels is 
their ability to incorporate and deliver controllable dosages 
of biologically active molecules, including cell adhesion 
peptides, proteolytically-degradable peptides, ECM 
proteins, and growth factors. Another feature is the ability 
to form hydrogels in situ, which opens up new minimally-
invasive clinical opportunities (Behravesh et al., 2003; 
Kim et al., 2009). Self-assembling hydrogels have been 
designed to gelate in situ and deliver environments that 
promote bone formation. For example, peptide amphiphiles 
can self-assemble into nanofibrous matrices that have been 
used to nucleate mineral formation (Hartgerink et al., 
2001), present peptides for cell adhesion (Webber et al., 
2010), or present peptides for growth factor binding (e.g. 
transforming growth factor (TGF)-β binding (Shah et al., 
2010)).
	 Some recent examples highlight the potential to 
combine distinct and complementary synthetic materials 
to create composite. Investigators have created composites 
of synthetic polymers and biominerals, taking advantage 
of the resultant processing benefits of the polymers and the 
inherent biological activity of the biominerals, resulting 
in enhanced scaffold compressive modulus, improved 
osteoconductivity, and greater osseointegration. In one 
example, 3D printing approaches have been used to create 
biomineral-coated, 70  % porous poly(ε-caprolactone) 
scaffolds with mechanical properties that withstand 
masticatory loads in the mandible, and stimulate bone 
regeneration as they degrade (Chanchareonsook et al., 
2013). Other studies demonstrated that mineral-coated 
hollow tubes composed of poly(ε-caprolactone) can 
stimulate bone regeneration in sheep tibia defects (Cipitria 
et al., 2013) and sheep lumbar spine fusion (Yong et al., 
2014). These examples and others suggest that innovative 
manufacturing of common bone biomaterials can produce 
a useful toolkit for large bone defect healing.
	 Furthermore, while we focus this section on synthetic 
materials, it is noteworthy that a subset of naturally-derived 
polymers can also be synthetically modified to create 
natural/synthetic hybrids that stimulate bone formation. 

For example, alginate hydrogels can be modified with 
peptide ligands and used to deliver bone-forming stem 
cells or osteoinductive growth factors (Drury and Mooney, 
2003; Lee and Mooney, 2012). Similarly, fibrin hydrogels 
can be used as a platform to covalently link pro-osteogenic 
(Arrighi et al., 2009; Schmoekel et al., 2005) or pro-
angiogenic (Ehrbar et al., 2004) growth factors, which are 
subsequently delivered during new bone formation. While 
these materials generally do not match the synthetic and 
manufacturing adaptability of synthetic materials, they 
open up the possibility of hybrid approaches that combine 
the complementary advantages of synthetic and natural 
components.
	 Synthetic scaffold design involves a series of design 
trade-offs, which present inherent challenges for large 
bone defect healing. For example, scaffolds require 
optimised mechanical properties for a particular clinical 
approach, but must also provide adequate porosity for 
cell infiltration and tissue formation and degradability 
over a timeframe that scales with the timing of new bone 
formation (Hollister, 2005). In addition, scaffold design 
parameters such as µm-scale and nm-scale geometry have 
become increasingly appreciated as critical regulators of 
osteogenesis. In particular, nm-scale pillars and fibres have 
been associated with enhanced osteogenic differentiation 
of bone-forming stem cells in vitro (Dalby et al., 2007), as 
well as increased osteogenesis in vivo (Ingavle and Leach, 
2013). The diversity of existing and emerging parameters 
that appear to be important for large bone defect healing 
will call for efficient – and perhaps high throughput – 
screening strategies to identify optimal scaffold materials.
	 It is noteworthy that one reason why scaffold materials 
developed to date have been composed of similar base 
materials relates to the relatively complex regulatory path 
for novel bone scaffolding materials. Materials comprising 
new combinations of clinically established base materials 
typically provide a more rapid route to regulatory approval 
and clinical applications. In particular, while combinations 
of existing, FDA approved materials may only require 
one to demonstrate substantial equivalence to an existing 
“predicate device”, novel scaffold materials often require 
substantial preclinical studies and one or more clinical 
studies prior to regulatory approval. The adaptable features 
of commonly used scaffold materials coupled with the 
relatively complex regulatory path of novel materials limits 
innovation.

Drug and growth factor delivery

A series of small molecule drugs (e.g. bisphosphonates) has 
been used to treat orthopaedic diseases such as osteoporosis, 
osteonecrosis, and osteolysis. However, small molecule 
drugs have not been widely used in large bone defect 
healing applications. This is perhaps not surprising, as these 
drug classes are not typically designed to induce formation 
of new bone tissue in large defects, but rather to regulate the 
systemic balance between bone resorption and formation. 
Instead, the focus of large bone defect healing studies 
has been on local, bone stimulating molecules known to 
influence natural bone development and healing, such as 
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growth factors, hormones, cytokines, and antibodies. The 
common strategy involves designing a molecule “carrier”, 
which is then combined with an orthopaedic device (Sandor 
et al., 2013; Warnke et al., 2004). Notable examples include 
BMP-loaded collagen matrices combined with titanium 
cages (Boden et al., 2000; Kanayama et al., 2006) or 
other metallic hardware (Govender et al., 2002). The now 
extensive clinical experience with BMPs and other bone 
stimulating molecules suggests critical challenges that must 
be addressed in the next generation of large bone defect 
healing strategies. Here, we focus on describing critical 
challenges to be addressed in next generation of drug 
delivery strategies, with illustrative examples included.
	 First, there is a significant pharmacokinetic challenge 
in delivery of bone stimulating molecules. Recombinant 
human (rh)BMP2 delivery for instance, is the most 
prevalent drug delivery strategy used for bone regeneration. 
While Medtronic’s rhBMP-2-releasing device Infuse™ has 
achieved a great deal of clinical success in lumbar spine 
fusion, and widespread use in other clinical indications, it 
has also been associated with serious side effects (Fu et al., 
2013; Faundez et al., 2016). The side effects result in part 
from the mg-scale quantity of rhBMP-2 delivered, which 
is multiple orders of magnitude more rhBMP-2 than one 
might find in a healing bone defect. These side effects could 
also signal that rhBMP-2 has a narrow therapeutic index, 
which is a measure of the difference between the clinically 
effective dosage and the toxic dosage of a drug. As a result, 
recent studies have focused on controlling the dosage and 
release kinetics of bone stimulating molecules in order to 
identify optimal pharmacokinetics for bone healing (King 
and Krebsbach, 2012; Seeherman and Wozney, 2005). It is 
not yet clear what combination of total dosage and release 
kinetics can stimulate bone regeneration while limiting side 
effects, but it is clear in pre-clinical models that sustained 
release can decrease the total rhBMP-2 dosage needed to 
stimulate bone regeneration (Jeon et al., 2008; Kolambkar 
et al., 2011). Indeed, the signalling mechanisms activated 
by bone stimulating molecules are typically not unique to 
bone formation, and molecules are often selected based 
on their ability to induce heterotopic bone formation. 
Thus, there is a general need for systematic studies on the 
influence of localised dosage and release kinetics.
	 Second, there is a substantial formulation challenge 
in delivery of bone stimulating molecules. Proteins with 
significant tertiary structure have a strong tendency 
to denature, degrade, and/or aggregate under standard 
physiological conditions, resulting in rapid loss of 
biological activity. For example, basic fibroblast growth 
factor (FGF) loses biological activity within minutes in 
aqueous solution in the absence of heparin (Nguyen et al., 
2013). These types of molecules also tend to have narrow 
therapeutic indices, which results in a need to deliver 
the molecules in a narrow dosage range. One illustrative 
example is vascular endothelial growth factor (VEGF), 
which has been shown to promote blood vessel sprouting 
within a relatively limited dosage range in vivo (Lee et al., 
2000). The ideal approach would be capable of stabilising 
bone stimulating molecules against inactivation, while 
also enabling controllable release kinetics from a desirable 
scaffold material.

	 In view of these challenges, most common biomaterials 
used for bone healing are plagued by critical limitations. 
Elastomeric polymer networks (e.g. hydrogels) allow for 
molecular transport, which can result in poor bioavailability 
of a released molecule. Thermoplastics (e.g. poly(alpha-
hydroxy esters)) can be designed to encapsulate and release 
molecules with controllable dosage and release kinetics, 
but the biological activity of the released molecules is 
often significantly compromised due to aggregation, 
denaturation, and degradation (Zhu et al., 2000). Recent 
studies with nano-structured materials provide promising 
solutions to the current challenges. Lipid nanocapsules and 
mineral capsules have been shown to maintain stability 
of proteins (Giri et al., 2011). Recent studies indicate 
that nano-structured biomineral coatings can uniquely 
stabilise proteins against degradation, while also enabling 
controllable release kinetics by coating dissolution (Ge et 
al., 2012; Lu et al., 2009; Suarez-Gonzalez et al., 2012). 
This direction is promising, as it may address each of the 
major challenges in growth factor delivery. Further, it is 
possible to design broadly adaptable biomineral coatings 
for controllable delivery of peptides, proteins, DNA, 
cells, and combinations thereof (Choi and Murphy, 2010; 
Jongpaiboonkit et al., 2009; Lee et al., 2010a; Lee et al., 
2010b; Zhang et al., 2010a). In another approach, growth 
factors have recently been stabilised by heparin-mimetic 
ligands, which can be covalently linked within hydrogels 
(Nguyen et al., 2013).
	 It is important to note that combining bone stimulating 
molecules with an appropriate scaffold while controlling 
stability and pharmacokinetics is just one of several 
inherent challenges in drug delivery. There are unique, 
complex dynamics in each bone defect environment that 
make it difficult to define a consistently desirable delivery 
dose and time scale. The integrity of the soft tissue 
envelope, status of the periosteum, and age-dependent 
abundance of bone-forming cell types are among the 
variables that are not normalised across different patient 
populations. These complexities make it difficult to arrive 
at a definitive therapeutic index for scaffold-based drug 
delivery. In addition, gene expression analyses have shown 
that over 6,500 genes are differentially regulated during 
bone healing (Rundle et al., 2006), which suggests a 
molecularly complex environment in which multiple drugs 
may be needed to promote optimal formation of bone and 
other supportive tissue types (e.g. neural, vascular tissues), 
particularly in large defects. However, the substantial 
barriers to regulatory approval of devices that deliver a 
single biologic suggest that carriers for multiple biologics 
may not be clinically realistic in the foreseeable future. In 
view of this complexity, there is a clear need to develop 
adaptable scaffolds that can be used to gain fundamental 
insights into induced bone formation in a context that can 
then be efficiently translated to clinical applications.

Cell delivery

The rationale behind delivery of exogenous cells for 
bone repair is that addition of appropriate cell types 
may rescue or potentiate regeneration in cases where 
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the natural healing response is compromised or blocked. 
Only cells can create bone, and therefore transplantation 
of cells is a logical strategy to overcome recalcitrant 
healing. Importantly, bone healing is a highly spatially 
and temporally coordinated process, and therefore it is 
difficult to recapitulate the normal cascade of events using 
biomaterials or growth factors alone. Biomaterial-mediated 
delivery of cells is often used to enhance the engraftment, 
viability and function of the transplanted cells, and may 
also be used in conjunction with bioactive factor delivery 
to mimic physiological healing. Use of a scaffold or 
matrix typically enhances the mechanical and space-filling 
function of a transplant, and can provide instructive cues 
to guide cell function and tissue regeneration. Most cell 
delivery strategies focus on application of bone forming 
cells, such as osteoblasts or their precursors (Lee et al., 
2009). However, more recent approaches have also targeted 
concomitant modulation of other physiological processes, 
such as development of a nourishing vasculature (Rao et 
al., 2015) or management of the inflammatory response 
(Loi et al., 2016).
	 A variety of cell types have been used in bone 
regeneration strategies. For large bone defects in particular, 
the use of exogenously supplied cells may be necessary, 
due to the need for regeneration of larger tissue volumes. 
In these cases, scaffolds to support cell delivery promote 
engraftment and provide a space-filling function are often 
used. The choice of preferred cell type may also depend 
on the application and age of the patient and in some cases 
combinations of cells can be applied (Wise et al., 2015). 
Osteoblasts, the cells that secrete and assemble the ECM 
of bone, have been delivered in hydrogel biomaterials to 
enhance bone formation (Alsberg et al., 2001; Burdick 
and Anseth, 2002); however, issues of immune rejection 
would require an autologous source for these cells. The 
difficulties in isolating and expanding osteoblast cells are 
substantial and make their use in clinics unlikely.
	 A variety of progenitor cell types have also been 
examined as cell sources in bone tissue engineering. 
MSCs are multipotent progenitors that have been 
shown to differentiate into connective tissue cell types, 
including osteoblasts (Augello et al., 2010; Rosenbaum 
et al., 2008), and also have been shown to be potent 
sources of paracrine signalling factors (Parekkadan and 
Milwid, 2010) that potentiate healing. Cell surface, or 
CD (cluster of differentiation) markers, are commonly 
used to identify MSCs (reviewed in (Harichandan and 
Buhring, 2011)), yet they should be used with caution. 
There is increasing evidence that while able to distinguish 
between mesenchymal and haematopoietic cells, they are 
not able to define characteristics of stemness (Whitney et 
al., 2009). However, CD105+ and Stro1+ cells have been 
proposed as clinically relevant populations. Many groups 
have published changes in MSC phenotype and loss of 
mutipotentiality with monolayer expansion (Bruder et al., 
1997; Banfi et al., 2000; Bonab et al., 2006). One factor 
which has been shown to be correlated with maintenance 
of stemness is leukaemia inhibitory factor 1 (LIF1), the 
expression of which decreases with monolayer expansion 
and during differentiation (Whitney et al., 2009).

	 When considering clinical use of cells, the complications 
engendered by monolayer expansion provides a significant 
regulatory hurdle (Bara et al., 2014). This has increasingly 
led to studies investigating whether freshly isolated, 
minimally manipulated cells can be used for bone repair. 
It has been shown that freshly isolated marrow cells can 
lead to improved bone healing if more than 1,500 colony 
forming units (CFU) of mesenchymal cells are applied 
per cm3 of defect (Hernigou et al., 2005). Combining 
this finding with intra-operative cell harvesting devices 
provides a potential mechanism by which cell therapy can 
be readily applied. The use of MSCs offers the possibility 
of using banked cells, and it has been suggested that 
allogeneic MSCs are hypoimmunogenic relative to other 
cell types (Abumaree et al., 2012; Yi and Song, 2012).
	 MSCs from bone marrow (BMSCs) have been 
investigated widely in bone tissue engineering (Yousefi et 
al., 2016). MSCs can also be isolated from adipose tissue, 
and these cells are often referred to adipose-derived stem 
cells (ASCs). Obtained through subcutaneous aspiration, 
adipose tissue presents advantages of easier accessibility 
(Strioga et al., 2012) with minimal donor site morbidity 
(Housman et al., 2002) and permits the harvest of larger 
numbers of MSCs compared to other sources (Fraser et 
al., 2006). The immunophenotype and other biological 
characteristics of ASCs are generally similar to marrow-
derived MSCs, though there are some differences (Pachon-
Pena et al., 2011). Indeed, according the cell isolation 
procedure, a mixed population of cells containing both 
stromal and endothelial progenitors can also be obtained 
intraoperatively from the stromal vascular fraction of 
adipose tissue. These properties make them attractive for 
bone regeneration (Buschmann et al., 2012; Park et al., 
2012). Several attempts to heal large bone defects in animal 
models have been made using scaffolds loaded with ASCs, 
but with inconsistent results. Success has been reported 
for the healing of calvarial defects (Dudas et al., 2006; 
Follmar et al., 2007), but large segmental defects in long 
bones do not always heal in the absence of BMP-2 (Hao et 
al., 2010; Li et al., 2007; Peterson et al., 2005). When the 
effectiveness of ASCs and BMSCs was compared in a large 
segmental defect in sheep (Niemeyer et al., 2010) healing 
was greater with BMSCs. The latter have shown efficacy 
in one human study (Quarto et al., 2001) and progenitor 
cells obtained from periosteum were able to regenerate a 
human phalanx when applied on a coral scaffold (Vacanti 
et al., 2001).
	 Totipotent cells sources, such as embryonic stem 
cells (ESCs) and induced pluripotent stem cells (iPSCs), 
have been less commonly explored in bone tissue 
engineering. Culturing ESCs is technically challenging, 
and the embryonic source is ethically controversial. 
However, ESCs have recently been used to derive MSCs, 
which in turn have been applied to bone regeneration 
(Arpornmaeklong et al., 2009; Kuhn et al., 2014). iPSCs 
are a newer potential cell source that offer the possibility 
of generating pluripotent cells from reprogrammed adult 
somatic cells (Ko and Im, 2014), and recently they have 
been combined with scaffold materials targeted at bone 
regeneration (Liu et al., 2013).
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	 Lately, much work has focused on co-transplantation of 
multiple cell populations (i.e. osteogenic and angiogenic 
cell populations) to enhance the bone regenerative 
processes. Transplanting cells into large defects can create 
regions that are hypoxic and low in nutrients necessary for 
cell survival. To accelerate angiogenesis, cells capable of 
contributing to the formation of a new vascular supply, 
such as endothelial cells and endothelial progenitor cells 
(EPC) can be used along with osteogenic cells (Cornejo 
et al., 2012; Duttenhoefer et al., 2013; Herrmann et al., 
2015; Tavassol et al., 2010). Osteogenic and angiogenic 
cells may communicate with each other to synergistically 
improve both of these phenotypic processes (Dariima et 
al., 2013). EPCs are progenitor cells of haematopoietic 
lineage origin (Masuda and Asahara, 2003) and can be 
easily isolated from peripheral blood using positive surface 
marker selection such as CD133 and CD34 (Asahara et al., 
1997; Peichev et al., 2000). They show a high proliferation 
rate compared to mature endothelial cells (Lin et al., 2000).
	 Several EPC sub-populations can be identified 
in peripheral blood. Early and late EPCs (also called 
OEC outgrowth endothelial cells) can be identified by 
morphological characteristics (Hur et al., 2004; Lin et 
al., 2000). Circulating EPCs are known to be responsible 
for post-natal vasculogenesis, and are mobilised into the 
blood stream from the bone marrow niche (Asahara et 
al., 1999). Mobilisation is promoted by ischaemia and 
certain cytokines such as granulocyte colony stimulating 
factor (G-CSF). Circulating EPCs mobilised by G-CSF 
have shown efficacy in healing non-unions in a rat model 
(Mifune et al., 2008) and, when co-administered with 
autologous bone graft, a small human clinical trial (Kuroda 
et al., 2014).
	 Interestingly, signals produced by chondrocytes 
may also promote the osteogenic response of stem cells 
(Thompson et al., 2009) and may help recapitulate 
endochondral ossification when transplanted with 
osteoblasts (Alsberg et al., 2002).
	 Several modular approaches to cell delivery are also 
being investigated. For example, lyophilised solid scaffolds 
have been developed that have shape memory properties 
(Thornton et al., 2004). They may be delivered to a defect 
in a compact form using a minimally invasive approach 
such as through a catheter, and then a cell suspension can 
be subsequently delivered to rehydrate them and drive 
them to expand into a predetermined shape and volume. 
Additionally, microscale constructs have been engineered, 
such as hydrogel microspheres containing cells (Rao et al., 
2013) or self-assembling cell aggregates (Hildebrandt et 
al., 2011; Solorio et al., 2012; Dang et al., 2016; Solorio 
et al., 2015) that can similarly be injected. It is important 
to recognise that in some cases cell delivery may not 
even be necessary, if the scaffold itself can present signals 
capable of recruiting large enough numbers of endogenous 
host osteogenic cells (Schantz et al., 2007) and/or anti-
inflammatory or wound healing macrophages (Das et al., 
2013).

Vascularisation

A key challenge in the treatment of large bone defects is 
the establishment of sufficient vascularisation at the defect 
site. Because the oxygen delivery required for the survival 
of cells is usually limited to a diffusion distance of ~ 150-
200  µm to a neighbouring microvessel (Colton, 1995), 
the centre of cell seeded constructs rapidly die without 
the establishment of a blood supply. Accordingly, various 
vascularisation strategies have been developed in the field 
of regenerative medicine and tissue engineering (Laschke 
and Menger, 2012), which may more successfully support 
the treatment of large bone defects in future clinical practice 
(Fig. 2). The close physical and biochemical interaction 
between microvessels and bone cells is essential for bone 
formation and repair (Carano and Filvaroff, 2003). Many 
angiogenic growth factors, such as VEGF or FGF, have 
been shown to promote the differentiation, migration and 
proliferation of osteoblasts (Carano and Filvaroff, 2003). 
On the other hand, osteogenic factors, such as BMP-2, 
stimulate the switch of endothelial cells from a quiescent 
to an angiogenic phenotype (Finkenzeller et al., 2012).
	 An important structural determinant for adequate 
vascularisation is the pore size of scaffolds. It is well 
recognised that the ideal pore size for the ingrowth of new 
microvessels ranges between ~ 200-600 µm (Druecke et 
al., 2004). In this size range, poly(lactic-co-glycolic acid) 
(PLGA) scaffolds for bone defect repair also display 
suitable oxygen diffusion, pre-osteoblast cell infiltration, 
proliferation and survival without losing their mechanical 
strength (Amini et al., 2012). However, this does not 
necessarily require that scaffolds should be created with a 
homogeneous pore size. In fact, sophisticated technologies 
such as rapid prototyping offer the possibility to fabricate 
scaffolds with clearly defined porosity levels to ideally 
promote individual key steps of the bone healing process. 
Yang et al. developed ceramic scaffolds with sub-µm 
pores to improve cell/surface interactions, pores of tens 
of µm to support osteoconduction, and corridors of 100-
600 µm to stimulate vascularisation (Yang et al., 2006). 
Finally, the overall three-dimensional architecture of 
scaffolds has recently been shown to markedly affect their 
vascularisation.
	 The vascularisation of bone defects may also be 
improved by the application of compounds with pro-
angiogenic properties. Of interest, Holstein et al. reported 
that systemic treatment with the glycoprotein erythropoietin 
(EPO) is capable of stimulating bone formation, cell 
proliferation and angiogenesis in a femoral segmental defect 
model in mice (Holstein et al., 2011). Compared to this 
systemic approach, the topical application of angiogenic 
growth factors at the defect site is much more common. 
For this purpose, the factors may be coated on the surface 
of solid scaffolds (Sun et al., 2011) or incorporated into 
drug delivery systems such as microparticles or hydrogels 
(Geuze et al., 2012; Ishida et al., 2010; Ratanavaraporn et 
al., 2011). Alternatively, platelet-rich plasma (PRP) may 
be applied, which represents a rich, autologous source of 
various growth factors and can easily be isolated from 
patients under clinical conditions (Lucarelli et al., 2005; 
Jalowiec et al., 2016; Lippross et al., 2011). In general, it 
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should be noted that the efficacy of the administration of 
growth factors may be markedly influenced by their release 
rates and inactivation (Geuze et al., 2012) (see section 
“Drug and Growth Factors delivery”). Moreover, there is 
no doubt that a combination of factors support individual 
stages of bone healing and angiogenesis (Ratanavaraporn 
et al., 2011; Su et al., 2013). Besides treatment with growth 
factors, local delivery of miRNA is as a novel possibility 
to optimise angiogenesis-osteogenesis coupling during 
bone defect healing. Over-expression of miR-26a in 
critical-size calvarial bone defect resulted in an improved 
vascularisation and complete defect healing (Li et al., 
2013).
	 There are several possibilities for the generation of 
microvascular networks within tissue constructs. These 
include the in vitro seeding and cultivation of scaffolds 
with vessel-forming cell types (Koike et al., 2004; Wang et 
al., 2007). However, this involves complex cell isolation, 
seeding, and cultivation procedures, which may not be 
realisable in clinical practice. Another common strategy to 
induce vascularisation in bone defect healing is the seeding 
of appropriate scaffolds with differentiated tissue-specific 
cells (Cornejo et al., 2012; Tavassol et al., 2010), EPCs 

(Seebach et al., 2010) or multipotent stem cells (Maraldi 
et al., 2013; Zhang et al., 2010b) (see section “Cell 
delivery”). By this method, the formation of new blood 
vessels is primarily stimulated by hypoxia-driven cellular 
release of angiogenic growth factors during engraftment 
(Schumann et al., 2009). The seeded cells may additionally 
be genetically modified to guarantee a more continuous 
growth factor secretion at the defect site (see section “Gene 
Therapy”). Promising growth factors in bone defect healing 
include hypoxia-inducible factor-(HIF)-1α (Zou et al., 
2012), VEGF (Geiger et al., 2005; Li et al., 2009b), FGF-
2 (Guo et al., 2006; Qu et al., 2011), and angiopoietin-1 
(Cao et al., 2012a).
	 An interesting study by Kasper et al. indicates that some 
of the angiogenic and vasculogenic mechanisms may be 
additionally regulated by mechanical loading of the cells 
(Kasper et al., 2007). Using tube formation and spheroid 
sprouting assays, they found a significant enhancement 
of angiogenesis by conditioned media from mechanically 
stimulated compared with unstimulated MSCs. Thus, 
they concluded that mechanical loading of MSCs results 
in a paracrine stimulation of blood vessel formation, 
most likely by the up-regulation of angiogenic growth 

Fig. 2. Basic in vitro and in situ vascularisation strategies for tissue engineering constructs as outlined in the 
section “Vascularisation”. In vitro vascularisation strategies focus on the modification of tissue constructs prior to 
their implantation. This can be achieved by changing the chemical and structural properties of scaffolds (1) or by 
their biological activation with growth factor delivery systems (2), cells (3) and microvascular fragments (4). In 
situ vascularisation strategies focus on the generation of preformed microvascular networks within scaffolds by 
implanting them in well-vascularised areas of the body (1) or by generation of an arteriovenous(AV)-loop (2). After 
this prevascularisation phase, the scaffolds are transferred to the final defect site, where they rapidly establish a blood 
supply by developing interconnections with the surrounding host microvasculature, i.e. inosculation (1), or by direct 
surgical anastomosis of a vascular pedicle (2).
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factors including VEGF and FGF. Another determinant 
for the vascularisation potential of MSCs is their three-
dimensional arrangement. It was recently demonstrated 
that polyurethane scaffolds, which are seeded with 
multicellular MSC spheroids, exhibit a markedly improved 
vascularisation when compared to control scaffolds seeded 
with an identical number of individual MSCs (Laschke et 
al., 2013). Immunohistochemical analyses of the implants 
revealed that this is due to an enhanced vessel-forming 
capacity of the three-dimensional MSC spheroids, making 
them attractive vascularisation units for future tissue 
engineering applications.
	 Taken together, all of these studies indicate that 
major progress has been made in recent years towards 
establishing novel strategies to promote angiogenesis 
and vasculogenesis in bone tissue engineering. However, 
the basic problem of all of these strategies is the fact that 
blood vessel formation is a time-consuming multi-step 
process, which cannot be accelerated limitlessly. The 
growth of newly developing microvessels is usually not 
faster than ~5 µm/h (Utzinger et al., 2015). Accordingly, 
complete vascularisation of large bone defects by ingrowth 
of microvessels from the defect borders takes far too long 
to guarantee cell survival at the defect site. A promising 
concept to overcome this problem is the generation of 
prevascularised tissue constructs that exhibit a functional 
preformed microvascular network, which connects with 
the surrounding microvasculature, known as inosculation 
(Laschke and Menger, 2016).
	 Alternatively, it is possible to pre-vascularise scaffolds 
in situ by implanting them in well-vascularised areas of 
the body to promote the ingrowth of new microvessels 
(Laschke et al., 2011). Moreover, the incorporation of 
an arteriovenous loop (AV)-loop, i.e. a ligated artery 
and vein (Boos et al., 2013), or a vasculature bundle 
(VB), i.e. a ligated artery and vein, into scaffolds even 
allows the in situ generation of tissue constructs with a 
vascular pedicle, which can be surgically anastomosed to 
the vessels of the defect site. Of interest, Wu et al. found 
that the VB technique results in a better balance between 
bone regeneration and scaffold degradation than the AV-
loop strategy for the prevascularisation of bone constructs 
consisting of β-tricalcium phosphate scaffolds and BMSCs 
(Wu et al., 2015).
	 Currently, in situ prevascularisation represents the 
most promising approach to guarantee a sufficient blood 
supply to large bone constructs in the clinical setting. In 
fact, Horch et al. recently reported the first successful 
application of the AV-loop technique in two patients 
with large bone defects in the radius and tibia (Horch et 
al., 2014). However, in situ prevascularisation strategies 
normally bear the disadvantage that they require repetitive 
surgical interventions for the implantation of scaffolds 
to the site of prevascularisation, and their removal for 
final transfer into a defect. To overcome this problem, 
scaffolds may be seeded in the future with adipose-derived 
microvascular fragments (Laschke and Menger, 2015a). 
These microvascular fragments are a randomised mixture 
of fully functional arteriolar, capillary and venular vessel 
segments with associated MSCs, which can be easily 
isolated from adipose tissue by enzymatic digestion 

(Laschke and Menger, 2015). After their implantation these 
fragments survive and exhibit a high angiogenic activity, 
forming new microvascular networks, which develop 
interconnections to the microvessels of the host tissue.

Mechanical factors

Mechanical stability is known to be an important factor 
for bone healing outcome. Indeed, beside the quality of 
the implant, a large amount of experimental and clinical 
evidence confirms that the course of fracture repair can 
be influenced by mechanical stimuli, and that controlled 
instability at the fracture site (dynamisation) can deeply 
affect bone regeneration. However, optimal loading 
parameters to enhance fracture healing have not yet 
been entirely defined. There are still many uncertainties 
concerning the magnitude of the load, the loading timing 
after fracture, but also the type of loading (e.g. axial, 
bending). Despite the considerable attention paid to 
fracture healing and, to some degree, sub-critical size 
osteotomies, there is very little literature on the effects of 
the mechanical environment on the healing of large bone 
defects.
	 Mechanical stimulation of bone can be classified 
according to the type of motion applied. Since Goodship 
and Kenwright (Goodship and Kenwright, 1985), several 
groups have shown that a cyclic, axial, compressive 
displacement applied to a diaphysal fracture or osteotomy 
induces higher healing by the formation of a stronger 
cartilaginous callus leading to earlier bone bridging (Claes 
et al., 1998; Wolf et al., 1998; Yamaji et al., 2001).
	 In certain studies, strains in the range of 5 % and 15 % 
were shown to be beneficial (Claes and Heigele, 1999; 
Wolf et al., 1998; Yamaji et al., 2001). In other studies, 
however, maximum strains of 7 % have been described to 
be beneficial to the gap bridging (Augat et al., 1998; Claes 
et al., 1997; Claes et al., 1998), and larger displacement 
was described as resulting in more fibrous tissue leading to 
delayed bone union. In a nice experimental set up, Hente 
(Hente R et al., 1990) looked at the effect of defined strain 
on new bone formation (Fig. 3). A strain gradient from 
0 % to more than 100 % was applied along a fracture gap. 
Results showed that 0  % strain did not promote callus 
formation, while strain from 30  % and higher induced 
massive callus formation but without any evidence of 
bridging. However, a strain of 5 % in this system was found 
to be the most efficient to induce solid bridging of the gap.
	 Another parameter, which is still a point of discussion, 
is the optimal initiation of stimulation. At the cellular level, 
it has been shown that mesenchymal cells differentiate 
toward osteogenic or chondrogenic lineages at early stages 
of the healing process, depending on the mechanical 
environment (Le et al., 2001; Thompson et al., 2002). 
Studies comparing timing of initiation of axial loading in 
a rat osteotomy model, showed a positive effect of direct 
post-surgery stimulation (Klein et al., 2003; Weaver et 
al., 2010). In addition, Weaver also reported a positive 
effect of a later starting point (10 d post-surgery), while 
an intermediate time point (3 d) was not as beneficial. A 
beneficial effect of a later starting point was also described 
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by others and was explained by the fact that this delay 
might be favourable to the initiation of neo-vascularisation 
(Claes et al., 2002; Wallace et al., 1994).
	 However, while several groups have studied the 
effect of mechanical stimulation on small defects (1 to 
2  mm osteotomy), only few studies have reported the 
effect of mechanical loading on a large bone defect. 
In a critical size goat femur bone defect (filled with 
demineralised bone and MSCs), treated with either a 
dynamic intramedullary rod or a static intramedullary 
rod, an overall better neovascularisation of the implants 
was seen in the dynamised cases (10 % strain) compared 
to the rigid fixations (Hou et al., 2010). Callus formation 
and bone healing was compared in a 5 mm defect treated 
with BMP-2, when the defects were stabilised with 
interchangeable external fixators creating low, medium 
or high axial stiffness (Glatt et al., 2012). Under constant 
stiffness, the low stiffness group showed an increased 
healing rate when compared to the medium or high stiffness 
groups. While switching at day 14 from low stiffness to a 
high stiffness fixator (reverse dynamisation), showed by 
far improved bone healing compared to all other groups. 
Epari et al. subsequently provided a theoretical basis for 
these observations (Epari et al., 2013).
	 Thus a systematic comparison of the three above cited 
parameters (timing, amplitude and loading type) is still 
missing. Additionally, studies investigating osteosynthesis 
devices designed specifically for critical sized defects are 
lacking. Such studies are needed to provide a clearer view 
about the effects of mechanical stimulation on the healing 
of large bone defects.

Additional approaches

Endochondral bone tissue engineering
In vitro bone tissue engineering strategies commonly 
focus on promoting direct osteoblastic differentiation 

within cell-seeded constructs, mimicking the process of 
intramembranous ossification. Such engineered tissues 
often fail to promote bone regeneration following 
implantation (Lyons et al., 2010), leading to increased 
interest in endochondral bone tissue engineering strategies 
(Thompson et al., 2014). This involves the implantation 
of tissue engineered cartilage in an attempt to recapitulate 
the normal long bone development process whereby 
a cartilaginous template becomes hypertrophic, is 
vascularised, and is ultimately replaced with bone. The 
logic of this approach is that chondrocytes are better 
equipped to survive within the nutrient and oxygen 
deprived environments that exist within a large bone defect 
(Farrell et al., 2009; Gawlitta et al., 2010). Furthermore, 
hypertrophic chondrocytes progressing along the 
endochondral pathway are known to release factors such 
as VEGF to promote vascularisation of the implanted tissue 
(Farrell et al., 2009; Gawlitta et al., 2010).
	 Chondrogenically primed BMSCs also have an 
inherent tendency to become hypertrophic and undergo 
endochondral ossification (Farrell et al., 2009; Pelttari 
et al., 2006; Scotti et al., 2010; Vinardell et al., 2012b). 
This has motivated the use of cartilaginous constructs 
engineered using BMSC-seeded scaffolds for bone 
regeneration. One of the earliest demonstrations of this 
concept was reported by Huang and colleagues (Huang 
et al., 2006), who found that cartilage tissue engineered 
in vitro using BMSCs could be used for carpal bone 
reconstruction in a rabbit model. More recent studies 
have provided greater insight into the mechanisms by 
which chondrogenically differentiated BMSCs promote 
bone formation in vivo. TGF-β typically used to promote 
chondrogenic differentiation of BMSCs, has been shown to 
promote the expression not only of genes associated with 
chondrogenesis and hypertrophy, but also the production of 
factors critical to vascularisation such as VEGF and matrix 
metalloproteinases (Farrell et al., 2009; Pelttari et al., 
2006). Following implantation, chondrogenically primed 

Fig. 3. Effect of strain on callus formation (adapted from (Hente et al., 1990)). (a): schematic representation of the 
experimental set up. A portion of bone is cyclically tilted along its gap of origin, creating a gradient of strain from 
0 (tip of the fragment) to 100 % (top of the fragment). (b): X-ray imaging showing the presence of bone bridging 
in the lower strain area compared to the higher strain where larger callus formation without bridging was observed.
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MSCs have been shown to directly contribute to new bone 
tissue formation, and also to facilitate the recruitment of 
host cells capable of further driving osteogenesis (Farrell 
et al., 2011; Pelttari et al., 2006; Scotti et al., 2010). 
MSC-seeded scaffolds have also been shown to promote 
greater vascularisation than osteoblast-seeded scaffolds 
in vivo by activating an endochondral ossification process 
and recruiting host-derived CD31+ endothelial cells, 
followed by a second wave of host derived CD146+ 
cells that display characteristics of MSCs (Tortelli et al., 
2010). Chondrogenically primed MSCs can accelerate 
the regeneration of critically sized bone defects in small 
animal models. Cartilage grafts were used to promote 
regeneration using a murine segmental tibial defect model 
(Bahney et al., 2014). This study also used lineage tracing 
experiments to show the regenerate was graft-derived, 
suggesting the direct transformation of chondrocytes 
into bone forming cells (Bahney et al., 2014). Finally, it 
has recently been demonstrated that chondrogenically-
primed MSC-laden scaffolds support greater repair of 
critical-sized cranial defects than osteogenically stimulated 
constructs (Thompson et al., 2016). Taken together, these 
studies demonstrate the potential of endochondral tissue 
engineering strategies for orchestrating bone regeneration.
	 A number of questions still have to be addressed to 
fully realise the potential of engineered cartilage for large 
bone defect healing. These include determining the optimal 
duration of chondrogenic pre-culture for MSCs (Yang et 
al., 2015), as well as the identification of factors that both 
promote hypertrophy in vitro and accelerate endochondral 
bone formation in vivo. MSCs implanted subcutaneously 
into nude mice have been shown to form bone trabeculae 
only if they have generated supporting hypertrophic tissue 
structures prior to implantation (Scotti et al., 2010). More 
advanced hypertrophic maturation of MSCs in vitro was 
also found to promote the formation of larger bony tissues 
in vivo (Scotti et al., 2010). Another challenge involves 
the identification of suitable biomaterials to support 
endochondral bone regeneration (Cunniffe et al., 2015), 
as well as engineering in vitro cultures that facilitate the 
development of hypertrophic cartilage of sufficient scale to 
treat large bone defects. MSCs seeded onto collagen-based 
scaffolds and directed along an endochondral pathway in 
vitro have been used to generate a scaled-up bone organ 
in vivo which was found to contain a fully functional 
haematopoietic compartment (Scotti et al., 2013). Synthetic 
and natural polymeric scaffolds (Yang et al., 2013; Yang 
et al., 2015) and various hydrogels (Dickhut et al., 2008) 
can also potentially be used for engineering scaled-up 
endochondral bone tissue. An improved understanding of 
how environmental cues (specific to a bone defect) will 
regulate endochondral bone regeneration is also required. 
For example, it has been shown that factors such as a 
low oxygen environment (Sheehy et al., 2013) as well as 
certain mechanical cues like compression (Thorpe et al., 
2013) and hydrostatic pressure (Vinardell et al., 2012a) can 
suppress markers of hypertrophy in MSCs. This highlights 
the need to consider the many factors that contribute to poor 
outcomes in complex bone fractures and segmental defects 
when designing novel endochondral bone regeneration 
strategies.

Gene Therapy
Although several different osteogenic growth factors 
show promise as agents of bone healing, their clinical 
deployment is constrained by delivery problems. In 
particular, it is not possible to deliver these proteins locally 
at physiological concentrations in a sustained fashion. 
With BMPs -2 and -7, this problem has been addressed 
clinically by their implantation at very high doses on simple 
scaffolds. This provides modest clinical efficacy and, at 
least in the case of BMP-2, provokes a number of adverse 
events, some serious (Carragee et al., 2011; Faundez et 
al., 2016) (section “Drug and Growth Factor delivery”). 
Gene transfer technologies offer to solve these problems. 
They also remove the concern that preparations of 
recombinant proteins may contain denatured, and possibly 
immunogenic, molecules. Moreover, there is evidence that 
cells respond better to endogenously synthesised growth 
factors than their recombinant equivalents.
	 The basic concept is quite simple. A gene, or more 
usually a cDNA, encoding a protein of interest is delivered 
by a vector to the site of an osseous defect. This protein 
is synthesised locally in an endogenous, authentic fashion 
for as long as the cDNA is present and expressed. By 
incorporating regulatory elements, it is possible to control 
both the level and duration of transgene expression. 
Although most pre-clinical development has focused on 
delivering cDNAs that encode secreted growth factors, 
gene transfer is particularly well suited to delivering 
intracellular proteins, such as transcription factors (Tu et 
al., 2007), the Lim mineralisation proteins (Lattanzi et al., 
2008) and non-coding species of RNA (Levi et al., 2012).
	 Gene delivery can be accomplished with non-viral 
and viral vectors. Although non-viral methods are less 
expensive and generally considered to be safer than viral 
vectors, they are also much less efficient. Transgene 
expression is usually low and transient. However, the 
literature contains examples demonstrating the ability to 
heal osseous defects in animal models using non-viral gene 
transfer methods (Kimelman-Bleich et al., 2011; Li et al., 
2009a). Nevertheless, most research involves the use of 
viral vectors which, although more difficult and expensive 
to prepare, are much more efficient.
	 Viral vectors that have been explored in the context of 
bone healing are retrovirus (Rundle et al., 2008), lentivirus 
(Virk et al., 2011), adenovirus (Baltzer et al., 2000), adeno-
associated virus (AAV) (Ito et al., 2005) and baculovirus 
(Lin et al., 2012). Each has advantages and disadvantages 
in terms of ease of preparation and use, persistence in the 
host, immunogenicity, carrying capacity, serotype and so 
forth. Much effort has been devoted to engineering novel 
and improved versions of many of these viral vectors, so 
simple descriptors are increasingly difficult.
	 Use of viral vectors raises issues of safety, which is a 
key issue for non-lethal indications such as bone healing. 
The major safety concern with retroviruses, including 
lentiviruses, is insertional mutagenesis, which has led to the 
development of leukaemia in human subjects in a clinical 
trial for Severe Combined Immunodeficiency Disease 
(Hacein-Bey-Abina et al., 2003). The major safety issue 
with adenovirus is the strong immune responses that it 
generates; these led to gene therapy’s first death, in 1999 
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(Raper et al., 2003). That said, the incidence of severe 
adverse events in gene therapy trials has been remarkably 
low and the safety issue is as much one of psychology as 
biology. Ironically, given recent disclosures concerning 
the severe adverse events generated by the large amounts 
of BMP-2 present in Infuse®, USA (InductOs, Europe) 
(Carragee et al., 2011), it is possible to argue that, in this 
particular application, gene therapy may well be safer than 
protein therapy.
	 Most investigators have used cDNAs encoding 
proteins that promote the osteogenic differentiation of 
mesenchymal cells. BMP-2 or BMP-7 are popular choices, 
as the recombinant proteins are already in clinical use. 
There is also enthusiasm for using cDNAs encoding 
angiogenic factors such as VEGF (Li et al., 2009b), because 
osteogenesis is known to have an absolute requirement 
for angiogenesis (see section “Vascularisation”). Other 
transgenes of experimental interest include cycloxygenase, 
which promotes osteogenesis via prostaglandin synthesis 
(Rundle et al., 2008), and parathyroid hormone 1-34 
(Bonadio et al., 1999), among others. Although the choice 

of osteogenic genes is understandable, long bone fractures 
mainly heal through the initial phases of cartilaginous callus 
formation and subsequent endochondral ossification. In 
recognition of this, there is increasing interest in promoting 
the endochondral route to healing large bone defects (see 
section “Endochondral bone tissue engineering”). BMP-
2 could be a useful transgene in this regard, because it 
promotes both chondrogenesis (Palmer et al., 2005) and 
the endochondral differentiation of MSCs (Steinert et al., 
2009).
	 Regardless of the vectors and transgenes that are used, 
there are two major strategies for their deployment: in vivo 
and ex vivo. During in vivo delivery the vector is introduced 
directly into the osseous defect. This has advantages of 
simplicity, but raises safety concerns. Ex vivo delivery is 
more cumbersome and expensive, but does not introduce 
vector into the body and provides the opportunity to 
deliver both osteoprogenitor cells and osteogenic genes 
concomitantly to the defect. The considerable cost and 
complexity of ex vivo gene delivery with autologous cells 
can be mitigated with allogeneic, universal donor cells, 

Fig. 4. Current approaches for gene delivery to osseous lesions. There are two general strategies: in vivo (right hand 
side) and ex vivo (left-hand side). For in vivo gene delivery, the vector is introduced directly into the site of the 
osseous lesion, either as a free suspension (top right) or incorporated into a gene-activated matrix (GAM) (bottom 
right). For ex vivo delivery, vectors are not introduced directly into the defect. Instead they are used for the genetic 
modification of cells, which are subsequently implanted. Traditional ex vivo methods (top left) usually involve the 
establishment of cell cultures, which are genetically modified in vitro. The modified cells are then introduced into 
the lesion, often after seeding onto an appropriate scaffold. Expedited ex vivo methods (bottom left) avoid the need 
for cell culture and scaffolds by genetically modifying tissues such as marrow, muscle and fat, intraoperatively and 
inserting them into the defect during a single operative session (Evans, 2010).
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or by developing expedited protocols where autologous 
cells or tissues are removed, genetically modified, and 
reimplanted in a single operative session (Evans et al., 
2007).
	 Based upon these principles, four main approaches 
have emerged (Fig. 4) for delivery of genes to osseous 
lesions: in vivo gene delivery by direct injection or with 
gene-activated matrices (GAMs), and ex vivo delivery 
using expanded autologous cells or expedited approaches 
accomplished intra-operatively.
	 The direct injection of adenovirus vectors encoding 
BMP-2 (Baltzer et al., 2000; Betz et al., 2006) or BMP-6 
(Bertone et al., 2004; Ishihara et al., 2008) can heal critical 
size femoral defects in rats, rabbits and horses. However, 
it is not reliably effective in all animals and generates a 
strong neutralising immune reaction to the vector. These 
immune reactions were sufficiently strong to prevent 
efficacy in large bone defects in sheep (Egermann et al., 
2006b), unless the sheep had been treated previously 
with cortisone, an immunosuppressant (Egermann et al., 
2006a). Of concern, immune reactions to human BMP-2 
were generated in the sheep model, possibly reflecting the 
strong adjuvant properties of adenovirus.
	 GAMs provide an alternative approach. The original 
GAM comprised a collagenous scaffold impregnated 
with plasmid DNA encoding BMP-4 (Fang et al., 1996) 
or the first 34 amino acids of parathyroid hormone (PTH 
1-34) (Bonadio et al., 1999), presently used as the drug 
teriparatide (Forteo®) to treat osteoporosis. Impressive 
data were reported in rat and canine models, but further 
development was hindered by the low levels of transgene 
expression. GAMs incorporating improved non-viral 
(Tierney et al., 2012) or viral vectors show more efficient 
gene transfer and expression in animal models.
	 Allograft revitalisation is an extension of the GAM 
principle in which AAV vectors are coated onto allograft 
bone (Ito et al., 2005). After implantation, host progenitor 
cells encounter the vector and express transgenes, leading 
to resorption of the allograft and its replacement with host 
bone. Success has also been reported when AAV is coated 
onto poly(epsilon-caprolactone) (Dupont et al., 2012).
	 Lieberman’s group pioneered the ex vivo approach, 
successfully using an adenovirus vector encoding BMP-2 
in conjunction with BMSCs (Lieberman et al., 1999). To 
expedite matters, they now use buffy coat cells obtained 
intra-operatively from bone marrow, in conjunction with 
a lentivirus vector that gives higher and more persistent 
transgene expression (Virk et al., 2011). Because of 
concerns about insertional mutagenesis with lentivirus, the 
inclusion of a suicide gene, to be activated in the event of 
malignant transformation or other severe adverse event, is 
being explored (Alaee et al., 2014).
	 An alternative expedited, ex vivo approach makes use of 
the remarkable osteogenic properties of muscle, reflected 
in the high incidence of heterotopic ossification of muscle 
after blast injuries and joint replacement surgery, as well 
as in the disease fibrodysplasia ossificans progressiva. 
The latter occurs as a result of an activating mutation in 
a BMP receptor, suggesting that a sustained BMP signal 
efficiently induces bone in muscle. Use of an adenovirus 
encoding BMP-2 (Ad.BMP-2) provides such as signal. 

Musgrave et al. showed that the intra-muscular injection 
of Ad.BMP-2 induced bone in muscle (Musgrave et al., 
1999). This has been adapted in a strategy where biopsies 
of autologous muscle are transduced with Ad.BMP-2 and 
implanted into critical sized defects in rats (Evans et al., 
2009). Autologous fat is also effective, but less reliably 
than muscle. Of note, this abbreviated ex vivo procedure 
eliminated the humoral response to adenovirus (Evans et 
al., 2009).
	 Despite a considerable literature, reviewed in references 
(Evans, 2010; Evans, 2012; Pensak and Lieberman, 2013), 
reporting successes in healing large bone defects in animal 
models by gene therapy, it is not used clinically. There are a 
number of reasons for this, including the need for studies in 
large animals, which are costly and take a long time. Often, 
insufficient attention is paid to pharmacology, toxicology 
and other important matters of this nature. Furthermore, 
the scientists who undertake the pre-clinical research 
are often naïve when it comes to the process of research 
translation, which involves a wide spectrum of expertise, 
ranging from regulatory issues, to clinical trial design, 
ethics, and so forth. It is wise to involve individuals with 
the necessary expertise early in the research programme to 
forestall subsequent barriers to translation (Madry et al., 
2014).
	 Another constraint to clinical application lies in the 
simple fact that we do not know how much of a given gene 
product is needed at which time during the healing process 
and for how long. Such information would greatly advance 
the field.

Conclusions

At a minimum, the regeneration of bone requires the 
balanced contributions of scaffolds, cells, morphogenetic 
signals, vascularisation and mechanics. Each of these 
elements is being studied intensively, and considerable 
advances have been made in developing new 
understandings, concepts and information. Because each 
of these components has many facets, and therefore an even 
greater number of permutations, there are innumerable 
theoretical combinations that frustrate any straightforward 
development of new, osteogenic technologies.
	 But it is also noteworthy that, despite decades of 
research in this area using different combinations of the 
components discussed in this review, we still lack an 
approved engineered product that gives robust, reliable 
results in the clinic. It is possible that, given the impossibly 
large number of permutations of the base components 
studied for the healing of large, osseous, segmental defects, 
researchers have not yet arrived at the optimal combination. 
However, it is also possible that we are missing something. 
Bone, after all, normally heals by itself, whereas large 
segmental defects do not. Perhaps we need to go back to 
the beginning and discover why large segmental defects 
in otherwise healthy individuals do not heal? Perhaps 
formulating strategies based upon the way fractures heal 
naturally is inappropriate?
	 Regardless of the technologies that actually work 
reliably in advanced pre-clinical models, the clinical 
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development of such technologies is constrained by the 
regulatory environment that governs their deployment, 
as well as the financial realities of health care economics. 
The reality may be that without adequate stratification 
and identification of patients, complex therapies may 
not provide the economic benefit to make them viable. 
As described in this critical review, progress is occurring 
on several fronts and it should be only a matter of time 
before patients can benefit from better ways to heal large 
segmental defects. Achieving this will require interactive, 
well-funded, sustained consortia including biologists, 
physical scientists, clinicians, translational scientists, and 
industrial partners.
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Discussion with Reviewers

P. Habibovic: In the Conclusion section, the authors state: 
“At a minimum, the regeneration of bone requires the 
balanced contributions of scaffolds, cells, morphogenetic 
signals, vascularisation and mechanics”. I would like 
to challenge this statement by stating that a therapy 
encompassing all these component will never reach the 
clinic, because of the high cost and complex regulations. 
Could the authors respond to this statement?
Authors: The reviewer identifies an important issue that 
is touched upon in the paper, but not explored in detail: 
how to make TERM (Tissue Engineering and Regenerative 
Medicine) affordable. This will probably require expedited 
approaches that do not use expanded, autologous cells 
but harness intrinsic, biological processes. Greater 
investigation of simple rehabilitation techniques could also 
pay dividends. Investigators need to bear in mind cost, as 
well as science, when developing technologies.

I. Martin: In the conclusions, it is mentioned that “perhaps, 
we need to go back to the beginning and discover why large 

segmental defects in otherwise healthy individuals do not 
heal”. Could you further elaborate your recommendation on 
the approaches to be followed or nature of the parameters 
to be investigated to bring forward our fundamental 
knowledge of the biological processes which need to be 
better controlled?
Authors: The early biological responses to an osseous 
injury seem important determinants of whether and, if 
so, how, a defect will heal (Glatt et al., eCM 2012; Kolar 
al, Tissue Engineering Part B. 2010). This suggests that 
study of the early biology of a segmental defect would be 
profitable. Useful comparisons could be made between 
a critical sized defect in the presence or absence of an 
osteogenic growth factor, or between a large osseous in 
a bone that does not heal (e.g. femur) and one where a 
similar sized defect spontaneously heals (e.g. rib). Pre-
paradigmatic observations in such systems promise to 
generate experimentally testable hypotheses.

Editor’s note: The Scientific Editor responsible for this 
paper was Joost de Bruijn.


