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Abstract

As a key molecule of extracellular matrix, laminin provides a delicate microenvironment for cell functions. 
Recent findings suggest that laminins expressed by cartilage-forming cells (chondrocytes, progenitor cells 
and stem cells) could promote chondrogenesis. However, few papers outline the effect of laminins on 
providing a favorable matrix microenvironment for cartilage regeneration. In this review, we delineated 
the expression of laminins in hyaline cartilage, fibrocartilage and cartilage-like tissue (nucleus pulposus) 
throughout several developmental stages. We also examined the effect of laminins on the biological activities of 
chondrocytes, including adhesion, migration and survival. Furthermore, we scrutinized the potential influence 
of various laminin isoforms on cartilage-forming cells’ proliferation and chondrogenic differentiation. With 
this information, we hope to facilitate an understanding of the spatial and temporal interactions between 
cartilage-forming cells and laminin microenvironment to eventually advance cell-based cartilage engineering 
and regeneration.
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Introduction

Cartilage is a specialized connective tissue with 
multi-component extracellular matrices (ECMs) that 
maintain its functionality. The major resident cells, 
chondrocytes, are responsible for the production of 
extracellular molecules, such as collagen, laminin 
and fibronectin (Tavella et al., 1997; Wilusz et al., 
2014). Despite the progress in cartilage engineering 
(Bernhard and Vunjak-Novakovic, 2016), insufficient 
cartilage regeneration remains a significant clinical 
challenge, due to an absence of blood supply 
(Mobasheri et al., 2014; Roelofs et al., 2013).
	 Chondrocytes in cartilaginous tissues, such as 
hyaline cartilage, fibrocartilage and cartilage-like 
tissue (nucleus pulposus), are surrounded by a thin 

pericellular matrix (PCM), which is different from 
the territorial matrix and interterritorial matrix in 
both biochemical and biomechanical properties 
(Poole et al., 1984; Wilusz et al., 2014). Increasing 
evidence suggests that PCM contains laminin (LM), 
collagen type IV, nidogen and perlecan, which form 
the functional equivalent of a basement membrane 
(Kvist et al., 2008). Compared to the kidney, an organ 
highly enriched in glomerular basement membranes, 
articular chondrocytes exhibited significantly higher 
expression of LM α4, LM β1 and nidogen-2, despite 
comparable levels of LM  α1, LM  α2 and LM  α5 
(Kvist et al., 2008). The distribution and abundance 
of basement membrane components in cartilage are 
age-dependent. A gradual shift is distinct, from a 
diffuse expression in the territorial and interterritorial 
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matrices of newborn mice toward a pericellular 
localization in mature cartilage, which then becomes 
less distinct once reaching old age (Kvist et al., 2008).
	 Basement-membrane proteins are present in 
several tissues and organs including skin and 
muscle, where they have been reportedly involved 
as critical components of the stem cell niche, 
regulating the functions of progenitor cells during 
healthy and diseased states (Boonen and Post, 2008; 
Fuchs, 2009). In articular cartilage, the staining of 
basement membrane proteins in the PCM was most 
prominent around cells of the cartilage superficial 
layer (Kvist et al., 2008), which is known as a niche 
for chondroprogenitors (Candela et al., 2014). 
Furthermore, a recent study found enhanced LM α1, 
LM α5 and nidogen-2 in the PCM of osteoarthritic 
chondrocytes, suggesting that laminin promotes 
restoration of chondrocyte phenotypes (Schminke et 
al., 2016). The above evidence indicates that basement 
membrane components, especially laminin, might 
play a crucial role in regulating the fate and functions 
of chondroprogenitors and chondrocytes in cartilage 
repair and regeneration.
	 As a critical component in the basement membrane 
of various tissues, laminins, a family of heterotrimeric 
glycoproteins, contain one of five α-chains, one of 

three β-chains and one of three γ-chains (Fig. 1A) 
(Aumailley, 2013; Schéele et al, 2007). Laminins were 
reported to direct various cellular functions, including 
adhesion, migration, growth, differentiation and 
apoptosis, through intercommunication with 
specific cell surface receptors, such as dystroglycan, 
sulfated glycolipids or particular integrins (Fig. 1B) 
(Aumailley and Rousselle, 1999; Colognato and 
Yurchenco, 2000; Eble, 2001; Häusler et al., 2002;  
Hohenester et al., 2013; Vuoristo et al., 2009; Yamada 
and Sekiguchi, 2015). Recent studies have implicated 
laminins in various disorders and diseases, such as 
hepatocellular carcinoma and congenital muscular 
dystrophy (Hall et al., 2007; Petz et al., 2012).
	 Increasing evidence indicates that ECMs can 
influence cartilage regeneration by regulating cell fate 
and functionality (Connelly et al., 2011; Lynch and 
Pei, 2014). Currently, the interaction between collagen 
or fibronectin and cartilage regeneration has drawn 
much attention (Aigner and Stöve, 2003; Stoffels et al., 
2013). However, few review papers about potential 
roles of laminin and its isoforms on cartilage-forming 
cells for cartilage regeneration are available. In this 
review, the expression of laminins was outlined 
in various developmental stages of cartilage and 
cartilage-like tissues, including developing, adult and 

Fig .  1 .  Laminin  family .  (A ) 
Known and/or predicted laminin 
heterotrimers. Eleven genes encode 
five α, three β and three γ chains 
in the human genome. There are 
two transcripts for the LM  α3 
chain, one short α3A and one long 
α3B transcript. (B) Mapping of the 
major functions of laminins. The 
laminin short arms (N-terminus) are 
involved in architectural function 
within the basement membrane, 
while the end of the long arm 
(C-terminus) is typically involved in 
cellular interactions. Reprinted with 
permission from Aumailley (2013).
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pathological cartilage (Fig. 2). The effect of laminins 
on the biological activities of chondrocytes was also 
discussed, as well as stem cell chondrogenesis, in 
terms of adhesion, migration, survival, proliferation 
and chondrogenic differentiation (Fig. 3). This 
review allows an in-depth understanding of the 
role of laminins in providing a favorable matrix 
microenvironment for regeneration of cartilaginous 
tissues.

Stage-dependent expression of laminin in 
cartilage and cartilage-like tissue
Increasing evidence indicates that chondrocytes are 
responsible for the production of various laminins 
(Table 1a,b) that mainly locate in the PCM of cartilage 
(Foldager et al., 2014; SundarRaj et al., 1995). The 
expression of laminins varies during different 
developmental stages of cartilage and cartilage-like 
tissues (Fig. 2) (Dürr et al., 1996; Foldager et al., 2016; 
Lee et al., 1997).

Developing stage
A diverse distribution pattern of laminins was found 
in different developing stages of cartilage (Dürr 
et al., 1996; Häusler et al., 2002). Lee et al., (1997) 
found that laminin chains (α1, α2, β1, β2 and γ1), 
produced by chicken embryo sternal chondrocytes, 
exhibited an increased expression in aggregated cells 
during the maturation stage; LM-111 was detected 
primarily in the cytoplasm, rather than in the matrix 
of cartilaginous tissues. Kvist et al. (2008) reported 
that laminin, initially being widespread in newborn 
cartilage, organized into a pericellular distribution 
around the chondrocytes in mature cartilage. Similar 
to the location pattern in the superficial layer of adult 
articular cartilage, most laminins were detected in the 
resting zone in epiphyseal cartilage and expression 
decreased in the proliferating and hypertrophic zones 
(Dürr et al., 1996; Ustünel et al., 2003a). These findings 
indicate that laminins are dynamically expressed in 
a spatiotemporal manner.

Fig. 2. Laminin expression in hyaline cartilage, fibrocartilage and cartilage-like tissues (NP), as well as 
cartilage-forming cells, under chondrogenic induction. (A) Normal articular cartilage from porcine (N-
P) (Foldager et al., 2016) and goat (N-G) (Foldager et al., 2014). Bars: large image = 200 μm, small image 
= 30 μm (N-P) and 20 μm (N-G). (B) A decrease of immunostaining from the periphery to deeper parts of 
human nasal septal cartilage in the direction of the arrows (a); immunostaining of laminin in chondrocyte 
cytoplasm (c), projections (arrows) and pericellular rings (double arrows) is strong (b) (Üstünel et al., 
2003b). In the original publication, scale bars were not shown but magnification values of (a) ×25 and 
(b) ×100 were given. (C) Laminin-positive pericellular stain was only detectable in normal human (N-
H) articular cartilage rather than degenerated human (D-H) articular cartilage (Foldager et al., 2014). 
Bars: large image = 200 μm, small image = 20 μm. (D) Laminin-positive stain was only stained in normal 
goat (N-G) NP tissue rather than in the degenerated human (D-H) NP tissue and both normal goat and 
degenerated human AF tissues (Foldager et al., 2014). Bars: large image = 200 μm, small image = 20 μm. 
(E) Immunohistochemistry of laminin in goat NP cell and bone marrow-derived MSC pellets after 14 d 
of chondrogenic induction (C-I). The group without treatment serves as a control (CTR) (Toh et al., 2013). 
Scale bar: 50 μm. Reprinted with permission from Foldager et al. (2014), Foldager et al. (2016), Toh et al. 
( 2013) and Üstünel et al. ( 2003b).
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	 During the development of intervertebral disc 
(IVD), laminins gradually appear but have a shifting 
pattern in different developmental stages. Using 
immunofluorescence labelling procedures, Hayes 
et al. (2001) found that laminin was distributed 
pericellularly in developing nucleus pulposus (NP), 
annulus fibrosus (AF) and vertebral bodies of rats. 
Furthermore, Toh et al. (2013) cultured goat NP 
cells in a pellet system to form cartilaginous tissue 
and found that laminins were expressed with an 
orderly shift from a diffused distribution to a defined 
pericellular localization. Interestingly, dramatic 
differences in laminin expression existed in the cells 
between the immature NP and AF region. Chen et 
al. (2009) found higher levels of the LM α5 chain and 
related receptors in immature rat and pig NP regions 
compared to the AF, but AF regions had more intense 
expression and, frequently, more LM α1 chains than 
NP tissue. These studies demonstrate that, similar to 
the pattern in cartilage, laminins are continuously 
expressed in all developing stages in cartilage-like 
tissues and show a region-specific expression pattern.
	 In addition, laminins were found in tissue 
engineered cartilaginous constructs. For instance, an 
extensive expression of laminin was observed in vitro 
following three weeks of chondrogenic culture of bone 
marrow-derived mesenchymal stem cells (MSCs) in 
both poly (ethylene glycol) diacrylate (PEGDA) 
hydrogel (Köllmer et al., 2012) and hyaluronic acid-

based hydrogel (Toh et al., 2012). Similarly, Jeng 
et al. (2012, 2013) found widespread expression of 
laminins throughout the ECM, in both engineered 
cartilage constructs and reparative tissues, following 
implantation of chondrocyte-seeded constructs in 
caprine cartilage defects – although the expression 
of laminin appeared diffused compared to the 
pericellular staining pattern observed in normal adult 
cartilage.

Adult stage
As an important ECM component, in adult cartilage, 
laminins participate in the organization of the 
basement membrane-like structure around the 
chondrocytes. Dürr et al. (1996) demonstrated that 
laminins were mainly located in the PCM of human 
adult articular cartilage, which was further verified 
in goat and bovine cartilage (Foldager et al., 2014; 
Kvist et al., 2008). Ustünel et al. (2003b) found a similar 
pattern of laminin expression in human nasal septal 
cartilage with higher expression in the periphery of 
the cartilage, which gradually decreased in deeper 
zones. Laminins were also found in meniscus 
and some other fibrocartilage (Chu et al., 2017; 
Foldager et al., 2014; Salter et al., 1995). However, the 
expression of laminins displayed a more pericellular 
diffusion in menisci, which was different from the 
well-defined pericellular localization of articular 
cartilage (Foldager et al., 2014). Similarly, in the 

Fig. 3. The expression and function of 
laminin during cartilaginous tissue 
regeneration. (A) Stem cells produce 
laminin and form the ECM (Laperle 
et al., 2015; Rodin et al., 2014). (B) 
After adhesion, laminin promotes 
stem cell proliferation and regulates 
chondrogenesis in vitro (Hashimoto 
et al., 2006; Toh et al., 2013).
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Table 1a. Laminin expression pattern in hyaline cartilage and fibrocartilage. Abbreviation: ACI: autologous 
chondrocyte implantation; AF: annulus fibrosus; DO: day old; MO: month old; NP: nucleus pulposus; 
OA: osteoarthritis; OARSI: Osteoarthritis Research Society International; WO: week old; YO: year-old.

Age Species LM types Location pattern Reference

hy
al

in
e 

ca
rt

ila
ge

 a
nd

 fi
br

oc
ar

til
ag

e

embryo chicken LM α1, α2, β1, 
β2, γ1 sternal cartilage Lee et al., 1997

embryo mouse LM α1, α2, β1, 
β2, γ1 14-DO limb bud cartilage Lee et al., 1997

embryo/
neonate rat LM AF tissue Hayes et al., 2001

fetus human LM 16-WO knee joint cartilage (articular, 
epiphyseal and meniscus) Salter et al., 1995

fetus human LM α1, β1, γ1 resting-zones of 30-WO tibia 
epiphyseal cartilage Dürr et al., 1996

fetus human LM γ2 cartilage at early stages of gestation Lu et al., 2001

neonate mouse LM mandibular condyle cartilage Silbermann et al., 1990
newborn

/adult mouse LM α1, α2, α4, α5, 
β1, γ1 femoral head cartilage Kvist et al., 2008

childhood
/adolescent human LM resting-zones of growth plate 

cartilage Häusler et al., 2002

immature rat LM
60-DO humerus proximal epiphyseal 

cartilage (articular cartilage and 
epiphyseal growth plate)

Ustünel et al., 2003a

immature rat LM temporomandibular joint condylar 
cartilage and disc tissue Chu et al., 2017

immature porcine LM α1 3-MO AF tissues Chen et al., 2009

immature rat LM α1 1-MO AF tissues Chen et al., 2009

immature porcine LM γ1 AF tissues Gilchrist et al., 2007

adult goat LM normal articular cartilage, meniscus 
and calcified cartilage Foldager et al., 2014

adult bovine LM 18-MO metacarpophalangeal joint 
cartilage Kvist et al., 2008

adult human LM α1, β1, γ1 upper zone of articular cartilage Dürr et al., 1996

adult human LM nasal cartilage SundarRaj et al., 1995

adult human LM mandibular condyles cartilage 
degenerative lesion Ishibashi et al., 1996

adult human LM nasal septal cartilage Ustünel et al., 2003b

adult human LM α4

high expression in arthritis cartilage 
lesions grade IV hypertrophic 

chondrocyte clusters according to the 
OARSI criteria for osteoarthritis

Fuerst et al., 2011

adult human LM normal articular cartilage Foldager et al., 2014

adult human LM

normal articular cartilage; no 
expression in traumatically damaged 
cartilage and clinically failed repair 

cartilage

Foldager et al., 2016

adult human LM α1, α5 healthy and OA articular cartilage Schminke et al., 2016

adult mouse LM α1, α2, β1, 
β2, γ1 3-WO knee joint cartilage Lee et al., 1997

adult porcine LM normal articular cartilage/repair 
tissue after scaffold-seeded ACI Foldager et al., 2016
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Table 1b. Laminin expression pattern in cartilage-like tissues. Abbreviation: ACI: autologous chondrocyte 
implantation; AF: annulus fibrosus; DO: day old; MO: month old; NP: nucleus pulposus; OA: osteoarthritis; 
OARSI: Osteoarthritis Research Society International; WO: week old; YO: year-old.

Age Species LM types Location pattern Reference

C
ar

til
ag

e-
lik

e 
tis

su
e 

(N
P 

tis
su

e)

embryo/
neonate rat LM NP and notochordal cell surface Hayes et al., 2001

immature porcine LM γ1 NP tissue Gilchrist et al., 2007

immature porcine LM γ2 3-6-MO NP tissue Gilchrist et al., 2011a

immature rat LM γ2 1-MO NP tissue Gilchrist et al., 2011a

2-, 12-, 35-YO human LM α5, γ1 age-dependent decrease in NP tissue, 
particularly LM γ1 Chen et al., 2009

3-, 24-MO porcine LM α1, α5 NP tissues Chen et al., 2009

1-, 12-MO rat LM α1, α5 NP tissues, particularly LM α5 Chen et al., 2009

mature goat LM normal NP tissues Foldager et al., 2014

mature goat LM NP cells, pellet, and native tissues Toh et al., 2013

rat temporomandibular joint (TMJ), laminins were 
found present in the PCM surrounding individual 
chondrocytes, but were predominately distributed 
in the proliferative zone of the condylar cartilage 
(Chu et al., 2017).
	 In adult cartilage-like tissues, laminins produced 
by mature goat NP cells in a pellet culture system 
also formed ECMs with a pericellular distribution 
(Toh et al., 2013). Moreover, many laminins and 
some subunits, such as LM  α1, α5 and γ1, were 
located in the PCM of goat, porcine, human and rat 
NP cells (Chen et al., 2009; Foldager et al., 2014; Toh 
et al., 2013). Similar to the findings in immature IVD, 
laminins produced by mature NP cells showed a 
region-specific expression pattern. Chen et al. (2009) 
found that the LM  α5 chain had more significant 
expression in NP than AF regions, although with 
lower expression compared to immature NP tissues.

Pathological stage
Disorders of ECM formation are the significant 
characteristics of cartilage degradation, which 
can influence subsequent reactive processes for 
degeneration (Lu et al., 2011; Moazedi-Fuerst 
et al., 2016). In most studies, the expression of 
laminins significantly decreased or disappeared 
in degenerative articular cartilage and menisci 
(Foldager et al., 2014; Foldager et al., 2016; Ishibashi 
et al., 1996). Also, the expression of laminins showed 
an age-related change in degenerative cartilage 
(Ishibashi et al., 1996). Considering the prominent 
expression in developing and normal cartilage, as 
well as the negative expression in traumatically-
damaged cartilage and cartilage that failed clinical 
repair (Foldager et al., 2016), laminin could serve as an 
early marker for cartilage degeneration by observing 
its dynamic expression. Interestingly, the diverse 
expression of laminins in degenerative cartilage 
also indicate their role in cartilage degeneration 

(Moazedi-Fuerst et al., 2016; Schminke et al., 2016). 
For example, LM  α4, with significantly higher 
expression in severely degenerated sites, compared 
with mild areas, in human osteoarthritic cartilage, 
co-localized with syndecan-4 around hypertrophic 
chondrocytes and perpetuated cartilage damage in 
osteoarthritic cartilage, which suggested that LM α4 
played a deleterious role in cartilage degeneration (Fuerst 
et al., 2011). Therefore, laminins may be a possible 
regulator in degenerative cartilage.
	 Similar findings have been uncovered in 
degenerative cartilage-like tissues. Chen et al. (2009) 
reported that laminin chains decreased in older 
specimens compared with immature NP, which 
was inferred as a cause of decreased cellularity in 
older tissues. Foldager et al. (2014) found significant 
expression of laminin in healthy goat NP, but failed 
to find laminin expression in human degenerative 
NP tissue using immunohistochemical analysis. 
Collectively, these findings suggest that laminins 
are altered in expression pattern and/or decreased in 
quantity in conjunction with the degeneration of the 
cartilage-like tissues, implicating the role of laminin 
in cartilage degeneration.

The effect of laminin on chondrocyte function
Laminins are important cell-adhesive ligands and 
are mainly present around chondrocytes. The 
interactions between laminins and chondrocytes 
can regulate many cell-biological functions, such 
as adhesion, migration and survival (Bulić, 1996; 
Francisco et al., 2014; SundarRaj et al., 1995).

Cell adhesion
As major adhesive molecules of ECM in cartilaginous 
tissues, laminins exert a prominent role in regulating 
cell-cell or cell-matrix interactions. Many studies 
demonstrated that LM-511, LM-332 and LM-
111 have strong cell attachment capabilities in 
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chondrocytes and NP cells (Dürr et al., 1996; Gilchrist 
et al., 2011a; Gilchrist et al., 2011b). For example, 
Dürr et al. (1996) demonstrated that human fetal 
chondrocytes could attach to the E8 fragment of 
LM-111, mainly depending on the interaction with 
integrin α6β1. Moreover, Francisco et al. (2013) found 
that supplementation with LM-111 in an injectable 
functionalized hydrogel promoted adhesion of 
porcine NP cells. Multiple cell surface receptors 
mediated the adhesion of laminins with chondrocytes 
and NP cells (Dürr et al., 1996; Gilchrist et al., 2007; 
Nettles et al., 2004), especially through integrins 
(Loeser, 2014). Blocking studies indicated that 
integrin β1 or α6β1 were primary receptors for strong 
cell attachment in human chondrocytes and NP cells 
(Bridgen et al., 2013; Dürr et al., 1996). These results 
demonstrate that laminins can potentiate the strength 
of cell adhesion by binding to integrins. Furthermore, 
adhesion capacity is significantly different among 
various types of laminin. For instance, Gilchrist et 
al. (2011a) demonstrated by analysis of adherent 
numbers and detachment strength in immature 
porcine NP cells, that LM-511 and LM-332 displayed 
stronger effects than other matrices, such as LM-111, 
type II collagen and fibronectin. Diminished NP cell 
adhesion on LM-111 is consistent with its relatively 
low expression in porcine, rat or human immature 
NP tissues (Chen et al., 2009; Gilchrist et al. 2011a). 
The discrepancy in adhesion capacities of laminins 
may be explained by receptor binding differences; in 
other words, a prominent integrin subunit may exist 
in special cell types and regions.

Cell migration
Under stimuli of various matrices, chondrocytes 
are able to migrate to regulate biological activities. 
Bulić (1996) demonstrated that laminin and laminin-
derived peptides promoted maximal bovine articular 
chondrocyte migration, but migration subsequently 
decreased when subjected to a higher compound 
concentration. Moreover, Moazedi-Fuerst et al. (2016) 
found that in vitro blocking of LM  α4 significantly 
decreased cluster formation of human osteoarthritic 
chondrocytes. Interestingly, they found that LM α4 
was important for targeted migration but did not 
inhibit movement. Furthermore, immature porcine 
NP cells could attach rapidly to LM-511 and LM-332 
substrates, suggesting the positive role of laminin 
in regulating migration of NP cells (Gilchrist et al., 
2011a). These studies suggest that laminins have a 
regulatory effect on migration of cartilage-forming 
cells.
	 Even though laminins are actively involved in 
cell migration (Gorfu et al., 2008; Nguyen-Ngov et 
al., 2012), the detailed mechanisms underlying the 
effects of laminins on chondrocyte migration are still 
unclear. Matrix metalloproteinases (MMPs), which 
are responsible for the degradation of collagen type 
II and digestion of proteoglycan and other non-
collagen proteins in osteoarthritis, exerted regulative 
roles in cell migration (Laurent et al., 2003; Li et al., 

2013; Moazedi-Fuerst et al., 2016). Laminins might 
control chondrocyte migration by regulating MMPs; 
for example, LM α4 blockade could downregulate 
MMP3 and upregulate MMP16 (Fuerst et al., 2011; 
Moazedi-Fuerst et al., 2016).

Cell survival
Laminins are known to promote cell survival 
in several cell types by mediating cell-laminin 
interactions in response to various environmental 
conditions in vitro (Ekblom et al., 2003; Gu et al., 
2002). Bulić (1996) demonstrated that IKVAV 
sequence-containing peptide derived from the 
laminin could promote proliferation of bovine 
articular chondrocytes, suggesting a positive role 
of laminin in promoting chondrocyte survival. 
Furthermore, an increasing number of studies have 
demonstrated that laminin had the same effect in 
promoting NP cell survival (Francisco et al., 2014; 
Gilchrist et al., 2011a). Francisco et al. (2014) found 
that LM-111 could significantly increase viability of 
NP cells in a three-dimensional (3D) poly (ethylene 
glycol) (PEG)-laminin hydrogel compared to blank 
gels – despite the inhibition of cell viability by PEG 
hydrogel alone – suggesting that LM-111 retained the 
bioactivity of the native protein in 3D PEG hydrogels 
and cell survival was mainly mediated by cell-LM-111 
interactions. These results also suggest that laminin 
may be a survival ligand for NP cells. However, 
contrary reports also exist showing that laminin 
may have different effects on chondrocyte survival. 
Chu et al. (2017) demonstrated that, as opposed to 
collagen types IV and VI, laminin had no effect on cell 
viability and proliferation of rat TMJ condylar and 
disc chondrocytes. In another example, Fuerst et al.  
(2011) found that MMP3 expression was significantly 
downregulated in human chondrocytes from mild 
osteoarthritis after neutralizing LM α4. Considering 
the damaging effect of MMP3 on cartilage, the 
results demonstrate that LM  α4 has the opposite 
effect on chondrocyte survival and may aggravate 
cartilage damage in osteoarthritis. This disparity in 
chondrocyte survival response to laminins may be 
explained by different responses of chondrocytes to 
various laminin isoforms.

The effect of laminin on stem cell proliferation
Cartilage-forming cells, such as stem cells and 
progenitor cells, are able to differentiate into a 
chondrogenic lineage under specific stimulation and 
they play important roles in cartilage regeneration (Li 
et al., 2014; Pizzute et al., 2016; Toh et al., 2014; Zhang 
et al., 2015). Due to the increasing loss of proliferation 
capacity and risk of spontaneous differentiation 
resulting from replicative senescence, it is difficult to 
obtain a sufficient number of stem cells to differentiate 
into chondrocytes for autologous transplantation (Li 
and Pei, 2012; Toh et al., 2016b). Therefore, acquisition 
of a sufficient number of stem cells by increasing 
proliferation before inducing differentiation is a 
critical step for cartilage regeneration (Pei, 2017).
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Positive effects
Although there are few reports on the effect of 
laminins on chondrocyte survival, recent studies 
have shown the roles of laminins in regulating 
proliferation and apoptosis of chondroprogenitor 
cells, such as mouse teratocarcinoma-derived 
chondrogenic cell line (ATDC5). Choi et al. (2010) 
demonstrated that laminin could significantly 
increase proliferation and decrease apoptosis of 
ATDC5 cells, when cultured on laminin-derived 
peptide-coated surfaces of hybrid mussel adhesive 
proteins (fp-151) compared with those on non- and 
bare fp-151-coated surfaces. These results indicate 
that activation of integrin signaling by laminin might 
be responsible for enhanced cell survival in ATDC5 
cells. In addition, LM-111, LM-332 and Matrigel (the 
trade name for a gelatinous protein mixture secreted 
by Engelbreth-Holm-Swarm mouse sarcoma cells, 
BD Biosciences, San Jose, CA, USA) could efficiently 
promote proliferation of mouse neural progenitor 
cells derived from induced pluripotent stem cells 
(iPSCs) (Komura et al., 2015). Considering that hyaline 
cartilage, such as nasal septal cartilage, emerges from 
neural crest progenitor/stem cells (Crane and Trainor, 
2012; Somoza et al., 2014), regulation of progenitor 
cells’ proliferation by laminins may be a promising 
approach to ensure substantial cell quantity for 
applications in regenerative medicine (Leiton et al., 
2015; Ortinau et al., 2010).
	 As an important molecule of ECM, many studies 
have demonstrated the positive effect of laminins on 
promoting proliferation in various stem cells (Table 
2). Increasing evidence suggests that specific laminin 
isoforms could enhance the proliferation capacity 
of adult stem cells when cultured on a coated or 
soluble laminin environment (He et al., 2013; Lam et 
al., 2012; Lindner et al., 2010; Mathews et al., 2012). 
Indeed, previous studies have shown that laminins 
are secreted by various stem cell types, implying the 
role of laminins in regulating stem cell renewal and 
differentiation (Toh et al., 2013; Toh et al., 2016a). 
Hashimoto et al. (2006) found that LM-332 and LM-
511/521, but not LM-111 and LM-211/221, could 
promote the adhesion of human MSCs with LM-332 
having the largest number of cells attached and 
spread well within 10 min. Also, they found that LM-
332 promoted proliferation of human MSCs through 
interactions with integrins α3β1 and α6β1.
	 Pluripotent stem cells (PSCs), consisting of 
embryonic stem cells (ESCs) and iPSCs, have 
significant abilities to differentiate into chondrocytes 
(Ko et al., 2014; Toh et al., 2010). Multiple studies 
have shown that laminins, normally expressed by 
these PSCs, were indicative of the cells’ functions 
(Laperle et al., 2015; Vuoristo et al., 2009). For example, 
laminins promoted strong renewal and stimulated 
efficient proliferation of PSCs as a robust substratum 
(Lam et al., 2012; Rodin et al., 2010; Rodin et al., 
2014; Vuoristo et al., 2009). By comparing the effects 
on mouse ESC proliferation of different laminin 
isoforms, Domogatskaya et al. (2008) found that LM-

511 and LM-332 could promote ESC proliferation, 
while LM-111, Matrigel and gelatin caused rapid 
differentiation. The finding was later confirmed in 
a study by Miyazaki et al. (2012), who reported that 
the E8 fragments of LM-511 and LM-332 interacted 
with integrin α6β1 to promote robust proliferation 
for up to ten passages of human ESCs and iPSCs in 
their undifferentiated state.
	 Although the above studies verify that laminins 
are effective in promoting stem cell proliferation, the 
results from the two-dimensional (2D) environment 
in vitro could be different from those of the 3D ECM 
microenvironment in vivo, in which stem cells mainly 
reside (Pei et al., 2011). Thus, scaffold modification to 
incorporate laminins could be applied to promote 
bioactivity of scaffolds in the 3D culture system 
(Brynda et al., 2009; Heydarkhan-Hagvall et al., 2012; 
Kang et al., 2012). He et al. (2013) utilized laminin to 
modify poly(l-lactide) scaffolds and found that larger 
amounts of laminins could promote proliferation of 
mouse neonatal stem cells. The study also suggested 
that laminin modification was essential for stem cells 
to build up a 3D growth microenvironment and that 
laminin concentration could affect cell proliferation. 
Taken together, laminins exert significant effects on 
promoting stem cell proliferation in both the 2D and 
3D microenvironment.

Negative effects
Although most reports demonstrate that laminins 
can promote stem cell proliferation, some studies 
show that laminins have, to a certain degree, 
inhibitory effects on stem cell and progenitor cell 
proliferation, by reducing cell number and viability 
during expansion (Abay et al., 2016; Celebi et al., 
2011; Heydarkhan-Hagvall et al., 2012; Ode et al., 
2010; Qian and Saltzman, 2004). Seeger et al. (2015) 
found that LM-211, LM-411, LM-511 and LM-521 
inhibited proliferation of undifferentiated MSCs, 
but upon myogenic differentiation, only LM-521 
significantly enhanced proliferation of myogenically 
differentiating cells. In another study, LM-111 was 
found to inhibit proliferation by triggering ESC 
differentiation within two weeks, while LM-411 
failed to support survival of ESCs (Domogatskaya 
et al., 2008). These findings suggest that laminins 
may have negative effects on stem cell proliferation 
by activating differentiation and/or reducing the 
adhesion of stem cells. Furthermore, Arulmoli et al. 
(2016) found that human neural stem/progenitor 
cells grew well in fibrin and combination scaffolds 
with hyaluronic acid, but the addition of laminin 
could not significantly increase cell proliferation by 
quantitation of the Ki-67 immunostaining-positive 
cells. Interestingly, Matrigel, which contains 
laminins, collagens, heparin sulfate proteoglycans 
and growth factors, induced significant improvement 
in cell proliferation (Addington et al., 2014; Vuoristo 
et al., 2009), suggesting that a combination of ECM 
components and inherent growth factors affects cell 
proliferation.
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Table 2a. Positive effect of laminins on stem cells’ proliferation. Abbreviation: ADSCs: adipose derived 
MSCs; BMMNCs: bone marrow mononuclear cells; BMSCs: bone marrow derived MSCs; C17.2 cell: 
neonatal mouse cerebellum stem cell; CFU-F: colony-forming unit fibroblast; ECM gel: basement 
membrane extracellular matrix protein gel, from Sigma-Aldrich; ESCs: embryonic stem cells; HUCB: 
human umbilical cord blood; iPSCs: induced pluripotent stem cells; LDH: lactate dehydrogenase; LM: 
laminin; NSCs: neural stem cells; NSPCs: neural stem/precursor cells; PLLA: poly-L-lactide; Matrigel: 
the trade name for a gelatinous protein mixture secreted by Engelbreth-Holm-Swarm (EHS) mouse 
sarcoma cells.

Age Species Stem cell type Assay Results Reference

adult human ADSCs cell counting LM coating promoted cell 
proliferation Lam et al., 2012

adult human ADSCs LDH assay LM coating increased cell 
proliferation Keller et al., 2016

adult human BMSCs cell counting LM-111, LM-332 or ECM gel 
promoted cell proliferation

Lindner et al., 2010

adult human BMSCs cell counting LM coating promoted cell 
proliferation Mathews et al., 2012

adult human BMSCs cell counting
LM-332 coating promoted cell 

growth; LM-511/521 or LM-111 
slightly promoted growth

Hashimoto et al., 2006

adult human
STRO-1(+) 
BMMNCs

CFU-F 
efficiency

LM coating increased the 
amount and size of colonies

Gronthos et al., 2001

neonate mouse C17.2 cell
MTS cell 

proliferation 
assay

LM modified PLLA nanofibrous 
scaffolds enhanced cell 

proliferation
He et al., 2013

postnatal human NSPCs
neurosphere 

and cell 
counting

LM coating increased cell 
number and neurosphere size Flanagan et al., 2006

fetus human NSCs neurosphere 
counting

LM coating increased primary 
neurosphere formation

Hall et al., 2008

fetus human HUCB-derived 
NSCs

Ki67+ cells 
counting

LM coating promoted cell 
proliferation rate Szymczak et al., 2010

embryo human ESCs colony size
LM-511 or Matrigel rather 
than LM-111 promoted cell 

proliferation
Vuoristo et al., 2009

embryo human ESCs
cell counting 
and average 
contact area

LM-511 coating promoted cell 
proliferation for at least 28 

passages
Rodin et al., 2010

embryo human ESCs
growth curve 

and colony 
counting

LM-521 coating promoted 
robust renewal and the addition 

with E-cadherin permitted 
efficient clonal expansion

Rodin et al., 2014

embryo human ESCs/iPSCs cell counting LM coating promoted cell 
proliferation Lam et al., 2012

embryo human ESCs/iPSCs cell counting
LM-E8 fragments from LM 

isoforms supported cell 
proliferation

Miyazaki et al., 2012

embryo human ESCs/iPSCs cell counting 
and Ki67+ cells

Knockdown of LM-α5 gene 
diminished cell proliferation Laperle et al., 2015

embryo mouse NSPCs
neurosphere 

and cell 
counting

LM coating increased cell 
number and neurosphere size

Flanagan et al., 2006

embryo mouse ESCs cell counting LM-511 or LM-332 promoted 
cell proliferation

Domogatskaya et al., 
2008

embryo mouse ESCs
proliferation 
index by flow 

cytometry

LM-111 coating promoted cell 
proliferation Suh et al., 2012
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The effect of laminin on chondrogenesis
It is well known that chondrocytes maintain 
phenotype and function by regulating specific 
markers, such as collagen type II and sulfated 
glycosaminoglycans (GAGs) (von der Mark and 
Conrad, 1979). Schminke et al. (2016) found that 
laminin could significantly upregulate the level of 
COL2A1 (collagen type II gene) and reduce the level 
of COL1A1 (collagen type I gene) in healthy and 
osteoarthritic chondrocytes. Laminin-presenting 
hydrogels can markedly promote the production 
of sulfated GAGs in NP cells (Francisco et al., 2014; 
Gilchrist et al., 2011b). In a pellet culture system, Toh 
et al. (2013) reported an orderly spatiotemporal shift 
in expression of laminin from a diffuse territorial and 
interterritorial distribution to a defined pericellular 
localization, following chondrogenic induction of 
bone marrow-derived MSCs. Further studies also 
showed that laminins directly upregulated COL2A1 
expression in human chondrogenic progenitor cells 
and GAG content in human MSCs (Lindner et al., 
2010; Schminke et al., 2016), indicating that laminins 
have essential roles in promoting chondrogenesis 
of cartilage-forming cells. However, some studies 
found that laminins were differentially expressed 
with an obvious trend: an increase in cell aggregation 
during development followed by a decrease during 
chondrogenesis (Tavella et al., 1997; Toh et al., 2013). 
Moreover, the expression of laminins exists in 
developing and normal cartilage but disappears in 
degenerative, traumatically-damaged cartilage and 
in cartilage that fails clinical repair, suggesting a 
spatiotemporal distribution and function of laminins 
in chondrogenesis (Foldager et al., 2004; Foldager 
et al., 2016). Growing evidence shows that ECM 
components can induce chondrogenic differentiation 
in chick embryo limb-bud mesenchymal cells 
and human MSCs, but laminin alone fails to 
drive chondrogenic activity (Bradham et al., 1995; 
Matsubara et al., 2004), suggesting that laminins 
might participate in the process of chondrogenesis 
with other regulatory factors. For instance, LM-332 
promotes proliferation but suppresses chondrogenic 
differentiation (Lindner et al., 2010) by regulating 
integrin α3β1 activities in human MSCs and mouse 
ATDC5 cells (Hashimoto et al., 2005; Hashimoto et 
al., 2006), while favorably enhancing osteogenesis 
via an integrin/FAK/ERK1/2 signaling pathway 
(Salasznyk et al., 2007). Despite these studies that 
suggest the roles of laminins in chondrogenesis, the 
dynamic expression of various laminin isoforms and 
their functions during chondrogenesis has not been 
fully delineated. It is likely that the expression of 
laminins is highly regulated during proliferation and 
differentiation and specific laminin isoforms could be 
involved in lineage-specific differentiation. Looking 
ahead, a better understanding of laminin expression 
and its functions would likely enable better control 
of chondrogenesis.

Conclusions and perspectives

As crit ical  components of  ECM, laminins 
play important roles in providing a favorable 
microenvironment for cartilage regeneration. In this 
review, there is increasing evidence showing that 
laminins, secreted by chondrocytes and primarily 
located in the PCM in cartilage and cartilage-like 
tissues, are involved in the regulation of chondrocyte 
activities, such as adhesion, migration and survival. 
Furthermore, the role of laminins in stem cell 
proliferation and chondrogenic differentiation was 
fully discussed. Also, recent studies have shown that 
modification of scaffolds with laminins can improve 
the biological activity of cartilage-forming cells 
for tissue engineering and applications (Francisco 
et al., 2014; Gilchrist et al., 2011b). Despite efforts 
to delineate the expression of laminins during 
chondrogenesis, our understanding of laminins in 
terms of their regulation, expression and function 
during chondrogenesis is still limited. Looking 
ahead, elucidating the spatiotemporal expression 
and function of specific laminin isoforms and their 
receptors in stem cell proliferation and lineage-
specific differentiation would enable better control of 
chondrogenesis and greatly benefit the future clinical 
exploration of laminins in cell therapy for cartilage 
injuries and osteoarthritis (Toh et al., 2016a).
	 Some limitations exist to prevent further 
investigations in cell-laminin interaction and 
potential clinical application. For example, laminins 
in various isoforms are present in low concentrations 
and are highly cross-linked within the ECM, making 
it difficult to extract them from tissues or purify them 
from cell supernatant. Due to their large size and 
higher-order structure, recombinantly expressed 
laminins, different from their native form, are not 
easily obtained. Thus, the exploration of native 
laminin to uncover the “real” roles of laminins in 
cartilage regeneration is necessary. Fortunately, a 
recent report shows that recombinant E8 fragments of 
laminin isoforms (LM-E8s), which are the minimum 
fragments conferring integrin-binding activity, 
promote more robust adhesion of human ESCs and 
iPSCs than Matrigel and intact laminin isoforms 
(Miyazaki et al., 2012). LM-E8s maintain long-term 
self-renewal, high-level expression of pluripotency 
markers and differentiation capacity into all three 
germ layers (Miyazaki et al., 2012). Since LM-E8s are 
much smaller and easier to produce recombinantly 
and purify than intact laminins, this finding indicates 
that LM-E8s, the minimum structure harboring 
the full integrin-binding activity of laminins, are 
remarkable substrates for the long-term culture 
of human ESCs, with a significant advantage over 
intact laminin isoforms, such as LM-511 and LM-332 
(Miyazaki et al., 2012).
	 In addition, the focus of current efforts is mainly on 
the use of a laminin-coated 2D culture environment, 



50 www.ecmjournal.org

Y Sun et al.                                                                                                              Laminin and cartilage regeneration

which is different from in vivo 3D chondrogenesis. 
Increasing evidence indicates that decellularized 
extracellular matrix (dECM), deposited by stem cells 
and primary cells, provides an excellent in vitro 3D 
model, mimicking the organization of native ECM 
in vivo and can rejuvenate stem cell proliferation 
and chondrogenic differentiation (Pei et al., 2011). 
The in vitro genetic modification model, which uses 
overexpression and knockout of targeted genes, 
can facilitate investigation of the functionality of 
specific laminin isoforms in a 3D environment on 
stem cell biological activity, such as proliferation and 
chondrogenic differentiation.
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Discussion with Reviewer

Roberto Narcisi: Are there any reports indicating the 
role of mechanical stimulation on laminin expression?
Authors: Few reports are available to indicate the 
role of mechanical stimulation in laminin expression. 
One is by Ulbrich et al. (2010), who found that 
microgravity did not influence laminin and collagen 
type IV expression in human chondrocytes.

Roberto Narcisi: Is there any evidence that TGFβ 
signaling can influence laminin expression in stem 
cells or chondrocytes? 
Authors: Yes. Some reports indicate that TGFβ 
signaling can influence laminin expression in stem 
cells or chondrocytes. For example, Toh et al. (2013) 
found that, under chondrogenic induction with 
TGFβ1, the percentages of NP cells and bone marrow 
stromal cells (BMSCs) in pellets with pericellular 
staining of laminin increased compared with no 
TGFβ1 treatment. Korecki et al. (2010) found that the 
expression level of laminin β1 increased when human 
BMSCs were exposed to chondrogenic medium with 
TGFβ3 or notochordal cell-conditioned medium.

Roberto Narcisi: Are there any data available on the 
effect of laminin silencing or overexpression on stem 
cell differentiation and proliferation?
Authors: Yes, but only a few publications. Laperle et 
al. (2015) indicated that inducible shRNA knockdown 
and Cas9-mediated disruption of LAMA5 dramatically 
reduced hPSC self-renewal and increased apoptosis 
without affecting the expression of pluripotency 
markers. Increased self-renewal and survival was 
restored to wild-type levels by culturing LAMA5-
deficient cells on exogenous laminin-521.
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