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Abstract

Intervertebral disc (IVD) degeneration is characterised by catabolic and inflammatory processes that contribute 
largely to tissue degradation and chronic back pain. The disc cells are responsible for the pathological 
production of pro-inflammatory cytokines and catabolic enzymes leading to degeneration. However, this 
phenotypical change is poorly understood. Growing evidence in animal and human studies implicates Toll-like 
receptors (TLR) and their activation through danger-associated alarmins, found increasingly in degenerating 
IVDs. TLR signalling results in the release of pro-inflammatory cytokines and proteolytic enzymes that can 
directly cause IVD degeneration and back pain. This review aims to summarise the current literature on 
TLR activation in IVD degeneration and discuss potential treatment modalities to alleviate the inflammatory 
phenotype of disc cells in order to arrest IVD degeneration and back pain.
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List of Abbreviations

ADAMTs	 a disintegrin and metalloproteinase
			   with thrombospondin motifs
AF			  annulus fibrosus
AP-1		  activator protein 1
BAX		  B-cell lymphoma 2-associated X
			   protein
BDNF		  brain-derived neurotrophic factor
CCL		  chemokine ligand
CCR1		  C-C chemokine receptor 1
COX		  cyclooxygenase
CXCL		  C-X-C motif ligand 1
DAMPs		 danger-associated molecular
			   patterns
ECM		  extracellular matrix
G-CSF		  granulocyte colony-stimulating
			   factor
HA		  hyaluronic acid
HMGB1	 high-mobility group box 1
HSP		  heat shock protein
HTRA		  high temperature requirement
IFN		  interferon
IKK		  inhibitor of NF‐κB kinase

IL			   interleukin
iNOS		  inducible nitric oxide synthase
IRAK1		  IL-1 receptor-associated kinase 1
IRF		  IFN regulatory factor 3
IVD		  intervertebral disc
JNK		  c-Jun N-terminal kinases
LPS		  lipopolysaccharide
LRR		  leucine rich repeats
MAPK		  mitogen-activated protein kinase
MCP-1		  monocyte chemoattractant protein 1
MIP-2		  macrophage inflammatory protein 2
MMP		  matrix metalloproteinase
NF-κB		  nuclear factor kappa B
NGF		  nerve growth factor
NP		  nucleus pulposus
PAMPs		 pathogen-associated molecular
			   patterns
PGE2		  prostaglandin E2
PGES/PTGES2	 prostaglandin E synthase-2
PGN		  peptidoglycan
PRR		  pattern recognition receptor
RANTES	 regulated on activation, normal T
			   cell expressed and secreted
RIG-I		  retinoic-acid-inducible gene 1
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catabolic enzyme activity, the AF becomes prone to 
micro-fissuring and tears that weaken its structural 
integrity and increase the risk of NP bulging and 
herniation (Lotz and Ulrich, 2006). The catabolic state 
is driven by disc cells producing inflammatory and 
degenerative factors that, in addition to breaking 
down the tissue, promote leukocyte infiltration 
(Rajasekaran et al., 2019; Risbud and Shapiro, 
2013). However, the phenotypic shift in NP and 
AF cells remains poorly understood. The search for 
much-needed disease-modifying drugs to stop and 
potentially reverse disc degeneration could be reliant 
on the knowledge of these molecular mechanisms. 
The present review summarises the recent advances 
implicating TLRs, a class of cytoplasmic type 
I receptors, in the inflammatory phenotype of 
degenerating IVDs.

TLRs

Molecular pattern recognition is a crucial mechanism 
at the core of innate immunity and tissue repair. 
PRRs interact with a wide range of molecules from 
PAMPs to endogenous danger-associated molecules 
(alarmins or DAMPs) and induce an inflammatory 
response involved in tissue remodelling or host 
defence. RIG-1-like receptors, Nod-like receptors 
and most importantly the 10 mammalian members 
of the TLRs are the main actors that perform the PRR 
function in humans (Newton and Dixit, 2012). TLR1, 
2, 4, 5, 6 and 10 are located mainly on the cell surface 
while TLR3, 7, 8 and 9 reside in endosomal vesicles 
(Takeda and Akira, 2015). TLR activation is induced 
in 3 steps (Fitzgerald and Kagan, 2020; Kumar et al., 
2013) (Fig. 1).

SLRPs		  small leucine-rich proteins
SMOC		  supramolecular organising centre
SOCS1		  suppressor of cytokine signalling 1
SPARC		  secreted protein acidic and cysteine
			   rich
SSL3		  staphylococcal superantigen-like
			   protein 3
TGF		  transforming growth factor
TIR		  Toll/IL-receptor
TIRAP		  TIR-domain‐containing adapter
			   protein
TLR		  Toll-like receptor
TNF		  tumour necrosis factor
TRAF6		  TNF receptor associated factor 6
TRAM		  TIR-domain‐containing adapter‐
			   inducing IFN‐β‐related adapter 
			   molecule
TRIF		  TNFR‐associated factor
VEGF		  vascular endothelial growth factor

Introduction

Disc degeneration
Chronic back pain is a leading cause of disability and 
one of the largest burdens on health-related quality of 
life worldwide (Balagué et al., 2012; Vos et al., 2013). 
Studies have shown a strong correlation between 
chronic back pain and IVD degeneration (Hartvigsen 
et al., 2018). IVD degeneration is strongly associated 
with ageing and is characterised by structural and 
biochemical changes to the central gel-like NP and 
the surrounding lamellar AF. Loss in load-bearing 
function of the disc is due to a generalised catabolism 
of the ECM and negatively charged proteoglycans in 
the NP, with consequent decrease in water content 
and compressibility of the disc. Through increased 

Fig. 1. Schematic representation of TLR activation by TLR2/4 agonist and TLR4 agonist and downstream 
signalling pathways.
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1.	 The agonist is trapped between the LRR-rich 
ectodomains of two TLR subunits. TLRs assemble 
in dimer pairs. In the present review, special 
attention is given to the TLR heterodimers 
TLR1/2 and TLR2/6 as well as the homodimer 
TLR4 due to their notable promiscuity in 
binding several alarmins and pathogens found in 
degenerating discs and their increased expression 
in degenerating IVD tissue. The proximity of two 
TLR subunits upon ligand binding induces the 
dimerisation their cytoplasmic TIR domain.

2.	 The intracellular dimerised TIR domains recruit 
membrane bound TIR-domain-containing TIRAP 
or TRAM, which proceed to organise a SMOC 
around one of two key proteins: MyD88 or 
TRIF. Most TLR dimers signal through MyD88-
dependent SMOC (myddosome). However, 
TLR4 homodimers can also activate the TRIF-
dependent SMOC (triffosome).

3.	 In both myddosome and triffosome activation, 
TRAF6 induces IKK and MAPK phosphorylation. 
Ultimately, the transcription factors NF-κB and 
AP-1, which are translocated to the nucleus, 
are activated to induce transcription of pro-
inflammatory genes. Recent research shows that 
the triffosome has the added ability to induce 
IFN1 signalling through IRF3.

	 These mechanisms are thought to induce an 
appropriate response according to the danger 
presented. For example, the bacterial cell wall 

component peptidoglycan, found mostly on gram-
positive bacteria, can activate TLR2/6 to release 
pro-inflammatory and chemotactic signals to recruit 
cells specialised in phagocytosis. Alternatively, 
viral nucleic acids can activate the TLR3/TLR4 
TRIF-dependent pathway for a more suitable 
IFN-mediated antiviral response. Dimer-agonist 
specificity, co-effector stimulation and signalling 
pathway cross-talks with cytokines and other 
alarmins enable the flexibility of downstream 
inflammatory responses observed (Lin et al., 2017). 
These inflammatory pathways are highly dependent 
on multiple positive feedback loops to amplify the 
inflammatory signal for quick and efficient response 
to danger. However, downsides of this efficient 
and flexible inflammatory response are the vicious 
inflammatory cycle TLR activation often creates. The 
study hypothesis was that these feedback loops are 
driving the inflammatory processes involved in disc 
degeneration (Fig. 2). The following sections will 
summarise the evidence supporting the presence of 
these feedback loops and their involvement in IVD 
degeneration and chronic back pain.

TLR activation in IVDs

Disc infections or PAMPs
Disc infections caused by low-virulence anaerobic 
bacteria such as Cultibacterium acnes (C. acnes, formerly 

Fig. 2. TLR and cytokine receptor-centric positive feedback loops contributing to IVD degeneration 
and back pain.
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Propionobacterium acnes) have been hypothesised 
as contributors to disc degeneration and Modic 
changes in the adjacent vertebral bone. Stirling et 
al. (2001) reported that 53  % of degenerative disc 
samples contain live bacteria. Since then, multiple 
groups have performed similar experiments finding 
varying levels of live C. acnes in degenerative disc 
tissues: 0 % (Li et al., 2016), 4.2 % (Neto et al., 2019), 
10 % (Schmid et al., 2020), 15.6 % (Ahmed-Yahia et 
al., 2019), 21 % (Yuan et al., 2017), 32 % (Tang et al., 
2018), 35 % (Salehpour et al., 2019), 37 % (Javanshir 
et al., 2017). This discrepancy can be explained by the 
propensity for contamination of clinical samples by 
C. acnes, one of the most abundant bacteria found on 
human skin (Mollerup et al., 2016). The best evidence 
for this phenomenon, although contested by Bråten 
et al. (2019), is the double-blind randomised clinical 
control trial for the efficacy of antibiotic treatment 
to alleviate chronic low-back pain and Modic type 
I changes (Albert et al., 2013). Regardless of the 
prevalence of bacterial infiltration in degenerating 
discs, in vitro human and in vivo animal investigations 
have revealed that C. acnes can survive in the disc 
environment and induce degeneration through 
the TLR pathway (Li et al., 2016; Lin et al., 2018). 
Human in vitro disc cell cultures respond to C. acnes 
contamination significantly increasing IL-6 mRNA 
production, which is decreased by Sparstolonin B (a 
TLR2/4 antagonist) treatment (Schmid et al., 2020). 
Interestingly, inoculation of rat caudal IVDs causes 
severe disc degeneration by triggering apoptosis of 
NP cells. Similar degeneration, with added Modic 
changes type I, is also found in inoculated rabbit IVDs 
(Chen et al., 2016). Furthermore, the time-dependent 
increase in Bax and cleaved caspase 3 following C. 
acnes infection is significantly reduced by knocking 
down TLR2 expression, indicating a central role 
for TLRs in bacterial infection of the IVD (Lin et al., 
2018). Interestingly, new evidence suggests that the 
activation of the TLR2/MAPK pathway induces NP 
cells to phagocytise S. aureus. As an immune-deprived 
tissue, this mechanism might explain how discs 
attempt to control infection (Lin et al., 2019). Taken 
together, these studies suggest that the inflammatory 
response to infection produced by discs cells through 
TLRs can be detrimental to the disc tissue and 
enhance degeneration.

Alarmins
Sterile activation of TLRs in response to injury and 
stress is mediated through a class of ligands called 
DAMPs or alarmins. The term alarmin was introduced 
by Oppenheim in 2005 to classify endogenous 
molecules that have an immunostimulatory function 
once bioavailable (Oppenheim and Yang, 2005). For 
example, HMGB1 is a nuclear DNA-binding protein 
that can be actively secreted through non-canonical 
pathways by stressed and activated cells or passively 
released by leaky necrotic cells. Once released from 
the nucleus and the cell, the hydrophobic region 
of this protein can bind or interfere with multiple 

membrane receptors including TLR2 and TLR4 (Janko 
et al., 2014). Interestingly, a significant increase in 
HMGB1 expression and immunopositivity was found 
in advanced disc degeneration, with up to 8-fold 
increase in Thomson grade 5 discs (Gruber et al., 2015; 
Shah et al., 2018). Other intracellular alarmins, such 
as peroxiredoxin-5, are also increased or uniquely 
present in degenerating discs compared to healthy 
young and aged discs (Rajasekaran et al., 2019). The 
second alarmin-producing mechanism is through 
proteolysis of the ECM. With increased matrix-
degrading enzyme activity during degeneration, 
the collagen network loses integrity and releases 
otherwise sequestered matrix proteins. The SLRPs 
biglycan and decorin, for example, needs to be 
liberated from the matrix by proteases to become 
mobile and reach cell surface receptors (Roedig 
et al., 2019; Schaefer et al., 2005; Schaefer, 2014). 
Alarmins can also be generated by fragmenting 
core ECM components such as aggrecan, biglycan, 
fibronectin, fibromodulin and hyaluronan. In the 
case of aggrecan, the proteases MMP3, MMP13, 
ADAMTs-4 and ADAMTs-5 cleave the interglobular 
domain of the core protein to release a fragment 
named ACAN-32, a small peptide known to interact 
with TLR2 and cause inflammation (Lees et al., 2015; 
Miller et al., 2017). Additionally, various fragments of 
fibronectin have been shown to induce inflammatory 
responses such as a 30 kD, 40 kD, 45 kD and 75 kD 
fragment (Aota et al., 2005). Increased fragmentation 
of fibronectin and other ECM alarmins such as 
decorin, biglycan, fibromodulin and lumican are 
also found in degenerating IVDs (Brown et al., 2012; 
Melrose et al., 2001; Melrose et al., 2007; Singh et 
al., 2009). An exhaustive list of known alarmins is 
organised in Table 1.

TLR activation amplifies inflammation

Pro-inflammatory cytokines
The main outcome of TLR activation in any cell type 
is the production of pro-inflammatory cytokines 
(Takeda and Akira, 2015). The similarity in the 
intracellular domains of TLRs and IL-1 receptors 
explains the convergence of their pathways in 
ultimately activating the transcription factor NF-κB 
through MAPKs. Consequently, activation of most 
TLR dimers on disc cells will increase the production 
of pro-inflammatory cytokines. Studies in animal 
models and human samples have confirmed that 
IVD cells secrete IL-1β, IL-3, IL-5, IL-6, IL-8, IL-7, 
IL-13, IL-15, IFN-γ and TNF-α following TLR2 and/
or TLR4 activation (Fang and Jiang, 2016; Krock et 
al., 2017; Quero et al., 2013; Rajan et al., 2013; Schmid 
et al., 2020). These cytokines are directly linked 
to the progression of IVD degeneration and their 
importance is highlighted by their wide influence on 
cellular responses, including chemokine production, 
synergistic effects on TLR activation and catabolic 
enzyme secretion (Johnson et al., 2015).
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TLR pathway sensitisation
One of the strongest amplification mechanisms for 
inflammatory signals is through the self-regulation 
of the TLR/cytokine pathways. First, TLR activation 
leads to an increased expression of TLRs, as 
demonstrated by many studies (Table 2). TLR4 
activation using LPS stimulation results in increased 
TLR2 and TLR4 expression in disc cells (Ellman et 
al., 2012; Rajan et al., 2013). Also, TLR2 activation 
using Pam2CSK4 or peptidoglycan increases 
TLR2 expression in disc cells (Krock et al., 2017). 
Separately, cytokines can increase TLR expression. 
Disc cells activated by IL-1β result in a significant 
increase in TLR2 mRNA expression, whereas TNF-α 
significantly upregulates TLR1, 2 and 4 (Klawitter 
et al., 2014; Qin et al., 2016). Gawri et al. (2014) 
demonstrated that also injurious loading increases 
TLR2 and TLR4 expression in IVD cells. Studies on 
other tissue types have found similar relationships 
between mechanical loading and induction of TLR 
expression, such as stretching alveolar epithelial 
cells (Kuhn et al., 2014), cardiomyocytes (Shyu 
et al., 2010) and chondrocytes (Wang et al., 2011). 
Although the causality of TLR regulation through 
mechano-sensing is still being investigated, some 
studies have suggested that TLR upregulation is 
indirect and a consequence of alarmin production. 
Alarmins, such as PGE2 and HMGB1, are induced 
by mechanical stimulation and may, following TLR 
activation, induce their own expression (Wang et al., 
2011; Wolfson et al., 2014). This causality still needs 
to be elucidated in the disc environment. However, 
to raise the sensitivity even more, some alarmins can 
be released directly from cells upon TLR activation, 
such as S100A8/A9 and HMGB1. Others are released 
indirectly after TLR activation through catabolic 
enzymes either liberating bound molecules, such as 

biglycan and decorin, from the matrix or by cleaving 
proteins into fragments, as in the case of aggrecan 
(32-mer), fibronectin, fibromodulin and hyaluronan 
(Dziki et al., 2018). Interestingly, Klawitter et al. (2014) 
reported a proportional increase in TLR1, TLR2, TLR4 
and TLR6 expression in degenerating discs, which 
could be the consequence of repeated exposure to 
alarmins and pro-inflammatory cytokines.

Leukocyte recruitment
Chemotaxis to the IVD may be beneficial in the case of 
reparative stem cells homing to the disc, attracted, for 
example, through CCL5 production by degenerative 
disc cells (Pattapa et al., 2014). However, an excessive 
chemotactic signal can worsen disc degeneration by 
recruiting leukocytes. Macrophages, neutrophils 
and T-cells have been shown to infiltrate herniated 
and degenerate discs following the release of 
chemoattractant from disc cells (Grönblad et al., 1994; 
Risbud and Shapiro, 2013). The harsh environment 
of the degenerating IVD may promote leukocytes 
to further enhance the catabolic milieu through the 
activity of both cytokine receptors and TLRs. In 
fact, in vivo studies have shown the beneficial effect 
on disc degeneration from blocking macrophage 
recruitment through CCR1 (Chou et al., 2020). 
CCL5 or RANTES, a well-documented chemokine 
attracting macrophages, monocytes and T-cells, is 
over-expressed in degenerating Thomson grade VI-V 
discs, likely through TNF-α stimulation (Gruber 
et al., 2014). Interestingly, alarmin-induced TLR 
activation controls also chemokine release from disc 
cells. Decorin stimulates rat AF cells to significantly 
increase production of the chemokines MCP-1, 
RANTES and MIP-2. The upregulation is reduced by 
the TLR4 antagonist TAK-242. Similarly, the alarmin 
resistin, produced during disc degeneration, induces 

Table 1. Alarmins activating TLRs found in IVDs.

TLR Alarmin

TLR2

Fibronectin fragments (Oegema et al., 2000)
HA acid fragments (Quero et al., 2013)

Biglycan (Melrose et al., 2007)
HMGB1 (Gruber et al., 2015; Shah et al., 2018)

HSP60, HSP70 (Klawitter et al., 2014)
Versican (Sztrolovics et al., 2002)

Histones (Rajasekaran et al., 2019)
Fibromodulin (Melrose et al., 2007)

Aggrecan fragment (Sztrolovics et al., 1997)
Decorin (Zwambag et al., 2020)

TLR4

Fibronectin fragments (Oegema et al., 2000)
Thrombospondin-1 (Rajasekaran et al., 2019)

Resistin (Li et al., 2017; Liu et al., 2016)
Tenascin (Gruber et al., 2009)

HSP60, HSP70 (Klawitter et al., 2014)
Hyaluronic acid fragments (Quero et al., 2013)
HMGB1 (Gruber et al., 2015; Shah et al., 2018)

Biglycan (Melrose et al., 2007)
Lumican (Melrose et al., 2007)
S100A8/A9 (Grad et al., 2016)

Decorin (Zwambag et al., 2020)
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Table 2. Summary of differential gene and protein expression studies downstream of TLR activation in 
IVDs. HS: Homo sapiens; BT: Bos taurus; RN: Rattus norvegicus; OC: Oryctolagus cuniculus; Chondrodystrophic 
canine.

Model Organism Agonist
Gene expression 

downstream
Protein expression 

downstream Reference

NP cells HS HA fragment
Increase: IL-1β, 

IL-6, IL-8, COX-2, 
MMP1, MMP13

Increase: IL-6, MMP1 Quero et al., 
2013

NP and AF 
cells HS PGN, LPS Increase: IL-1β, 

BDNF, NGF Increase: NGF Krock et al., 
2016

NP cells HS C. acnes
Increase: IL-1β, 

IL-6, IL-8, COX-2, 
iNOS, PTGES2

Increase: IL-6, IL-8 Schmid et al., 
2020

AF cells HS HMGB1  
Increase:

prostaglandin E2, IL-6, 
IL-8, TNF-α

Fang and 
Jiang, 2016

NP cells HS LPS

Increase: MMP13, 
ADAMTS-4, 
ADAMTS-5, 
TLR2, iNOS

 Ellman et al., 
2012

Whole disc HS
Pam2CSK4, 
Fibronectin-

fragment

Increase: NGF, 
IL-1β, TLR2

Increase: MMP3, 
MMP13, HTRA1, 

Cathepsin D, IL-3, IL-5, 
IL-6, IL-7, IL-10, IL-13, 
IL-15, IFN-γ, TGF-β, 

G-CSF, GRO, GM-CSF, 
CXCL1, CCL8, CCL7

Krock et al., 
2017

Disc cells BT LPS Increase: IL-1β,
IL-6, TNF-α, TLR4

Increase: TNF-α, IL-1β, 
HMGB1

Decrease: collagen 
type II, aggrecan

Rajan et al., 
2013

NP cells RN LPS Increase: TLR4, 
TNF-α, IL-1β, IL-6

Increase: TNF-α, IL-1β, 
HMGB1 Qin et al., 2016

NP cells HS Resistin Increase: CCL4 Increase: CCL4 Li et al., 2017

AF cells RN Decorin
Increase: MIP-2, 

RANTES, MCP-1, 
IL-6

Zwambag
et al., 2020

Whole disc OC Fibronectin-
fragment

Decrease: aggrecan, 
collagen type II

Anderson
et al., 2003

NP cells CC LPS

Increase: TNF-α, 
IL-6, MMP3, 

MMP13, VEGF, 
PGES

Iwata et al., 
2013

the release of CCL4 through TLR4 and NF-κB. The 
increase in CCL4 successfully attracts macrophages 
to the NP by binding to CCR1 (Li et al., 2017). In 
favour of leukocyte recruitment and infiltration, TLR 
activation results in neovascularisation through the 
production of angiogenic factors (Feng et al., 2018; 
Lee et al., 2011). An increase in potent factors, such 
as VEGF, was observed following TNF-α and LPS 

stimulation of the NF-κB pathway (Iwata et al., 2013; 
Ohba et al., 2009). Angiogenic factors attract new 
blood vessels to infiltrate AF fissures and encourage 
chemotaxis to the IVD (Haro et al., 2002). These results 
reveal another arm of the positive feedback loop 
potentially tying TLRs to disc degeneration through 
leukocyte recruitment.
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TLR activation promotes catabolism

Protease production
Proteases involved in matrix degradation during 
IVD degeneration have been directly linked to NF-
κB activity (Wuertz et al., 2012). Furthermore, TLR 
activation results in the production of MMP1, MMP3 
and MMP13 (which are the most upregulated MMPs 
in degenerating discs) in IVDs (Quero et al., 2013). 
MMPs have the ability to cleave a wide range of ECM 
molecules, such as fibronectin, aggrecan, decorin, 
tenascin and collagen type I and II, which are the 
main structural components of cartilaginous tissues. 
ADAMTs-4 and -5, two proteases highly prevalent 
in cartilaginous tissue degradation, are also under 
the control of TLR activation in disc cells (Ellman et 
al., 2012; Tian et al., 2013). Although, proteases are 
involved in physiological tissue remodelling, their 
continuous activation will lead to tissue deterioration 
and cell death.

Anabolic suppression
In addition to upregulation of matrix-degrading 
enzymes, TLR activation can also suppress matrix 
synthesis to further exacerbate catabolism. Both LPS 
and alarmin fibronectin-fragment have suppressive 

effects on proteoglycan expression in disc cells (Aota 
et al., 2006). Furthermore, TLR activation reduces the 
expression of other important structural proteins such 
as collagen type II and aggrecan, which are crucial for 
tissue organisation and function (Rajan et al., 2013). By 
promoting catabolic enzyme production and anabolic 
suppression, the TLR pathway seems to favour tissue 
catabolism once activated.

TLR activation and pain

TLR activation promotes innervation
Another pathology associated with TLR activation 
is discogenic and chronic back pain, in which the 
presence of neurites infiltrating the typically aneural 
IVDs are excited by factors released by degenerating 
IVDs (Freemont et al., 2002). Indeed, neurotrophic 
factors and NGF expression in human IVD cells 
are both regulated by TLR2 through NF-κB (Krock 
et al., 2016). Both NGF and BDNF promote neuron 
survival, maturation and growth. Additionally, in 
mature peripheral afferent fibres, NGF and BDNF can 
induce chronic neuronal sensitisation, resulting in the 
development of chronic pain (Pezet and McMahon, 
2006).

Table 3. Potential therapeutic agents for TLR pathway suppression in disc degeneration.

TLR target Therapeutic agent

TLR2

Candesartan (Barakat et al., 2014)
OPN-305 (Reilly et al., 2013)
M2000 (Aletaha et al., 2017)

Sparstolonin B (Liang et al., 2011)
CU-CPT22 (Cheng et al., 2012)

SSL3 (Koymans et al., 2018)
C29/o-Vanillin (Mistry et al., 2015)

Imidaziquinollines (Kužnik et al., 2011)

TLR4

Resatorvid/TAK242 (Krock et al., 2018)
Candesartan (Barakat et al., 2014),

Valsartan (Yang et al., 2009)
Fluvastatin (Földes et al., 2008)
Simvastatin (Methe et al., 2005)

Naloxone/Naltrexone (Lewis et al., 2012)
Curcumin (Youn et al., 2006)

Dioscin (Qi et al., 2015)
Eritoran/E5564 (Kim et al., 2007)

NI-0101 (Monnet et al., 2017)
M2000 (Aletaha et al., 2017)

FP7 (Perrin-Cocon et al., 2017)
Sparstolonin B (Liang et al., 2011)

6-shoagol (Park et al., 2009)
EGb761 (Chen et al., 2013)

PSMa1-a3 (Chu et al., 2018)
Oleocanthal (Iacono et al., 2010)
Lactoferricin (Kim et al., 2013)

Boswellic acid (Wang et al., 2014)
Procyanidin B3 (Shang et al., 2020)

TAP2 (Park et al., 2020)
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TLR activation induces pain
Silencing TLRs can reduce pain sensation caused 
by alarmins in in vivo models. Miller et al. (2015; 
2017) found that alarmins, such as aggrecan 32-mer 
fragment and S100A8, stimulate TLR2 and TLR4, 
resulting in production of proalgesic chemokines in 
dorsal root ganglion nociceptive neurons and cause 
hyperalgesia when injected into a wild-type mouse 
knee. Furthermore, TLR-4-deficient mice, used as 
a model for neuropathic pain, are less sensitive to 
mechanical stimuli (Tanga et al., 2005). Moreover, 
back pain behaviour is relieved when measured in 
response to mechanical stimuli and cold allodynia 
in SPARC-null mice. The antagonist used in the 
study was TAK-242, a TLR4-specific antagonist 
(Krock et al., 2018). This was also seen in rats, where 
TAK-242 downregulates p65, IL-1β and TNF-α in 
the spinal cord dorsal horn, resulting in higher heat 
and mechanical pain thresholds (Zhao et al., 2015). 
These results support evidence linking disc-secreted 
cytokines generating painful stimuli in neighbouring 
neurons (Aoki et al., 2002). Studies on the effect of 
TLR activation upon discogenic pain are limited 
and need to be further explored for a more complete 
comprehension. For more information on the role 
of TLRs in persistent pain, a thorough review was 
published by Lacagnina et al. (2018).
	 To summarise, the multi-armed positive feedback 
loops centred around pro-inflammatory cytokines 
and TLRs are believed to play an important role in 
IVD degeneration. However, multiple in vitro and 
ex vivo experiments conducted in human, mouse, 
rat or bovine tissues show that these degenerative 
cascades can be triggered by TLR agonists as well as 
mechanical or inflammatory stimulation. Synthetic 
TLR agonists, alarmins or pathogen administration 
were all shown to induce disc degeneration (Krock 
et al., 2017; Rajan et al., 2013). This is supported by in 
vivo experiments on New Zealand white rabbits and 
rats where the injection of fibronectin-fragment, a 
known alarmin (Table 1), or LPS in the IVD causes a 
progressive inflammatory process similar to that seen 
in IVD degeneration (Anderson et al., 2003; Dudli et 
al., 2018). Therefore, it is imperative to find effective 
treatments to inhibit this vicious cycle and prevent 
disc degeneration.

Therapeutic approaches

Unfortunately, there is a lack of approved TLR-
specific drugs to treat IVD degeneration. This section 
summarises different approaches that could be taken 
to reduce the degenerative environment induced by 
the TLR pathway in degenerating discs. The first 
approach is to neutralise molecules that will interfere 
with alarmin activity. The second is to suppress TLR 
expression in disc cells. The third is to modulate 
the downstream molecular cascade following 
TLR activation. For their similarity to disc cells, 
pathological changes and research interest, studies 

on TLR antagonists applied to chondrocytes or in 
osteoarthritis have been included. Further studies 
on TLR blocking agents in IVD cells are necessary to 
assess therapeutic efficiency and safety. A complete 
list of potential therapeutics can be found in Table 3.

Interfering with TLR agonists
Antibodies binding specific alarmins have had 
some experimental success in reducing arthritis in 
mice, including blocking synovial HMGB1 with a 
polyclonal antibody (Kokkola et al., 2003). Pep-1, a 
HA-binding peptide, can prevent HA degradation 
into a lower molecular weight alarmin following 
IL-1β exposure and TLR activation (Campo et al., 
2011). The disadvantage of blocking specific alarmins 
is the risk of limited efficacy compared to blocking 
the receptor. Blocking the ligands also inhibits their 
beneficial effects independent of TLRs.

Blocking TLR activation
Many antagonists have been found to inhibit either 
ligand binding or dimerisation of TLRs to block 
downstream activation. Regarding TLR binding 
inhibitors, some compounds have a TLR dimer 
specificity, such as TAK242 (TLR4 homodimer) and 
CU-CPT22 (TLR1/2 heterodimer) (Cheng et al., 2012; 
Takashima et al., 2009). TAK242 has shown potential 
to attenuate the release of catabolic factors such as 
IL-6, IL-8, MMP1, MMP3 and MMP13 in human 
chondrocytes (Seny et al., 2013). Exciting new research 
shows that systemic injection of TAK-242 in SPARC-
null mice alleviates both IVD degeneration and back 
pain behaviour (Krock et al., 2018). In vitro studies 
have shown the benefit of blocking the TLR pathway 
in mouse discs using lactoferricin (TLR4 antagonist) 
after LPS or IL-1β insult (Kim et al., 2013). However, 
the translatability of TLR4 blocking in humans still 
needs evaluation. Other compounds, such as SSL3, 
have a wider blocking range on TLRs that seem to 
block TLR heterodimerisation (Koymans et al., 2015). 
Taking efficacy and risk/reward into account, the most 
effective TLR inhibitor for treating disc degeneration 
should target TLR2 and TLR4 specifically. A list of 
potential TLR2 and TLR4 inhibitors can be found in 
Table 3.

Suppressing TLR expression
As TLRs are overexpressed in degenerating IVDs, 
suppressing their expression in these tissues could 
be a viable therapeutic pathway to fend off aberrant 
activation. Some compounds such as curcumin, 
o-vanillin and triptolide have been found to decrease 
TLR2 and TLR4 mRNA expression after IL-1β pre-
stimulation in human IVD cells (Klawitter et al., 
2012). These effects were concurrent with lowered 
pro-inflammatory cytokine and protease expression, 
suggesting that the reduced TLR expression is 
a secondary effect to decreased inflammation. 
Another interesting option for suppressing TLR 
expression in diseased tissues is the use of gene-based 
therapies. MicroRNAs are important regulators of 
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TLR expression. MiR-155 represses the negative 
regulator SOCS1 and MiR-146a downregulates 
TLR downstream components TRAF6 and IRAK1 
(O’Neill et al., 2011). Similarly, Zhang et al. (2018) 
showed that overexpression of MiR-150-5p in disc 
cells inhibits increased TLR4 expression induced by 
LPS. This approach also reduces the LPS-mediated 
secretion of TNF-α, IL-1β and IL-6, all while reversing 
the downregulation of aggrecan and collagen type 
II (Zhang et al., 2018). Therefore, interfering with 
microRNAs using expression vectors or antisense 
oligonucleotides might be an interesting therapy to 
block TLR pathways in IVDs. However, more studies 
are needed to solve delivery and off-target issues and 
improve safety and efficacy in vivo.

Blocking downstream effectors of TLR activation
The use of some compounds, such as vanillin, shown 
to interfere with MyD88 recruitment has resulted in 
recent advances in relieving pro-inflammatory and 
catabolic states of IVD cells (Mai et al., 2018; Mistry et 
al., 2015). The Chinese herb Sparstolonin B, interfering 
with MyD88 recruitment, downregulates TNF-α, IL-
1β and IL-6 expression in a mouse model of disc 
degeneration. Furthermore, Sparstolonin B decreases 
TLR4, MyD88 and NF-κB protein expression, 
suggesting that TLR pathway downregulation results 
in de-sensitisation (Ge et al., 2018). Studer et al. (2007) 
showed some efficacy in blocking MAPKs, such as 
JNK or p38, for suppressing inflammation. However, 
their usefulness is limited due to their ubiquity and 
having important functions in many other pathways. 
This probably explains why toxicity and side effects 
are commonly reported. A development of isoform-
specific inhibitors may help in reducing side effects 
without affecting the response of targeted MAPK 
inhibition.

Limitations

There are two main limitations to this review. First, 
the evidence presented in the literature is still limited. 
Indeed, only two in vivo studies have described the 
inflammatory cascade inducing IVD degeneration 
through TLR activation. However, the abundance 
of research showing the consistent effects of TLR 
activation ex vivo and in vitro in other cell types 
solidify the IVD-specific literature covered in the 
present review. The second limitation is the lack 
of knowledge on the applicability of TLR-based 
therapeutics for IVD degeneration. As such, most of 
the therapeutic options listed in Table 3 were tested in 
other cell types. Although the TLR inhibition studies 
referenced have shown beneficial effects on disc 
homeostasis and inflammatory state, it is currently 
not known whether TLR inhibition has the potential 
to reverse IVD degeneration. Future studies are 
needed to confirm this hypothesis.

Perspectives

The question of the relative importance of the 
TLR pathway for tissue inflammation degradation 
and pain related to IVD degeneration remains 
largely unanswered. However, strong evidence is 
accumulating implicating TLRs in degenerating 
cartilaginous tissues, including IVDs. Further 
advances should aim to observe if the inflammatory 
and catabolic phenotype of disc cells can be reduced 
or reversed by TLR pathway interference in order to 
limit IVD degeneration and pain.

Conclusion

This review highlights the implication of TLR 
pathways in the phenotypic shift of NP and AF 
cells contributing to IVD degeneration and back 
pain. Although well controlled TLR activation may 
be important in tissue remodelling, uncontrolled 
activation of this pathway may lead to aberrant 
inflammation and tissue breakdown. Therefore, 
blocking TLRs may offer a potential disease-
modifying therapy for IVD degradation. This is 
important since there is currently an absence of 
disease-modifying drugs for IVD degeneration and 
back pain, which remains one of the most prevalent 
and debilitating diseases worldwide.

Search method

The search for literature was structured around 
different keywords, such as “Toll-like receptors”, 
“infections”, “alarmins” and “pain” in conjunction 
with the keyword “intervertebral disc” using the 
boolean operator AND. These keywords were 
searched in 3 main databases: Google Scholar, NCBI 
(PubMed) and the McGill Library catalogue.
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Discussion with Reviewer

Zhen Li: Do you think blocking of TLRs could be used 
in the future as a treatment therapy for IVD disease?
Authors: We believe so. Since the TLRs are an 
integral part of the cytokine-mediated inflammatory 
process seen at the core of IVD degeneration and 
that alarmins are increasingly found in degenerating 
discs, the literature supports the fact that inhibiting 
this pathway leads to a dampening of the catabolism 
and inflammation found in IVDs. However, it 
remains to be seen whether this dampening is enough 
to bring balance to tissue homeostasis to arrest the 
vicious cycle of degeneration.

Zhen Li: Blocking TLRs seems to offer a promising 
therapeutic  treatment for management of 
inflammatory and degenerative disc disease. Is there 
any side effect anticipated if TLR blockers are applied 
systematically or locally for treatment of disc disease?
Authors: TLRs are important as the first line of 
defence at the core of innate immunity. Therefore, 
a systemic inhibitory approach could bring adverse 
immunosuppressive effects. Ideally, treatements 
should be applied locally with slow release or short-
term exposure at a higher dose.

Editor's note: The Guest Editor responsible for this 
paper was Andrea Vernengo.


