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Abstract

Dentineogenesis starts on odontoblasts, which synthesise and secrete non-collagenous proteins (NCPs) 
and collagen. When dentine is injured, dental pulp progenitors/mesenchymal stem cells (MSCs) can 
migrate to the injured area, differentiate into odontoblasts and facilitate formation of reactionary dentine. 
Dental pulp progenitor cell/MSC differentiation is controlled at given niches. Among dental NCPs, dentine 
sialophosphoprotein (DSPP) is a member of the small integrin-binding ligand N-linked glycoprotein 
(SIBLING) family, whose members share common biochemical characteristics such as an Arg-Gly-Asp 
(RGD) motif. DSPP expression is cell- and tissue-specific and highly seen in odontoblasts and dentine. DSPP 
mutations cause hereditary dentine diseases. DSPP is catalysed into dentine glycoprotein (DGP)/sialoprotein 
(DSP) and phosphoprotein (DPP) by proteolysis. DSP is further processed towards active molecules.
 DPP contains an RGD motif and abundant Ser-Asp/Asp-Ser repeat regions. DPP-RGD motif binds to 
integrin αVβ3 and activates intracellular signalling via mitogen-activated protein kinase (MAPK) and focal 
adhesion kinase (FAK)-ERK pathways. Unlike other SIBLING proteins, DPP lacks the RGD motif in some 
species. However, DPP Ser-Asp/Asp-Ser repeat regions bind to calcium-phosphate deposits and promote 
hydroxyapatite crystal growth and mineralisation via calmodulin-dependent protein kinase II (CaMKII) 
cascades.
 DSP lacks the RGD site but contains signal peptides. The tripeptides of the signal domains interact with 
cargo receptors within the endoplasmic reticulum that facilitate transport of DSPP from the endoplasmic 
reticulum to the extracellular matrix. Furthermore, the middle- and COOH-terminal regions of DSP bind 
to cellular membrane receptors, integrin β6 and occludin, inducing cell differentiation. The present review 
may shed light on DSPP roles during odontogenesis.
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and mesenchymal cells. It is composed of enamel, 
dentine, cementum, soft connective tissues and 
periodontium (Fig. 1a) (Mitsiadis et al., 2015; Nanci, 
2012). The dentine is a thick highly mineralised tissue 
layer (present underneath the enamel) consisting 
of dentinal tubules and inter-tubular dentine and 
acts as a secondary barrier against infections of 
the dental pulp cavity (Lopez-Cazaux et al., 2006). 
Dentineogenesis starts at the onset of odontoblast 
differentiation. Odontoblasts originate from neural-
crest-derived mesenchymal cells, which differentiate 
to form odontoblasts in specific temporal-spatial 
patterns, originating at the principal cusp tip and 
advancing toward the base of the teeth (Chen et 
al., 2008; Thesleff, 2003). Odontoblasts are mitotic 
cells organised as a layer of barrier cells along the 
edge between the dentine and dental pulp cavity. 
Odontoblasts synthesise and secrete the organic ECM 
proteins (Linde and Goldberg, 1993; MacDougall et 
al., 1997). Dentine is composed mostly of HA (70 % 
by weight), ~ 12 % water as well as collagens and 
NCPs (Linde and Goldberg, 1993; MacDougall et 
al., 1997). Odontoblasts in odontogenesis and dental 
caries participate in the physiological primary and 
secondary dentine formation. Also, odontoblasts 
maintain the dentine metabolism throughout the 
life of the tooth and serve as the first line of defence 
against dentine pathogen invasion by RD (reparative, 
tertiary) formation at the dentine-pulp interface 
beneath the carious infected dentine region (Couve 
et al., 2014).
 The dental pulp is a loose connective tissue and 
contains blood vessels with abundant capillaries and 
an innervated tissue under the odontoblast layer. 
Blood vessels facilitate the exchange of nutrients 
and waste products in the dental pulp (Lopez-
Cazaux et al., 2006; Tziafas et al., 2000). DPCs are 
a heterogeneous population retaining a source of 
MSCs (Tirino et al., 2012). Maintenance of a healthy, 
vascularised and innervated dental pulp is necessary 
for a healthy tooth and dental regeneration (Huang et 
al., 2018). In the dental pulp cavity, MSCs are known 
to dwell within peri-vascular microenvironments, 
termed niches (Kaukua et al., 2014; Shi and Gronthos, 
2003; Sui et al., 2019), and other locations (Gronthos et 
al., 2000; Miura et al., 2003; Morsczeck et al., 2005; Seo 
et al., 2004). However, little is understood about exact 
localisations and signalling regulations of the niches 
(Bluteau et al., 2008). The role of specific local niches 
essential to regulate cell migration, differentiation 
and cell fate specification during developmental and 
reactional events of dentine is not well recognised 
(Ruch, 1985). Dental progenitors/MSCs are capable 
of differentiating into new odontoblast-like cells, 
which can form a dentine-like structure such as RD, 
for dentine repair after a dentine injury such as dental 
caries.

Dental caries and its management
Dental caries, the most prevalent chronic infectious 
disease globally, is a biological irretrievable 
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Introduction

The tooth is a highly mineralised organ resulting from 
the interactions between the dental oral epithelial 
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impairment of vulnerable dental hard tissues due 
to acids produced by bacterial glycolysis of dietary 
carbohydrates (Baker et al., 2021). The WHO has 
defined the early childhood caries as a worldwide 
problem, with a prevalence between 60 % and 
90 %. In addition, more than 90 % of all adults have 
experienced this disease (Bernabe et al., 2020; Griffin 
et al., 2008; Kazeminia et al., 2020). Tooth decay leads 
to dental pulpal infection, necrosis, loss of tooth 
function and vitality as well as eventual loss of the 
tooth. Various restorative materials have successfully 
been used to fill and replace injured or diseased 
dental tissues (Wang et al., 2020b). However, after 
restorative treatment, about 50 % of cases demand 
revision in 5-10 years (Burke and Lucarotti, 2009; 
Chen et al., 2020). In addition, any traditional artificial 
restorative material might fail due to inappropriate 
physical, biocompatible and mechanical properties 
(Goldberg and Smith, 2004; Tziafas et al., 2000; Yang 
et al., 2020a). If the material pulls away from the 
cavity wall, a microleakage would form between the 
dentine layer and dental materials, causing secondary 
or recurrent caries (Askar et al., 2021; Goldberg and 
Smith, 2004; Tziafas et al., 2000). Therefore, despite 
several advances in dental restorative materials, it is 
required for new therapeutic restorative methods in 
dentistry to support a healthy dentition. Therapies 
using stem cells such as dental pulp MSCs, cell/
tissue engineering and other biomaterial components 
have successfully been reported for replacing or 
regenerating destroyed and injured dental tissues 
(Han et al., 2021; Saoud et al., 2016). For instance, 
Vidovic et al. (2017) showed that when pulpectomy 
is performed in animal models, a group of dental 
pulp progenitor cells/MSCs can migrate to the injured 
areas, differentiating into odontoblast-like cells, 
forming an RD. Consequently, the growth factor 
BMP2 enhances dental pulp cell differentiation into 
odontoblast-like cells, which synthesise and secrete 
dental ECMs, forming an RD in the injured areas 
(Nakashima, 2005; Ni et al., 2018). Besides BMP/
TGF-β signalling, recent studies have demonstrated 
that Wnt/β-catenin signalling induces progenitor 
cell/MSC growth and differentiation, promoting 
RD formation (Neves and Sharpe 2018; Zaugg et al., 
2020). Furthermore, Han et al. (2021) reported that 
an artificial synthesised peptide, termed TVH-19, 
promotes human dental pulp cell differentiation and 
induces tertiary dentine formation in a rat model.

Dental pulp MSCs
Stem cells are characterised by both self-renewal and 
differentiation potential. The self-renewal of stem 
cells can occur by symmetric cell divisions, generating 
two daughter cells with the same fate, or asymmetric 
cell divisions, where one daughter cell is identical 
to the mother cell, while the other develops into a 
different cell type (Götz and Huttner, 2005).
 Stem cells are classified as ESCs, iPSCs and 
ASCs. ESCs originate from the inner cell mass of 
the blastocyst prior to implantation. ESCs possess 

unlimited self-renewal potential and can generate all 
the body cell types. iPSCs, generated by inducing the 
expression of defined transcription factors in somatic 
cells, are pluripotent and can differentiate towards all 
cell types in given microenvironments. ASCs reside 
within different tissues such as the BM. Unlike ESCs 
and iPSCs, ASCs are limited in their potential to the 
cell types of the tissue they inhabit. Although stem 
cells normally remain in a quiescent, nondividing 
state, ASCs can proliferate and differentiate to replace 
damaged cells within their tissues and accelerate 
tissue healing following an injury (Cable et al., 2020; 
Pittenger et al., 1999; Yamanaka, 2020).
 The BM contains numerous different cell types 
arising from HSCs, non-haematopoietic MSCs 
and other cell types, which are interconnected 
by a vascular and innervated network within 
the cavities of the BM. HSCs have the ability of 
self-renewal and differentiation into various cell 
types including erythrocytes, megakaryocytes, 
platelets, granulocytes, lymphocytes, osteoclasts, 
and dendritic cells (cells of the erythroid/myeloid 
lineages) and others. Subsequently, HSCs migrate 
to other haematopoietic or lymphoid organs giving 
rise to B lymphocytes, T lymphocytes, macrophages, 
and others. MSCs produce osteoblasts (bone-
forming cells), adipocytes (fat cells) and other cell 
types, while osteoclasts (bone-resorbing cells) 
share a monocytic origin with macrophages. MSCs 
display a variable self-renewal and differentiation 
potential (Friedenstein et al., 1970; Pittenger et al., 
1999; Wilkinson et al., 2020). They have been widely 
characterised in vitro as expressing various markers 
such as STRO-1, CD146 or CD44 (Pittenger et al., 
1999). STRO-1 is a cell surface marker of osteogenic 
precursors, CD146 and CD44 are pericyte and 
mesenchymal stem cell markers, respectively. MSCs 
have self-renewal ability and potentially differentiate 
into mesodermal lineages, therefore originating 
cartilage, bone, fat, skeletal muscle and connective 
tissues (Pittenger et al., 1999; Wang et al., 2020a). 
Endothelial progenitor/stem cells play a principal 
role in BM angiogenesis as they have clonogenic 
capability and can be mobilised into the peripheral 
blood system, differentiating into mature endothelial 
cells in newly formed blood vessels after tissue injury. 
Thus, endothelial stem cells derived from the BM 
represent a source for the body vasculogenesis and 
angiogenesis.
 Dental pulp contains progenitor cells/MSCs 
able to differentiate into adipocytes, chondrocytes, 
odontoblasts, osteoblasts and other cell type in 
given environments. During dentineogenesis and 
tertiary dentine formation, dental pulp progenitors/
MSCs are able to differentiate into odontoblast-like 
and odontoblastic cells under appropriate signals 
(Gronthos et al., 2000; Miura et al., 2003; Sui et al., 
2019). In a tooth, some cells can be either transit-
amplifying cells or progenitors and commit to 
terminal differentiation. These transit-amplifying 
cells and progenitors have a limited lifespan thus, 
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they can only produce a tissue for a given time 
(Walker et al., 2019). By contrast, dental MSCs are self-
renewing and able to generate any of the tissues for 
their entire life span. In the dental pulp, dental MSCs 
include DPSCs, SHED and SCAP (Fig. 1b) (Gronthos 
et al., 2000; Miura et al., 2003; Sonoyama et al., 2008).
 DPSCs were first isolated from human permanent 
third molar teeth and are the most common source 
of dental MSCs (Gronthos et al., 2000). DPSCs lack 
unique markers, therefore generic MSC markers such 
as STRO-1, CD146, CD105 and CD44 are used for the 
identification and isolation of DPSCs (Pittenger et 
al., 1999; Wang et al., 2020a). DPSCs can differentiate 
into odontoblasts (Gronthos et al., 2000), osteoblasts 
(d’Aquino et al., 2009), chondrocytes (Waddington 
et al., 2009), adipocytes (Gronthos et al., 2002; 
Waddington et al., 2009), myoblasts (Pisciotta et al., 
2015) and neurogenic cells (Martens et al., 2014) in 
vitro and in vivo.
 SHEDs were isolated from deciduous teeth, 
have fibroblastic features and express MSC specific 
markers including CD45, CD90, CD106, CD146, 
CD166 and STRO-1 but not haematopoietic and 
endothelial markers such as CD34 and CD31 (Miura 
et al., 2003). SHEDs have a high proliferation rate 
and can differentiate into adipogenic, chondrogenic, 
myogenic, neurogenic, odontogenic and osteogenic 
cells in vitro as well as induce formation of dentine 

and bone in vivo (Miura et al., 2003). SHEDs, neural-
crest-derived stem cells, also express neural cell 
markers such as nestin, beta III tubulin and GFAP 
as well as several pluripotent markers including 
Oct4 and Nanog (Chai et al., 2000; Miura et al., 2003; 
Yang et al., 2019; Yang et al., 2020b). SHEDs express 
more osteocyte markers such as ALP, collagen type 
I and Runx2 than do BM MSCs in vitro. SHEDs 
were transplanted into the subcutaneous tissue 
in immunodeficient mice and promoted bone 
repair through inhibition of osteoclast activity in 
vivo (Yamaza et al., 2010). They are also capable of 
differentiating into vascular endothelial cells and 
form functional blood vessels by up-regulation 
of MEK1/ERK signalling (Bento et al., 2013). Due 
to their deciduous teeth origin, SHEDs exhibit 
several features similar to DPSCs. However, their 
proliferation and differentiation capacity are higher 
than that of DPSCs and BM MSCs (Bluteau et al., 
2008).
 SCAPs isolated from apical papilla cells at the 
root apex of teeth, display high proliferation rates 
and demonstrate an increase of migratory and 
regenerative capacities compared with other dental 
MSCs (Sonoyama et al., 2008). SCAPs are easily 
obtainable from human third molars. As SCAPs 
can be derived from the primary teeth, they express 
primitive embryonic markers including Sox2, Oct3/4, 

Fig. 1. Schematic representation of a molar 
and MSCs found in the teeth. (a) The 
crown of the tooth is covered with enamel, 
while the root is covered with cementum. 
The cementoenamel junction is located at 
the enamel and root. The root is surrounded 
by the alveolar bone through periodontal 
ligaments. The dentine surrounds the 
dental pulp. Nerves and blood vessels enter 
the dental pulp from the apical foramen 
of the tooth and provide nutrition and 
innervation to odontoblasts and dental 
pulp. (b) DPSCs; SCAPs; SHEDs. 
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Nanog and others (Lee and Seo, 2016; Sonoyama et 
al., 2008). Among these markers, CD146 and STRO-
1 co-expression is related to early-MSC phenotype. 
Certainly, CD146+/STRO-1+ SCAPs show superior 
colony-forming efficiency, with increased cumulative 
doubling compared with their counterpart (Nada 
and El Backly, 2018). CD24, another marker of 
the pluripotent population is considered to be a 
representative surface marker for SCAPs due to its 
absence in other dental MSCs (Kang et al., 2019). 
It is worth noting that the expression of the three 
markers CD146, STRO-1, CD24 declines with cell 
passaging, supporting their correlation with superior 
stemness. SCAPs are optimised for osteogenesis 
and odontogenesis; regarding that, SCAPs are 
considered to be odontoblast precursors in vivo (Du 
et al., 2020; Nada and El Backly, 2018). However, 
SCAPs are multipotent and give rise to mesenchymal 
cell lineages such as adipocytes and chondrocytes 
(Yang et al., 2020b). Taken together, SCAPs will 
hopefully gain a significant role in tissue repair and 
regeneration.
 Besides dental MSCs (Gronthos et al., 2000; 
Miura et al., 2003), other MSC populations have been 
isolated from human dental tissues including the 
periodontal ligament (Seo et al., 2004) and the dental 
follicle (Morsczeck et al., 2005). Progenitors/stem 
cells isolated from the oral cavity express a group of 
mesenchymal markers, such as CD29, CD73, CD90 
and CD105, and embryonic markers, including Sox2, 
Nanog and Oct4, and can differentiate into multiple 
cell lineages (Miran et al., 2016). Noticeably, some 

dental stem cells demonstrate more embryonic-
like characteristics than those of BM and umbilical 
cord stem cells (Miran et al., 2016; Sui et al., 2019). 
Oral cavity MSCs are an important and valuable 
resource for dental and medical clinical/therapeutic 
applications. However, little is known about how 
progenitor cells/MSCs differentiate into specific 
mature cells, such as osteoblasts and odontoblasts, 
as well as which niches promote such differentiation.

SIBLINGs and DSPP

Niches can influence cell behaviour and fate 
(Méndez-Ferrer et al., 2020; Morrison and Spradling, 
2008; Perry and Li, 2007). For instance, BM ECM 
influences osteoblast differentiation into osteocytes 
while dental pulp ECM governs dental progenitor 
cell/MSC differentiation into odontoblasts (Chen et 
al., 2005; Chen et al., 2007; Guo et al., 2009; Vijaykumar 
et al., 2020). Bone and dentine are highly mineralised 
tissues formed by osteoblasts and odontoblasts, 
which derive from mesenchymal cells. Both bone 
and dentine possess common characteristics and 
show similar features during mineralisation. During 
this process, odontoblasts and osteoblasts synthesise 
and secrete ECM proteins to form matrix-forming 
predentine and osteoid, respectively, which in turn 
are converted to bone and dentine. At the same 
time, the organic matrix of osteoid and predentine is 
composed of collagens and NCP proteins necessary 
for mineralisation of collagen fibres. The most 

Fig. 2. Diagram of DSPP mutations associated with genetic dentine diseases. The structure of the human 
DSPP is shown. Exons are shown as boxes numbered 1-5, with the amino acids (aa) encoded by each exon 
indicated below. Introns are represented by lines. Locations of DSPP mutations are indicated. White colour 
indicates the 5’ UTR, gray colour DSP sequences, yellow colour the DPP sequence. Asterisks show mutations 
affecting splice sites according to a splice-site recognition software (https://www.phenosystems.com/www/
index.php). c. = cDNA; g.  = genomic; del = deletion; dup = duplication; ins = insertion; IVS = intervening 
sequence.
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common NCP proteins of bone and dentine include 
BSP, OPN, MEPE, DSPP and DMP1, belonging 
to the SIBLINGs family (Bellahcène et al., 2008; 
Fisher and Fedarko, 2003; MacDougall et al.,1997). 
SIBLING genes are located on chromosome 4q21 
in humans and chromosome 5q in mice, sharing 
a similar exon structure. The presence of the RGD 
integrin-binding motifs enables them to trigger 
intracellular signals by initiating integrin-mediated 
signalling. Although bone and tooth show several 
common characteristics, the physical and biological 
functions of osteoblasts and odontoblasts exhibit 
several differences (Chen et al., 2005; Chen et al., 2009; 
Vijaykumar et al., 2020). The functions of the members 
of the SIBLINGs family in dentine and bone have 
been found through a linkage to human diseases and 
different genetic animal models. DSPP, ~ 143 kDa, 
is the largest of the SIBLING proteins, with 1,301 
amino acids in humans and plays essential roles in 
dentineogenesis (de La Dure-Molla et al., 2015). DSPP 
contains 4 introns and 5 exons (Fig. 2) (MacDougall 
et al.,1997). Unlike other SIBLING protein family 
members, DSPP spatial-temporal expression is 
mainly seen in pre-ameloblasts and odontoblasts 
during tooth development and formation (Chen et 
al., 2009; D’Souza et al., 1997) and weakly detected 
in osteoblasts and non-mineralised tissues (Fig. 3) 
(Chaplet et al., 2006; Qin et al., 2002). For example, 
DSPP protein expression in odontoblasts and dentine 
is about 400-fold higher than that in osteoblasts and 
bone (Qin et al., 2002). DSPP is transcribed from a 
single gene (MacDouall et al., 1997) but full-length 
DSPP has hardly been found in cells or tissues, 
whereas its cleavage products, DSP and DPP in mice, 
rats and humans as well as DSP, DGP and DPP in 
pigs are the most abundant NCPs in dentine and 
odontoblasts (Qin et al., 2001; Yamakoshi et al., 2005; 
Yuan et al., 2012).
 DSP is composed of partial exon 2, exon 3, exon 4 
and partial NH2-terminal region of exon 5 of DSPP, 
while DPP consists of most DSPP exon 5 (Fig. 2). 
DSPP is first processed into DSP/DGP and DPP (also 
termed dentine PP) by BMP1, TLR metalloproteinases 
and astacin proteases (Marschall and Fisher, 2010; 
Steiglitz et al., 2004; Tsuchiya et al., 2011). Then, DSP 
is further catalysed into small active molecules by 
MMP-2, -9 and -20 to expose cryptic binding sites 
into active molecules (Yamakoshi et al., 2006; Yuan 
et al., 2017). Mutations of the cleavage site between 
DSP and DPP regions result in DGI phenotypes in 
mice, indicating that DSPP needs to be cleaved into 
its active fragments, DSP and DPP (Zhu et al., 2012).
 The porcine DGP has an 81 amino acid segment 
of DSPP (Ser392 to Gly472) located between DSP and 
DPP fragments. DGP contains 4 phosphorylated 
serine residues (Ser453, Ser455, Ser457 and Ser462) and 
1 glycosylated asparagine (Asn397). DGP molecular 
weight is a 19 kDa in SDS-APGE gel by Coomassie 
Brilliant Blue staining, that is decreased to 16 kDa by 
glycopeptidase A digestion. The porcine DGP has the 
same number (12 each) of positively charged (Arg and 

Lys) and negatively charged (Asp and Glu) residues. 
This pig DGP contains abundant Ser (12) and Gly (13). 
Lacking post-translational modifications, DGP has a 
calculated isoelectric point of 6.7. Due to containing 
4 phosphorylated Ser and sialic acids, the modified 
DGP has an increased affinity for HA, which most 
likely facilitates the binding to dentine crystals. The 
identity of the porcine DGP amino acid sequence 
(NP_99842.1) is conserved, with 58 (81 %) conserved 
amino acids in humans (F42472.1), 40 (49 %) in 
rats (L79813.1) and 38 (47 %) in mice (C12787.1) 
(Yamakoshi et al., 2005). How DSPP is catalysed into 
the porcine DGP by proteinases and DGP functions 
during dentineogenesis are yet to be determined.
 DSP and DPP play unique biological roles during 
tooth development (Paine et al., 2005; Suzuki et 
al., 2009). DSP or DPP mutations in humans are 
associated with DGI-II (OMIM 125490) and DGI-III 
(OMIM 125500) as well as DD-II (OMIM 125420) 
and DD-I (MIM 125400) (Fig. 2, Table 1,2). Those 
hereditary dentine disorders are the most common 
dentine genetic diseases. Estimated incidences 
of DGI in humans is 1/6,000-8,000, while DD is 
1/100,000 (Witkop, 1975). DGI-II is characterised 
by pulpal calcification, opalescent discoloured 
dentition and bulbous crown shape as well as 
impaired odontoblast cell differentiation and delayed 
conversion of predentine to dentine (Fig. 4). DGI-III 
was originally regarded as a Brandywine isolate 
(Witkop, 1975) and a severe form of DGI-II with 
multiple dental pulp exposures and shell-like teeth. 
DD-II is similar to DGI-II in the deciduous dentition, 
but tooth discolouration is minimal and dental pulp 
cavities are thistle-tube shaped with pulp stones 
in the permanent dentition. In DD-I, teeth are 
normal in shape and form, as well as consistent in 
the deciduous and permanent dentitions. In some 
cases, colour of the teeth may exhibit a slightly 
amber discolouration. However, the roots are short, 
and the pulp obliteration causes a crescent-shaped 
pulpal remnant in the permanent dentition and a 
total pulpal obliteration in the deciduous dentition. 
Using mouse models, it was confirmed that Dspp is 
required for dentineogenesis, as homogenous null 
mice (Dspp−/−) show tooth deficiency similar to those 
seen in patients suffering from DGI and DD, with 
enlarged pulp cavities, a wide predentine zone, 
reduced dentine volume, hypomineralisation and 
dental pulp exposure (Fig. 4) (de La Dure-Molla et 
al., 2015; Sreenath et al., 2003).
 SIBLING-RGD motifs are capable of binding to 
cell surface integrins in normal tissues and enhance 
cell adhesion, spreading, motility, proliferation, 
differentiation and survival via up-regulating kinase 
cascades and transcription factors. Also, the biological 
functions of SIBLINGs are regulated by proteolytic 
processing to uncover cryptic binding sites and 
expose functional domains, thus modulating cell 
adhesion and activity. For instance, OPN protein 
interacts with various integrins, such as αvβ3, αvβ5, 
αvβ1, α4β1, α8β1, α9β1 and CD44 splice variants 
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Table 1. Summary of DSP mutations associated with inherited dentine defects. a Numbering assumes 
the A of the ATG start codon as nucleotide 1. Reference sequence NM_014208.3. c. = cDNA; g.  = genomic; 
p. = protein; del = deletion; IVS = intervening sequence.

Location cDNAa Protein Ethnicity Diagnosis Mutation class References
Exon 2

c.16T > G
g.16T > G p.Y6D Caucasian DD-II Missense Rajpar et al., 2002

c.44C > T
g.44C > T p.A15V Caucasian DGI-II Missense Malmgren et al., 2004

c.49C > A
g.49C > A p.P17T Chinese DGI-II Missense Xiao et al., 2001

c.49C > T
g.49C > T p.P17S

Chinese DGI-II Missense Zhang et al., 2007
Caucasian DGI-II Missense Hart et al., 2007
Caucasian DGI-II Missense McKnight et al., 2008

c.50C > T
g.50 > T p.P17L

Chinese DGI-II Missense Li et al., 2012
Korean DGI-II Missense Lee et al., 2013

Intron 2
c.52-6T > G
g.1185T > G
IVS2-6T > G

p.V18_Q45del Korean DGI-II Splice site Lee et al., 2008

c.52-3C > G p.V18_Q45del Korean DGI-II Splice site Kim et al., 2004

g.1188C > G
IVS2-3C > G

Korean DGI-II Splice site Kim et al., 2004

Caucasian DGI-II Splice site Kim et al., 2004
c.52-3C > A
g.1194C > A

IVS2-3
Finnish DGI-II Splice site Holappa et al., 2006

c.52-25del23bp
IVS2-3C-A Chinese DGI-II Splice site Wang et al., 2009

c.52-1G > A Chinese DGI-II Splice site Liu et al., 2016

c.52-2A > G p.V18_Q45del
Chinese DGI-III Splice site Li et al., 2017

Thai DGI-II Missense Porntaveetus et al., 2019
Exon 3

c.52G > T
g.1191G > T p.V18F

Chinese DGI-II Missense Xiao et al., 2001
Korean DGI-III Missense Kim et al., 2005

Caucasian DGI-III Missense Kim et al., 2005
Chinese DGI-II Missense Song et al., 2006
Finnish DGI-II Missense Holappa et al., 2006
Chinese DGI-II Missense Li et al., 2017

c.53T > A
g.1192T > A p.V18D

Japanese DGI-II Missense Kida et al., 2009
Korean DGI-II Missense Kim et al., 2009
Korean DGI-II Missense Kim et al., 2011

c.133C > T
g.1272C > T p.Q45X

Chinese DGI-II Missense Zhang et al., 2001
Chinese DGI-II Missense Song et al., 2006

Intron 3
c.135 + 2T > C
g.8662 T > C Chinese DGI-II Splice site Zhang et al., 2011

c.135 + 1G
g.1275G > A

IVS3 + 1G > A
p.V18_Q45del Chinese DGI-II Splice site Xiao et al., 2001

c.135 + 1G > T p.V18_Q45del Caucasian DGI-II Splice site McKnight et al., 2008
c.135 + 3A > G
IVS3 + 3A > G Mongolian DGI-II Splice site Bai et al., 2010

Exon 4
c.202A > T

g.1474A > T p.R68W
Caucasian DGI-II Missense Malmgren et al., 2004

Finnish DGI-II Missense Holappa et al., 2006
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Table 2. Summary of DPP mutations associated with inherited dentin defects. a Numbering assumes the A 
of the ATG start codon as nucleotide 1. Reference sequence eNM_014208.3. b NSHL, familial nonsyndromic 
hearing loss. c. = cDNA; p. = protein; fs = frameshift; del = deletion; ins = insert.

Location cDNAa Protein Ethnicity Diagnosis Mutation class Reference
Exon 5

c.1686delT p.D562EfsX752 Finnish DD-II Frameshift Nieminen et al., 2011

c.1830delC p.S610RfsX704 French
DD-II Frameshift Nieminen et al., 2011
DD-II Frameshift McKnight et al., 2008

c.1870_1873delTCAG p.S624TfsX687 Caucasian DD-II Frameshift McKnight et al., 2008b

c.1874_1877delACAG p.D625AfsX687 Chinese DDI-II Frameshift Li et al., 2017
c.1915_1918delAAGT p.K639QfsX67 Thai DGI Frameshift Porntaveetus et al., 2017
c.1918_1921delTCAG p.S640TfsX671 Caucasian DD-II Frameshift McKnight et al., 2008b

c.1918_1921delTCAG p.S640TfsX673 Greek DD-II Frameshift Nieminen et al., 2011
c.1922_1925delACAG p.D641AfsX672 Finnish DD-II Frameshift Nieminen et al., 2011

c.2040delC p.S680fsX1313 Chinese DD-II Frameshift Song et al., 2008
c.2063delA p.D688VfsX626 Finnish DD-II Frameshift Nieminen et al., 2011
c.2134delA p.S712AfsX602 Turkish DD-II Frameshift Lee et al., 2019
c.2272delA p.S758AfsX554 Caucasian DGI-II/III Frameshift McKnight et al., 2008b

c.2349delT p.S783RfsX531 Spanish DDI-II Frameshift Nieminen et al., 2011
c.2525delG p.S842TfsX471 Caucasian DGI-II/III Frameshift McKnight et al., 2008b

c.2593delA p.S865fsx1313 Chinese DDI-II Frameshift Song et al., 2008
c.2666delG p.S889TfsX425 Greek DDI-II Frameshift Nieminen et al., 2011

c.2684delG p.S895fsx1313
Chinese DDI-II Frameshift Song et al., 2008
Chinese DDI-II Frameshift Li et al., 2017

c.2688delT p.N896EfsX418 Korean DDI-II Frameshift Lee et al., 2010
c.3085A>G p.N1029D Chinese NSHLb Missense Li et al., 2018
c.3087C>T p.N1029D Chinese NSHLb Missense Li et al., 2018
c.3135delC p.S1045RfsX269 Caucasian DD-II Frameshift McKnight et al., 2008a

c.3141delC Caucasian DD-II Frameshift McKnight et al., 2008b

c.3179delG p.S1060TfsX254 Korean DD-II Frameshift Lee et al., 2019
c.3438delC p.D1146fsX1313 Chinese DDI-II Frameshift Song et al., 2008

c.3480_3481insCTGCT p.D1161LfsX155 Korean DD-II Frameshift Lee et al., 2019
c.3504_3508dup p.D1170AfsX146 Chinese DDI-II Frameshift Yang et al., 2015

c.3509_3521del13bp p.D1170AfsX139 Chinese DDI-II Frameshift Li et al., 2017
c.3546_3550delTAGCAinsG p.D1182EfsX1312 Chinese DDI-II Frameshift Song et al., 2008

c.3560delG p.S1187MfsX127 Korean DDI-II Frameshift Lee et al., 2011

c.3582_3591del10bp p.D1194EfsX117
delCAGCAGCGAT Finnish DDI-II Frameshift Nieminen et al., 2011

c.3599_3634del36bp
c.3715_3716ins18bp

del1160_1171
ins1198_1199

American DGI-III Frameshift Dong et al., 2005

c.3625_3700del76bp p.D1209AfsX80 Vietnamese DDI-II Frameshift Nieminen et al., 2011

(Bellahcène et al., 2008; Marschall and Fisher, 2008). 
OPN by thrombin cleavage separates the CD44− and 
integrin-binding domains, which in some cases 
promote adhesion over cell migration. Another 
example is the thrombin-cleaved NH2-terminal OPN 
segment that interacts with αvβ3 and αvβ5 integrins 
via the RGD motif (Bellahcène et al., 2008; Furger et al., 
2003) or with α4β1 and α9β1 integrins via the cryptic 
SVVYGLR sequence (Rangaswami et al., 2006) and 
promotes cell adhesion and migration. The COOH-
terminal region of OPN interacts with CD44 variant 
6 (CD44v6) and/or variant 3 (CD44v3) by a heparin 
bridge (Teramoto et al., 2005). In addition, OPN is 
also catalysed by MMP-3 and MMP-7 and the cleaved 

OPN domains promote cell adhesion and migration 
in vitro by activating β1-containing integrins 
(Agnihotri et al., 2001). OPN is also a substrate 
for plasma transglutaminase factor IIIa and liver 
transglutaminase (Prince et al.,1991) and enhances cell 
adhesion, spreading and migration (Higashikawa et 
al., 2007). The RGD domain of DMP1 only binds to 
αVβ3, while BSP-RGD motif not only interacts with 
αVβ3, but also with αVβ5 and enhances cell adhesion 
and migration (Marschall and Fisher, 2008). DMP1 
is a substrate of BMP1 and BMP1-generated DMP1 
fragments have similar binding efficiency to the 
intact DMP1 protein in cell attachment and migration 
(Marschall and Fisher, 2008; Steiglitz et al., 2004).
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Fig. 3. DSPP expression pattern in developing mouse teeth from embryonic day 15 to postnatal month 2. 
(a’) DSPP mRNA expression was not seen in the dental and osteogenic mesenchyme as well as the dental 
epithelium at embryonic day 15 (E15). (b’) At postnatal day 1 (PN1), DSPP expression was detected in pre-
ameloblasts, pre-odontoblasts and weakly in the dental pulp. (c’-e’) DSPP expression was mostly restricted 
to odontoblasts from PN5 to 2 months (M) after birth while DSPP expression was barely seen in bones. (a-e) 
Brightfield images. Am, ameloblasts; B, bone; D, dentine; De, dental epithelium; Dm; dental mesenchyme, 
Dp, dental pulp; E, enamel; Od, odontoblasts; pAm, pre-ameloblasts; pOd, pre-odontoblasts. 
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DPP
DPP contains an RGD domain at the NH2-terminal 
site, acting as a ligand and binding to integrin 
αVβ3. DPP-RGD/integrin-αVβ3 complex activates 
intracellular signalling pathways through up-
regulating MAPK, including SAPK/JNK, ERK1/2 and 
p38 in human and mouse cells. Consequently, this 
complex up-regulates bone/dentine-related gene 
expression such as RUNX2, OSX, ALP, OCN and BSP 
in human and mouse cells as well as promotes cell 
differentiation and mineralisation in hBMSC, mouse 
osteoblastic cells (MC3T3-E1) and mouse fibroblastic 
(NIH3T3) cells (Jadlowiec et al., 2004; 2006). In 
addition, DPP-RGD induces phosphorylation of 
paxillin, FAK and of the transcription factor Elk-1 
and up-regulates downstream gene transcription in 
mouse embryonic mesenchymal (C3H10T1/2) and 
primary dental pulp cells (Eapen et al., 2012) (Fig. 
5). The flanking regions of the RGD motif influence 
binding of RGD to specific integrins and enhance cell 
adhesion and migration (Marschall and Fisher, 2008; 
Suzuki et al., 2014). However, unlike other SIBLING 
family members, 17 out of 37 DSPP genes from 37 
species tested do not contain the RGD motif of DPP, 
indicating that the RGD domain within the DPP may 
be rudimental (Suzuki et al., 2016).
 In addition to these common domains, only 
the DPP domain of DSPP contains abundant Ser-
Asp or Asp-Ser repeat regions, which are the most 
phosphorylated regions of SIBLING protein and one 
of the most acidic proteins in numerous species such 
as human, rat and mouse (Jonsson et al., 1978; Suzuki 
et al., 2016). DPP binds to calcium ion and collagen 
type I, acting as an inductor of mineralisation in 
ECMs and inducing HA deposition and growth of 
vertebrate bones and teeth (He et al., 2005). DPP can 
interact with the cellular membrane (annexin 2 and 6) 
and facilitates calcium influx into cells (Alvares et al., 

2013) while functioning as a cell-penetrating peptide 
promoting cellular uptake of components attached 
to it and releasing different cargos intracellularly 
(Figueiredo et al., 2019; Ravindran et al., 2013). 
Additionally, DPP-DSS (Asp-Ser-Ser) repeat regions 
can facilitate intracellular Ca2+ release. This calcium 
flux promotes the activation of Ca2+ CaMKII. Activated 
CaMKII enhances the phosphorylation of the 
transcription factors Smad1/5/8 and phosphorylated 
Smad1/5/8 proteins are translocated to the nucleus 
and up-regulate Smad1/5/8 downstream gene 
expression as well as promote cell differentiation 
in murine pluripotent stem cells (C3H10T12) and 
hBMSCs (Eapen et al., 2013) (Fig. 5). Eapen et al. 
(2013) showed that the length of the Ser-Asp and/or 
Asp-Ser repeat regions varies among species but is 
not correlated with dentine hardness (Suzuki et al., 
2016).
 To analyse the relationship between length 
variations in Ser-Asp/Asp-Ser repeat regions and the 
role of DPP in matrix mineralisation, different lengths 
of the Ser-Asp/Asp-Ser repeat regions have been 
generated (Kobuke et al., 2015). Recombinant mouse 
Dpp deleted 63.5 Ser-Asp repeat regions, accounting 
for 36.5 % of the length of the Ser-Asp repeat region, 
were generated and these peptides were able to induce 
calcium-phosphate precipitation similarly to the full 
length Dpp at the same concentration. In contrast, 
the inverted Dpp deleted 63.5 Ser-Asp repeat regions 
had no effect on the induction of calcium phosphate 
precipitation (Kobuke et al., 2015). The 8-repeat copy 
of Asp-Ser-Ser residues facilitates calcium-phosphate 
precipitation and HA crystal growth, promoting the 
remineralisation of demineralised human enamel 
and dentine tubule occlusion (Hsu et al., 2011). Dpp-
mimetic peptide molecules upregulate the expression 
of bone/dentine-related genes including RUNX2, 
ALP, DMP1, OCN and collagen type I in human 

Fig. 4. Clinical photographs and radiographs from DGI-II patients. Clinical photograph of a 7 year-old 
boy showing (a) severe attritions (arrowheads). (b) Radiograph indicates severe enamel loss with decreased 
pulp space and reduced dental mineral density. (c) Intraoral photographs of a 5 year-old girl exhibiting 
severe attrition of the primary dentition to the gingiva level and teeth with yellow-brown colour and a 
translucent appearance (arrowheads). (d) Radiograph shows that dentine was thin, with severe occlusal 
attrition and periapical abscess (arrowheads). 
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osteosarcoma (Saos-2) cells as well as promote cell 
differentiation (Gulseren et al., 2019). The biological 
function of Dpp was narrowed-down to 3 Asp-Ser-Ser 
repeat peptides that are able to facilitate calcium-
phosphate deposition on the human enamel surface 
and crystallographic structure of calcium-phosphate 
crystals in vitro (Chung et al., 2012).
 For the in vivo study of the role of DPP, mice 
overexpressing Dpp transgenic gene driven by Col1α1 
promoter (Dpp-Col1α1 Tg) were crossed-bred with 

Dspp KO (Dspp−/−) mice to generate Dspp KO/Dpp 
Col1α1 Tg mice (Zhang et al., 2018). Dspp KO/Dpp-
Col1α1 Tg mice had an increase in dentine thickness 
and restored dentine mineral density compared 
with Dspp KO mice. Histochemistry showed that 
abnormal widening of the predentine was narrower 
in Dspp KO/Dpp-Col1α1 Tg mice. Scanning electron 
microscopy analysis demonstrated that the structure 
of dentinal tubules in Dspp KO/Dpp-Col1α1 Tg mice 
was better organised than that of Dspp KO mice. 

Fig. 5. Hypothetical model of DSPP signalling during dentineogenesis and dentine regeneration. 
(a) DSP183-219 binds to integrin β6 and forms a complex, activating phosphorylation of p38, Erk1/2 and 
Smad1/5/8. Phosphorylated Smad1/5/8 interact with Smad4. The complex is translocated into the nucleus. 
Phosphorylated Smad1/5/8 in coordination with Smad4 bind to SBEs in the DSPP regulatory region and 
activate DSPP transcription. On the other hand, DSP363-458 as a ligand interacts with the extracellular loop2 
of Ocln194-241, stimulating Ocln phosphorylation at Ser490. Furthermore, the DSP-Ocln complex stimulates 
FAK phosphorylation at Ser722 and Tyr576 and then induces dental mesenchymal cell differentiation and 
mineralisation. (b) DPP binds to integrin α5β3 through its RGD domain. DPP-α5β3 activates MAPK signal 
pathway and up-regulates gene expression and cell differentiation. The RGD domain of DPP phosphorylates 
paxillin and FAK at Tyr397. Phosphorylated FAK activates Erk and phosphorylated Erk is translocated into 
the nucleus and activates transcription factor Elk-1 and downstream gene expression. In addition, the DSS 
repeat region of DPP mediates intracellular calcium store flux and triggers CaMKII activation, resulting in 
Smad1/5/8 signalling cascade. DSS, Asp-Ser-Ser; RGD, Arg-Gly-Asp. 
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Dentine mineral deposition rate in Dspp KO/Dpp-
Col1α1 Tg mice was significantly enriched compared 
to that of Dspp KO mice as analysed by double 
fluorochrome labelling. The overexpression of Dpp 
partially rescued the dentine deficiency in Dspp KO 
mice, indicating that Dpp may facilitate dentine 
development during dentineogenesis. In contrast, 
the body weight of Dpp-Col1α1 Tg mice was lower 
compared to that of wild type mice. Moreover, both 
short and long bones were shorter in Dpp-Col1α1 
Tg mice compared to that of wild type mice. Dpp-
Col1α1 Tg mice presented reduced trabecular bone 
formation and exhibited narrow proliferative and 
chondroblast layers in long bones. Histochemistry 
analysis demonstrated that the proliferative zone of 
long bones in Dpp-Col1α1 Tg mice was characterised 
by reduced cell proliferation and increased gene 
expression of chondroblast differentiation markers 
such as type II collagen (a marker of proliferating 
chondrocytes), type X collagen (a marker of 
hypertrophic chondrocytes) and proteoglycan, 
but there were no obvious defects in chondrocyte 
differentiation (Zhang et al., 2016). Transgenic mice 
of an overexpression of Dpp driven by the mouse 
Amg promoter (Dpp-Amg Tg) were generated. Dpp-
Amg Tg mice showed a pitted and chalky enamel 
with nonuniform thickness that tended to wear 
more easily. In mice, Dpp-Amg transgene results in 
disruptions of the prismatic enamel structure and 
weakened enamel with uneven thickness (Paine et al., 
2005; White et al., 2007). The reasons for the different 
effects of Dpp on different tissue development and 
formation remain unclear. A reason might be that 
the biological mechanisms of Dpp are cell- and 
tissue-specific. Spatial-temporal expression of Dspp 
is detected in preodontoblasts and preameloblasts 
at early stages of tooth development. During mouse 
tooth formation at postnatal stages, Dspp expression 
is barely detected in ameloblasts, but continuously 
seen in odontoblasts, predentine and dentine, 
maintaining odontoblast and dentine metabolism 
and homeostasis (Fig. 3) (Chen et al., 2009; D’Souza 
et al., 1997). However, Dspp is weakly expressed in 
osteoblasts, chondrocytes and bones (Chen et al., 2009; 
Qin et al., 2002). This suggests that a dose-dependent 
tuning of Dspp expression plays important roles in 
cell- and tissue-biological activity and behaviour. For 
instance, Runx2 is a key factor necessary for osteoblast 
differentiation and bone formation (Ducy et al., 1997). 
RUNX2 mutations in humans are related to CCD, 
with affected subjects displaying short stature, late 
closure of fontanels and sutures, aplasia of clavicles, 
hypertelorism, low nasal bridge and dental defects 
including tooth hypoplasia supernumerary teeth and 
abnormal tooth eruption (Lee et al., 1997). Runx2 is 
expressed by dental mesenchymal cells at the early 
stages and downregulated in odontoblastic cells at 
the later stages during odontogenesis (Chen et al., 
2009). Runx2 stimulates Dspp expression in mouse 
preodontoblastic cell lines but represses its expression 
in mouse odontoblastic cells (Chen et al., 2005). 

Runx2−/− mice present impairment of tooth formation, 
with progression only to the cap/early bell stages of 
tooth development. The teeth in Runx2−/− mice are 
misshapen, severely hypoplastic and lack odontoblast 
and ameloblast differentiation, while exhibiting loss 
of normal dentine and enamel matrices (D’Souza et 
al., 1999). In contrast, in Runx2 Tg mice, odontoblasts 
lose their normal columnar shape and dentine is 
surrounded by odontoblasts that are flat or/and 
cuboid in shape. In Runx2 Tg mice, dentine is thin 
and retains lacunae, which display osteoblast and 
bone-canaliculi-like structures. Structure of dentinal 
tubules and pre-dentine is invisible. Moreover, 
collagen type I expression is decreased and Dspp 
expression is undetectable (Miyazaki et al., 2008). 
Therefore, Runx2 function is related to cell- and 
tissue-type-specific or dependent on the stages of 
cytodifferentiation during tissue development.

DSP
DSP lacks an RGD domain and Ser-Asp/Asp-Ser 
repeat regions (MacDougall et al 1997; Suzuki et 
al., 2016). Many DSPP mutations occur in the DSP 
region (Fig. 2, Tables 1,2). DSP and peptides derived 
from it are able to regulate gene expression, protein 
phosphorylation and induce dental primary/stem 
cell differentiation (Lee et al., 2012; Ozer et al., 2013).
 The starting site of DSP contains the signal 
peptides, which are required for intracellularly 
trafficking of DSPP from the rER to the ECM. Point 
mutations of the signal peptides such as Tyr 6 to Asp, 
Ala 15 to Val, Pro 17 to Leu and Val 18 to Asp together 
with frameshift mutations resulting in longer mutant 
hydrophobic domains of DSPP are associated with 
DD-II, DGI-II and DGI-III (Fig. 2, Table 1,2). In a 
mouse model, an amino acid on Pro 19 of the signal 
peptides of Dspp was substituted by an amino 
acid on Leu 19 (Liang et al., 2019). The mutant mice 
DsppP19L/P19L displayed symptoms similar to human 
DGI-II and DGI-III, showing enlarged dental pulp 
chambers in mutant young mice and smaller dental 
pulp chambers in older mutant mice. These mutant 
mice exhibited an increase in enamel attrition and 
an undue deposition of peritubular dentin. DsppP19L/

P19L mice presented a decrease in Dspp expression 
in odontoblasts as compared to the wild type mice. 
The secretion of the mutated Dspp was impaired 
and the mutant Dspp protein accumulated within 
the rER. The traffic mechanisms of Dspp protein 
from rER to ECM related to the mutations in the 
signal peptides associated with DGI and DD are not 
completely known. Recently, Yin et al. (2018) found 
that Surf4 (also named Erv29p) is the cargo receptor, 
which has a high affinity for binding the triple amino 
acids, IPV, within the signal peptides of DSPP but 
weakly binds the mutant amino acids of the signal 
peptides. The wild type DSPP is transported from 
the rER lumen to the ECM. Specific alterations in a 
single amino acid of the tripeptide of Dspp result in 
inadequate aggregate formation of Dspp within the 
rER and failure to efficiently transport Dspp out of 
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the rER. The mutant signal peptide(s) of Dspp protein 
accumulate in the rER lumen, forming damaging 
aggregates and degradation by proteinases within 
rER (Yin et al., 2018).
 DSP is an ECM protein that activates intracellular 
signalling pathways when dental cells are treated 
with it (Lee et al., 2012; Ozer et al., 2013). How 
DSP domain and its cleaved products facilitate 
intracellular signalling is unknown. Dsp protein 
was used as a bait for seeking its partner(s) through 
screening a dental cell protein library and it was 
found that Dsp acts as a ligand and interacts with 
4 cellular membrane proteins including Ocln, 
integrin β6, CD105 (endoglin) and collagen type IV 
(Li et al., 2017; Wan et al., 2016). Dsp183-219 36 amino 
acids are sufficient for interacting with the cellular 
membrane receptor integrin β6. Dsp-integrin β6 
complex stimulates p38 and Erk1/2 phosphorylation 
and phosphorylated transcription factors Smad1/5/8 
(pSmad1/5/8). pSmad1/5/8 interacts with Smad4 and 
both are translocated into the nucleus, bind to Dspp 
regulatory region, upregulate Dspp transcription 
and have a positive feedback on Dspp expression 
and odontoblast cell homeostasis. Also, Dsp183-219 
peptide promotes dental cell spreading, migration, 
proliferation and differentiation. On the other hand, 
the COOH-terminal domain of Dsp363-458 binds to 
the second loop194-241 of Ocln, which is an integral 
membrane protein (Cong and Kong, 2020). Dsp 
domain phosphorylates Ocln on Ser490 and FAK on 
Ser722 and Tyr576 through binding of Ocln to FAK. 
Dsp363-458 facilitates mouse dental papilla mesenchymal 
and human dental pulp stem cell differentiation and 
mineralisation. Furthermore, in an in vivo study, 
Dsp363-458 was mixed with agarose beads (Dsp-beads) 
and the Dsp-beads compound was implanted into 
mouse dental pulp chambers. The histological 
analysis showed that in Dsp-beads-treated mice, 
dental pulp mesenchymal cell proliferation and cell 
differentiation were significantly improved around 
the Dsp-beads compound compared to that of the 
control mice. The dental pulp mesenchymal cells in 
the Dsp-beads-treated groups secreted dental ECMs 
and formed a layer between the dental pulp chamber 
and resin. More interestingly, there were a lot of 
newly formed blood vessels and less inflammatory 
cells around the Dsp-beads, along with the dental 
pulp mesenchymal cells and blood vessels, which 
migrated into the Dsp-beads. This study indicated 
that the Dsp363-458 is capable of inducing dental 
mesenchymal cell proliferation, cell differentiation 
and vasculogenesis (Fig. 5) (Li et al., 2017).
 For the in vivo study of the biological role of DSP, 
overexpression of Dsp Tg mice driven by the mouse 
Dspp promoter (Dsp-Dspp Tg) was generated (Suzuki 
et al., 2009). Dsp-Dspp Tg mice were crossed-bred with 
the Dspp−/− mice. Dspp−/−/Dsp-Dspp Tg mice resulted in 
partial rescue of restored predentine width, decrease 
of frequent dental pulp chamber exposure and partial 
recovery in dentine volume compared to Dspp KO 
mice. However, no rescue of dentine mineral density 

was observed in these Dspp−/−/Dsp-Dspp Tg mice. This 
study implies that Dsp is related to the initiation of 
dentine mineralisation. In addition, overexpression of 
the Dsp Tg mice driven by the mouse Amg promoter 
(Dsp-Amg Tg) causes significantly and uniformly 
increased enamel hardness and an increased rate of 
enamel mineralisation but did not significantly alter 
enamel morphology. These studies demonstrated 
that Dsp significantly contributes to the physical 
properties of the dentine-enamel junction and 
facilitates enamel formation (Paine et al., 2005; 
White et al., 2007). In contrast, Dsp driven by Col1α1 
promoter (Dsp-Col1α1 Tg) Tg mice were crossed-
bred with Dspp KO mice to generate Dspp KO/Dsp-
Col1α1 Tg mice (Gibson et al., 2013). Unexpectedly, 
dentine of Dspp KO/Dsp-Col1α1 Tg mice was much 
thinner, more poorly mineralised and remarkably 
disorganised than that of Dspp−/− mice. Dspp KO/Dsp-
Col1α1 Tg mice displayed more severe dentine defects 
than Dspp−/− mice. Furthermore, Dspp KO/Dsp-Col1α1 
Tg mice resulted in severely worse periodontal 
defects than that of Dspp KO mice and a greater 
decrease of alveolar bone, more remarkably altered 
canalicular structures around the osteocytes, less 
cementum, more radical migration of the epithelial 
attachment towards the apical direction and more 
severe inflammation in molar furcation region than 
that of Dspp KO mice (Gibson et al., 2014). Overall, 
this suggests that the Dsp mediates an inhibitory role 
in periodontium formation. The different Dsp effects 
on hard tissue development and formation may rely 
on the control of given tissue gene promoters.

Conclusions and future perspectives

The present review provides a brief overview of 
DSPP expression, proteolysis, pathophysiology 
and biological functions of the cleaved products, 
DSP/DGP and DPP, based on the recent literature. 
Dentine is a highly mineralised tissue and derives 
from odontoblasts. When dentine is injured, such as 
in cases of pulpotomy and dental caries, dental pulp 
progenitors/MSCs can migrate to the injured areas 
and differentiate into odontoblast-like cells (Vidovic 
et al., 2017). The differentiation of the dental pulp 
progenitors/MSCs is controlled at the given niches 
(Méndez-Ferrer et al., 2020; Morrison and Spradling, 
2008). During dentineogenesis, odontoblasts 
synthesise and secrete dental ECMs, which bind to 
calcium-phosphate, finally forming predentine and 
dentine. Dental ECMs are composed of collagens 
and NCPs (MacDougall et al., 1997). Among NCPs, 
DSPP expression is highly visible in odontoblasts and 
dentine (Fig. 3) (Chen et al. 2009; D’Souza et al.,1997). 
DSPP is catalysed into DSP/DGP, DPP by BMP1 
and TLR proteinases (Marschall and Fisher, 2010; 
Yamakoshi et al., 2006). Mutations of DSP and DPP 
domains are associated with DD-I, DD-II, DGI-II, DGI-
III and the most common genetic dentine diseases 
(Fig. 2, Table 1,2). DSP and DPP play unique roles 
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during odontogenesis. DSP promotes the initial effect 
on early dentine development while DPP is related 
to HA crystal growth and mineralisation (Suzuki et 
al., 2016). DSP is a ligand and facilitates intracellular 
signalling via its cellular membrane receptors, 
integrin β6 and Ocln as well as induces dental pulp/
MSC cell differentiation and mineralisation. Dsp183-

219-β6 signal up-regulates Dspp expression, dental 
cell proliferation and differentiation via p-p38-pErk-
Smad1/5/8 signal pathways, while Dsp363-458-Ocln 
complex promotes dental mesenchymal cell/MSC 
differentiation and biomineralisation through FAK 
cascades (Fig.5a). Overexpression of Dsp partially 
rescues dentine defects in Dspp KO mice (Suzuki et al., 
2009). In addition, DPP-RGD activates downstream 
gene expression and cell differentiation through 
integrin-MAPKs and paxillin-FAK signal pathways. 
Moreover, DPP contains Ser-Asp/Asp-Ser repeat 
regions, which mediate intracellular calcium store 
flux and trigger CaMKII-Smad1/5/8 activations, 
facilitating cell differentiation and mineralisation 
(Fig.5b). Dpp overexpression partially rescues 
dentine defects in Dspp KO mice (Zhang et al., 2018). 
Nevertheless, overexpression of Dsp or Dpp driven 
by the given gene promoter(s) results in impairment 
of certain tissues’ development (Gibson et al., 2014; 
White et al., 2007). How DSP and DPP play dual roles 
in different tissues is not completely understood and 
needs to be further studied. Although biological roles 
of DSPP have made the advanced achievements 
in odontoblast differentiation and mineralisation 
during tooth development, mechanisms of DSPP 
during tooth development and formation remain 
still unknown. For instance, where cleavages of 
DSPP occur in cytoplasm and/or ECMs needs to be 
further investigated. Differences of three-dimensional 
structures between wild type and mutant DSPP and 
its cleaved products have not been described and 
need to be studied. Control of the spatial-temporal 
cell- and tissue-specific expression of DSPP is not 
completely understood although DSPP expression is 
controlled by several growth factors, transcriptional 
factors and materials (Chen et al., 2008; Suzuki et al., 
2016). However, understanding the mechanisms of 
DSPP spatial-temporal expression in odontoblastic 
cells at different stages during tooth formation and 
progenitor cell/MSC differentiation to odontoblasts 
may be a potential novel avenue during dentine 
development and regeneration.
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