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Abstract

Bone mechanobiology is the study of the physical, biological and mechanical processes that continuously affect 
the multiscale multicellular system of the bone from the organ to the molecular scale. Current knowledge 
derives from experimental studies, which are often limited to gathering qualitative data in a cross-sectional 
manner, up to a restricted number of time points. Moreover, the simultaneous collection of information 
about 3D bone microarchitecture, cell activity as well as protein distribution and level is still a challenge. 
In silico models can expand qualitative information with hypothetical quantitative systems, which allow 
quantification, testing and comparison to existing quantifiable experimental data. An overview of multiscale, 
multiphysics, agent-based and hybrid techniques and their applications to bone mechanobiology is provided 
in the present review. The study analysed how mechanical signals, cells and proteins can be modelled in silico 
to represent bone remodelling and adaptation. Hybrid modelling of bone mechanobiology could combine the 
methods used in multiscale, multiphysics and agent-based models into a single model, leading to a unified 
and comprehensive understanding of bone mechanobiology. Numerical simulations of in vivo multicellular 
systems aided in hypothesis testing of such in silico models. Recently, in silico trials have been used to illustrate 
the mechanobiology of cells and signalling pathways in clinical biopsies and animal bones, including the 
effects of drugs on single cells and signalling pathways up to the organ level. This improved understanding 
may lead to the identification of novel therapies for degenerative diseases such as osteoporosis.
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Introduction

Bone is the material that gives the body its 
primary structure and stability (Clarke, 2008). The 
adaptation, renewal and maintenance of bone are 
vital for this purpose and they are tightly regulated 
by mechanoresponsive cells and intracellular 
signalling pathways (e.g. Wnt, oestrogen, Ca2+). The 
mechanotransduction of an extracellular stimulus into 
intracellular biochemical responses can be divided 
into three cellular phases: mechanoreception of the 
stimulus, signal transduction to the nucleus, changes 
in gene/protein expression (Vogel, 2006; Vogel and 
Sheetz, 2006). Tightly regulated mechanotransduction 
is important for cell communication, e.g. in the 
context of bone remodelling driven by bone-forming 



D Boaretti et al.                                                                                    In silico models of multicellular systems in bone

57 www.ecmjournal.org

it is not possible to observe the 3D distribution and 
dynamics of proteins and individual cells. Endpoint 
histology can be used to investigate protein- and 
cellular-scale phenomena but these data are often 
limited to a few histological sections per sample and to 
qualitative or semiquantitative metrics. Moreover, the 
cross-sectional nature makes it impossible to detect 
changes in protein expression and cell phenotype/
genotype over time (Currey et al., 2015; Li et al., 2014; 
Pavlos et al., 2005). In silico models offer a different 
approach, in which biological hypotheses are tested 
virtually. The data produced are quantitative and are 
not limited to cross-sectional endpoints. In addition, 
such methods can use hypotheses and data from 
different studies with different animals, regions of 
interest and ages if this information is limited or 
unavailable for the analysis and can assess their 
applicability. Such methods can leverage existing 
experimental methods and data for parameterisation 
and validation but provide fine-grained insight into 
the underlying mechanism in a way that is currently 
impossible through experimentation. Indeed, with 
model tuning, it is possible to estimate the values that 
represent a particular aspect that is not yet quantified 
experimentally or available in the literature.
	 Computational mechanobiology is a continuously 
developing field in which in silico models are used 
to study how mechanical and biological phenomena 
affect each other (Giorgi et al., 2016; Martin et 
al., 2019). In silico models have the potential to 
connect the existing knowledge and methods of 
computational modelling and mechanobiology 
to overcome the obstacles by comprehensive and 
exhaustive data integration (Soheilypour and Mofrad, 
2018) as opposed to individual disciplines. Out of 
all the in silico models, the agent-based, multiscale 
and multiphysics models are of particular interest. 
These modelling techniques represent cells as 
heterogeneous agents following a set of genotypically 
prescribed rules (Checa, 2018; Drasdo et al., 2018). The 
spatial and temporal separation of scales in the same 
framework allows the coupling of local phenomena, 
such as bone remodelling, to organ-wide changes, 
such as oestrogen depletion, as well as the coupling 
of distinct physical phenomena involving entities 
of different natures, e.g. cells that sense mechanical 
deformation (e.g. fluid-induced deformations) and 
then produce proteins, such as RANKL, which diffuse 
and bind to other cells (George et al., 2018; Nava et al., 
2013; Peyroteo et al., 2020). To date, these techniques 
have been applied to different aspects of bone biology 
in an ad hoc way.
	 In the present review, the focus is on the use of 
each method to create new biological insights into 
bone mechanobiology and its possible improvement. 
Herein, the scientific application of interest is the 
modelling of bone mechanobiology. The existing 
models cover a variety of different scales and aspects 
of bone mechanobiology. To discuss them with a 
consistent approach, a model biological system was 
described. Then, for each method, the specific bone 

osteoblasts and bone-resorbing osteoclasts in the 
BMU. Unbalanced bone remodelling can lead to 
diseases such as osteoporosis, osteopetrosis and 
Paget’s disease. Osteoporosis is the systemic loss 
of bone leading to increased fracture risk (Oden 
et al., 2015); it is debilitating, and in 2010, the total 
direct cost of osteoporosis in the European Union 
was estimated to be 37 billion EUR (Hernlund et 
al. 2013). Furthermore, developing treatments is an 
expensive and time-consuming process. It could 
take as long as a decade between drug discovery 
and the entry of an approved treatment into the 
market (Morris et al., 2011). The development of 
novel treatments for bone-related diseases depends 
upon the understanding of the fundamental bone 
mechanobiology and the computational models 
that are available to test hypotheses (Thorne et al., 
2007). Recent work has coupled systems biology 
with computer simulations to capture homeostasis 
and unbalanced bone remodelling (Hambli, 2010; 
Hambli et al., 2011; Kameo et al., 2020; Kameo and 
Adachi, 2014a; Schulte et al., 2013) and to provide a 
platform for developing new treatments. The effects 
of drugs, dosage and frequency of treatment could 
potentially be studied and tracked over time and 
space down to the action of single cells with an in 
silico model. However, current understanding of 
bone mechanobiology might still be further improved 
through the development of new in silico models, 
including the modelling of the actions of single cells, 
proteins and signalling pathways. Therefore, research 
should focus on novel 3D approaches to examine 
bone mechanobiology, including more biological and 
physical details, to enable better direct validation with 
in vivo data over time, e.g. analysis of cytokine values 
depending on strains and age. For more information 
on this topic, please refer to the review by Levchuk 
and Müller (2013).
	 Bone remodelling occurs across varying length 
scales that are separated by several orders of 
magnitude from the organ to the gene level. 
A complete understanding of the mechanisms 
involving these scales has several challenges in terms 
of mathematical description (fidelity), computational 
implementation and resolution (accuracy) as well as 
obtaining consistent results using the same approach 
(computational reproducibility) (Martin et al., 2019; 
Paoletti et al., 2012). The in silico models should 
emulate the phenomena observed experimentally and 
integrate the missing information with a hypothesis. 
Non-invasive imaging techniques can be used to 
study bone remodelling at a µm resolution (Lambers 
et al., 2015a; Schulte et al., 2013; Willie et al., 2013) and 
they focus on the observation of structural changes in 
vivo (Birkhold et al., 2015; Christen and Müller, 2017). 
Nuclear imaging techniques, such as SPECT and 
positron emission tomography, allow the tracking 
of radioisotope labels. These labels can be attached 
to cells, allowing the location and density of cell 
populations to be tracked (Blackwood et al., 2009; 
Mathavan et al., 2019). However, using these tools, 
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properties as well as the techniques and applications 
for the modelling of bone and computational biology 
were identified. Multiscale, multiphysics, agent-
based and hybrid modellings are all described in 
a similar manner. Reproducibility is discussed to 
identify the current state of the art in developing a 
possible multipurpose computational platform of 
in silico models of bone mechanobiology. Based on 
this analysis, future methods for modelling bone 
mechanobiology are proposed.

Multicellular reference system
A multicellular reference system was defined to 
enable better identification and mapping of the 
mechanobiological features of bone using the related 
in silico models. In this work, “multicellular system” is 
used to refer to what the numerical models represent, 
e.g. the different cell types and their interactions 
with other chemical components, hard and soft 
tissue (including the extracellular matrix) as well 
as the mechanical environment. Fig. 1 shows the 
system description, combining figures from other 
studies, to establish a framework for the subsequent 
considerations. This figure will be used as a reference 
throughout this section.
	 Bone is an organ (Fig. 1a) formed of different organic 
(e.g. collagen) and inorganic (e.g. hydroxyapatite) 
components. Bone continuously adapts to the 
external stimuli (Colloca et al., 2014b; Lambers et al., 
2011; Lambers et al., 2015b; Perry et al., 2009; Wolff, 
1892), such as experimentally applied forces through 
external fixators that allow the controlled application 
of mechanical loading (Wehrle et al., 2020), due to the 
coordinated action of the cells in the BMU (Fig. 1d). 
Cells residing in bone show distinct characteristics 
and features, such as the ability to differentiate into 
multiple cell types (mesenchymal stem cells), motility 
(osteoblasts, osteoclasts) (Jiang et al., 2002; Singh et 
al., 2016) and mechanoresponsiveness (mesenchymal 
stem cells, osteocytes, osteoblasts, osteoclasts). 
Furthermore, some cells, such as mesenchymal stem 
cells in the bone marrow, osteoblasts and osteoclasts, 
are motile while others, such as osteocytes, are 
motionless. Osteocytes are believed to be the main 
mechanosensors in the bone that facilitate the 
mechanotransduction of extracellular stimuli into 
intracellular biochemical responses. The activation 
of intracellular signalling pathways such as Wnt-
signalling (Downward, 2001; Frenk and Houseley, 
2018) via cell membrane receptors (Häusler et al., 
2004; Pinzone et al., 2009) (Fig. 1h) regulates the DNA-
mRNA transcription of target genes in the nucleus (e.g. 
RANKL, OPG) (Boyce and Xing, 2008; Kuang et al., 
2018) and subsequent changes in ribosomal mRNA-
protein translation (Fig. 1l). This well-regulated 
protein expression is required for cell communication 
within the BMUs during bone remodelling (Klein-
Nulend et al., 2013; Vaughan et al., 2012). Proteins 
present in the extracellular matrix (Fig. 1k) allow 
spatiotemporal changes in the mechanobiological 
(micromechanical) tissue properties. These properties 

are modelled using techniques (Fig. 1c,f,g,j) that 
will be described in detail in the following sections. 
Overall, these mechanobiological properties and 
modelling techniques together create a multicellular 
reference system, which will be used as a guide in 
the following sections.
	 Based upon this multicellular reference system, 
a natural hierarchy is revealed. The spatial scales of 
this hierarchy can be classified as the “organ scale”, 
which corresponds to the organ level (Badilatti et al., 
2016; Colloca et al., 2014a); the “tissue scale”, where 
the tissue characteristics are studied (Lerebours et 
al., 2016; Linderman et al., 2015); the “cell scale”, 
which points to the cells i.e. the structures with 
a characteristic length of 1-10  μm (Albers et al., 
2013; Hashimoto et al., 2015; Kaul et al., 2015); and 
the “protein scale”, where proteins and molecules 
characterised by a length scale of 1 nm are examined 
(Landis et al., 1993; Rubin et al., 2003). At the organ 
scale, the related length scales as a physical quantity 
may shift depending on the actual bone under 
investigation. For example, the human vertebral 
column is 600-700  mm long, whereas the length 
of a mouse spine is 75-90  mm (Wang et al., 2015). 
However, cell and molecule scales are in a more 
consistently defined range within the context of 
bone biology. These scales should be appropriately 
represented in the in silico models of bone.
	 In silico models may include the same length 
scales but study different mechanobiological features 
(Colloca et al., 2014b; Lerebours et al., 2016; Martin 
et al., 2019). For example, FEM has been used at 
the tissue scale (Lambers et al., 2015a; Schulte et al., 
2013) as well as the nanoscale (Marino and Vairo, 
2014; Nikolov and Raabe, 2008; Pradhan et al., 2014; 
Vaughan et al., 2012). Thus, using the same tools, it is 
possible to model different aspects involving different 
length scales. The following sections highlight how 
the length scales can be connected using different 
techniques, such as averaging, equations and 
agent-based models. It is important to note that the 
classifications of multiscale, multiphysics and ABMs 
often overlap, indicating that some models may 
belong to more than one category.

In silico computational mechanobiology

Multiscale modelling
Multiscale properties of bone
In multiscale modelling, one or more interlinked 
mechanisms that involve several characteristic 
scales (spatial, temporal or both) are studied. A 
biological system that presents a structure similar to 
the hierarchy mentioned in the previous section is 
suitable for multiscale modelling (Agur et al., 2011; 
Budyn and Hoc, 2006; Carlier et al., 2012). Bone is 
a classic example of such complex hierarchy, with 
distinct phenomena occurring at the organ (Fig. 1a,b), 
tissue (Fig. 1d,e), cell (Fig. 1d,h) as well as gene and 
protein (Fig. 1h,i,k,l) scale. These scales are connected 
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Fig. 1. The reference system of bone biology used in the analysis. The experimental mechanobiological 
features are shown with their structural scale(s) as well as the modelling technique used to study them. 
At the organ scale, bone can be experimentally studied with the application of an external fixator, such as 
(a) the mouse femur (Rӧntgen et al., 2010), and (b) a µCT image can be acquired to measure bone density 
(Brommage et al., 2014). (c) For this scale, the modelling technique used can be, for example, FEM (Rohlmann 
et al., 2007). At the tissue level, (d) the cells in the BMUs remodel bone (Florencio-Silva et al., 2015), (e) 
according to the strain (Torcasio et al., 2012) they perceive. This mechanical stimulus can be computationally 
estimated (Torcasio et al., 2012) and the mechanical properties of bone might be modelled through (f) RVE 
and (g) µFE analysis, as shown by Morin and Hellmich (2014) and Lambers et al. (2015a), respectively. 
(h) Receptor-ligand bindings occur at the interface of the cell (Deller et al., 2019). From an experimental 
perspective, the (i) intracellular and (k) extracellular distributions of proteins and matrix components can 
be observed through staining (Morko et al., 2019) and fluorochrome application (Dvorak-Ewell et al., 2011). 
(j) Cells, genes and proteins can be numerically studied thanks to agent-based modelling and ODEs, as 
illustrated by Lerebours et al. (2016) and Cilfone et al. (2015), respectively. (l) Last, it is possible to analyse 
DNA transcription (Pollard et al., 2017), which occurs inside a single cell and tunes protein expression. 
(d,b,h) Reproduced in compliance with the CC BY licence applied by Hindawi and Springer Nature; (a,k) 
reproduced with permission from John Wiley and Sons, (c,e,j) from Springer, (f,g,i,l) from Elsevier.
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through mechanobiological changes that propagate 
through the hierarchy. For instance, cell activity is 
regulated by proteins, which reside on a lower scale 
(Frenk and Houseley, 2018; Häusler et al., 2004; 
Pinzone et al., 2009), and cells remodel the tissue, 
concomitantly changing the properties at the tissue 
(Fig. 1d) and organ scale. All these features reside 
not only on different spatial scales but also have their 
characteristic time scales range, from weeks to years 
for the treatment of osteoporosis and bone adaptation 
(Christen et al., 2012; Gossiel et al., 2016; Willie et al., 
2013) to minutes for cell activity (Shemesh et al., 2017; 
Søe and Delaissé, 2017) and to seconds for protein 
activity (Luxenburg et al., 2006; Sklar et al., 1985). 
The multiscale nature of the model depends on the 
research question at hand. A simplified model might 
provide insights limited only to the chosen scale. 
For example, if a bone remodelling model defines 
bone formation and resorption rules based on the 
local strain distribution, then it might investigate the 
existence of a correlation between remodelling events 
and strains at the tissue scale only. Consequently, the 
model becomes highly complex as it includes more 
spatial and temporal levels in its hierarchy. Some 
multiscale techniques can reduce the problem size 
by reducing the complexity of the model. Overall, 
the study of bone from organs down to molecules 
implies the analysis of a multicellular system that is 
suitable for multiscale modelling due to the presence 
of spatiotemporal scales.

Multiscale modelling of bone
Broadly speaking, multiscale approaches can be 
classified based on the methods they use to analyse 
the length scales of interest, which are mainly 
concurrent or hierarchical. In concurrent methods, the 
scales of the problems are solved with compatibility 
conditions such as displacement compatibility and 
momentum balance in solid mechanics (Ghosh et 
al., 2001; Silani et al., 2014; Talebi et al., 2014). This 
technique can be applied to study material failure, 
for instance. The hierarchical method is instead a 
technique that links one or more scales by passing 
information from the fine-scale to the coarse-scale 
and solving the coarse-scale together with the fine-
scale. An example would be receptor-ligand kinetics 
where the cell state differentiation is regulated by the 
concentrations of ligands and receptors. Receptor-
ligand kinetics occur at the nanoscale and an in silico 
model could use molecular concentrations to model 
these kinetics that regulate the cell state, which is 
microscale information. The concept of the RVE is 
often used to statistically represent a small volume 
(Ghosh et al., 2001; Ilic et al., 2010; Morin and Hellmich, 
2014; Pivonka et al., 2013; Scheiner et al., 2013), 
including all its microscopical heterogeneities, within 
the context of a greater scale (Fig. 1f). For instance, it is 
possible to create a chain of RVE connecting systems 
residing in multiple length scales, as Estermann and 
Scheiner (2018) did by linking the cell scale to the 
tissue scale in their multiscale model of bone tissue. 

However, the RVE technique is most suitable for a 
model that does not involve motion of the living 
units. Averaging over a small volume of bone tissue 
may lead to loss of information about the localised 
properties of cells that are motile, such as osteoblasts 
and osteoclasts, or responsive to chemotaxis or other 
extracellular stimuli. This approach was used in the 
model developed by Pivonka et al. (2013). In this 
approach, a population model was used to study the 
effect of the geometrical properties of the regulation 
of new remodelling events on bone porosity and 
stiffness. This model was composed of equations 
defining the variation of cell concentrations that 
are dependent on cytokine concentrations, vascular 
porosity, bone surface and the mechanical signal. All 
these quantities were analysed over time without 
any local spatial characterisation, e.g. the cells were 
not described in terms of the local properties where 
they reside. Therefore, this model might be useful if 
spatial discretisation is not needed in the analysis. 
Furthermore, the cells themselves are complex 
systems and some multiscale models either do not 
include them (Estermann and Scheiner, 2018; Perrin 
et al., 2019) or study only single cell characteristics 
across finer levels, such as cell shape or motility with 
a resolution of 50-100 nm (Borau et al., 2014; McGarry 
and Prendergast, 2004). Finally, some models use a 
semi-concurrent method that is a combination of both 
concurrent and hierarchical methods (Andrade and 
Tu, 2009; Kouznetsova et al., 2002; Marques et al., 2020; 
Silani et al., 2014; Talebi et al., 2014). In this method, 
changes from lower scales are transferred to higher 
scales and vice versa. In addition, temporal scales 
can be modelled in many ways. For more details 
on temporal multiscale approaches please refer to 
the review by Chopard et al. (2014). The present 
review briefly mentioned that time step is the most 
commonly used time discretisation technique. More 
time steps can be used to model phenomena occurring 
at different scales. It is possible to use, for example, 
one time step of seconds to minutes for modelling 
protein and receptor-ligand kinetics, next time step 
of minutes to hours for modelling cell activity and 
finally a time step of hours to days for computing the 
distribution of bone mechanics. Hence, a multiscale 
model of bone remodelling, including the tissue and 
cell scales, should use a technique that preserves at 
least the multicellular description of the cells. If this 
model can also include activity of each cell, it would 
be a step towards single-cell analysis and tracking. 
In this way, the changes from the finest scale to the 
coarsest scale can be tracked with sufficient resolution 
and reasonable performance.
	 Simulations of bone across spatial and temporal 
scales are massive because they require solving 
equations with many degrees of freedom depending 
on scale and methodology. Hierarchical methods are 
more commonly used for multiscale modelling of 
bone than concurrent and semi-concurrent methods 
because they can be solved with less computational 
effort. Nonetheless, semi-concurrent methods might 
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be employed in the context of bone remodelling 
and adaptation because they are based on the 
same type of bottom-up and top-down connections 
(Badilatti et al., 2016; Christen et al., 2012; Holguin 
et al., 2016; Li et al., 2014; Schulte et al., 2013): a 
mechanical signal, such as SED, is transferred to finer 
scales and algorithms prescribe whether the bone 
microarchitecture is resorbed or formed, leading 
to organ-scale adaptation to the load. Recently, 
in silico models have become more complex and 
comprehensive; therefore, comparatively more 
resources and improved methods are required to 
solve them. Furthermore, increased computational 
power and more efficient algorithms allow these 
models to efficiently solve larger problems in terms of 
resolution and complexity. Multiscale in silico models 
can study different (patho)physiological conditions 
in different contexts, focusing on characteristic 
mechanical properties (Budyn and Hoc, 2006; Colloca 
et al., 2014a; Estermann and Scheiner, 2018) as well 
as the cause of pathologies such as osteoporosis and 
osteopetrosis (Lerebours et al., 2016), the behaviour 
of cells (Vaughan et al., 2015) and potential drugs for 
molecular targets such as RANKL and sclerostin. 
For example, denosumab is a drug that binds to 
RANKL and thereby inhibits its anabolic action. 
This treatment was simulated using a multiscale 
hybrid model proposed by Tourolle et al. (2021). In 
this model, bone mechanobiology and the signalling 
pathways involved in the treatment were simulated 
before and after the treatment over a period of 10 
years in a representative region of human biopsies. 
The denosumab concentrations patterns and changes 
in bone mineral density predicted by the in silico 
model were in line with the clinical observations. 
Furthermore, Martínez-Reina and Pivonka (2019) 
investigated the action of denosumab in an extended 
version of the original model by Pivonka. Here, 
a one-compartment model of the absorption and 
elimination of denosumab was added to the previous 
version of the model and denosumab was added 
as a third competitive ligand to RANKL after OPG 
and RANK. This study highlighted the different 
outcomes arising from the region of application 
of the drug (lumbar spine vs. hip). The proposed 
model was further employed to study the effects 
of the dosage and the frequency of administration, 
e.g. prescribed drug holidays against uninterrupted 
treatment (Martínez-Reina et al., 2021). Another drug 
is romozosumab, which binds to sclerostin, inhibiting 
its anti-catabolic effect. It was modelled similarly 
in another extended version of Pivonka’s model by 
adding one-compartment model of absorption and 
elimination of romozosumab by Martin et al. (2020). 
In addition, the reaction-ligand kinetics of LRP5/6 
and sclerostin were redefined to be competitive 
along with the action of the drug. These models 
have established foundations for the description of 
bone mechanics and remodelling across scales with 
continuum models. They emphasised the importance 
of including bone stimulus (modelled as a strain 

energy density or either strain or fluid flow in 
vascular pores) as an essential component to regulate 
cell activity in multiscale bone remodelling models. 
Borgiani et al. (2017) provided further insights on the 
biological aspects investigated in in silico models of 
fracture healing. Additionally, in the context of bone 
fracture, Sabet et al. (2016) shed light on modelling 
the tissue properties of bone, microcrack and crack 
propagations.

Multiphysics modelling
Multiphysics properties of bone
In multiphysics modelling, the focus is on a system 
where more than one process concurrently develop 
and involve different physical quantities that 
simultaneously obey different constitutive laws. 
The production of proteins by cells (Fig. 1h) in the 
same system is an example of a possible topic for 
multiphysics modelling (Fig. 1j) and experimental 
observations might suggest the possible relationships 
(Hu et al., 2011; Kikuta et al., 2013; Rumpler et al., 
2013). The production of proteins by cells can be 
modelled as a limited-volume source diffusing 
through space in 3D and decay over time. As another 
example, one might model tissues and cells together 
(Fig. 1d) using their independent constitutive laws or 
assumptions based on experimental findings (Dallas 
et al., 2009; Tang et al., 2006; Xiong et al., 2011). The 
mechanical strain at the tissue scale (Fig. 1e) can 
be used as the mechanical signal locally perceived 
by the cells and it can be computed by taking into 
account the mechanical properties and the boundary 
conditions prescribed at the organ scale (Lambers et 
al., 2013; Torcasio et al., 2012). The mechanical strain 
locally sensed by the cells can be modelled to affect 
protein production by individual cells. In regions of 
high strain, cells tend to upregulate bone formation 
by releasing more proteins, such as OPG; while, in 
regions of low strain, bone resorption is increased 
through the release of RANKL. As a result, the 
coupling of mechanical properties and chemical 
reactions can be modelled following constitutive laws 
in the context of multiphysics modelling. In addition, 
reaction-ligand kinetics are essential in regulating the 
differentiation of osteoblastic and osteoclastic cells. 
This is another multiphysics aspect of the bone, as 
it couples chemical reactions and the cell genotype. 
Therefore, multiphysics modelling can be applied to 
study the biological and physical phenomena in bone, 
from strain distribution to signalling pathways and 
reaction-ligand kinetics.

Multiphysics modelling of bone
A multiphysics model is defined to include different 
phenomena in its modelling; therefore, if bone 
biology is modelled, even with simplified rules, it 
is considered to be a multiphysics model. In such 
case, even though the fidelity is not very high, the 
classification of the model is satisfied. However, in 
the present review, it is encouraged to enhance the 
biological fidelity of in silico models. One of the most 
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common formulations of multiphysics problems 
is PDEs. A mathematical term can be added to an 
equation to represent a distinct phenomenon such 
as advection, diffusion, decay or chemotaxis. These 
equations define the spatiotemporal evolution of the 
components through the representative variables 
and their derivatives. The terms that constitute the 
equations define different types of equations and their 
presence changes their solvability. The complexity of 
these equations increases as the equations become 
coupled or non-linear. In ODEs, derivatives with 
respect to a single independent variable are used in 
the formulation, whereas derivatives with respect 
to more than one independent variable are used 
in PDEs. ODEs employ one independent variable, 
which may represent space in one dimension, time 
or a combination of both. Therefore, ODEs represent 
a simplified case of PDEs and they can be formulated 
directly based upon assumptions in the model. The 
advantage of using ODEs is the reduced complexity. 
However, the information in a single ODE is not as 
detailed as in a single PDE. The intrinsic complexity 
of ODEs can still be high depending on whether the 
terms in the constituting the equations are linear and 
whether the system of equations is coupled. Examples 
of ODEs with such complex terms can be found in 
studies of cellular populations (Lerebours et al., 2016; 
Martin et al., 2019; Pastrama et al., 2018; Scheiner 
et al., 2012) that include apoptosis, differentiation 
and proliferation. A reaction-based model was 
employed in a simulator of cellular processes based 
on mass-action kinetics through a system of ODEs 
(Tangherloni et al., 2017). ODEs can also be used 
for modelling mRNA translation and competitive 
or non-competitive reactions between proteins 
(Dimelow and Wilkinson, 2009; Skjøndal-Bara and 
Morrisb, 2007; Zinovyev et al., 2010). ODEs, with 
time as the independent variable, are suitable for 
these studies because they provide a convenient way 
to study large systems of proteins interacting with 
each other with reduced spatial dimensionality and 
parameters. Finally, FEM is a numerical technique 
that can be used to study the mechanical properties 
of a musculoskeletal system composed of multiple 
bones and muscles (Fig. 1c) as well as to compute the 
strain (Fig. 1e) perceived by the cells that reside at the 
µm scale, especially osteocytes, which are believed 
to perceive mechanical cues. In the latter particular 
case, the technique is called µFE since it analyses the 
mechanical properties at the tissue scale (Marangalou 
et al., 2012; Pistoia et al., 2002; Van Rietbergen et al., 
2002; Tsubota et al., 2009) with a resolution in the 
range of µm (Fig. 1g). The numerical resolution of 
the FEM requires a discretisation of the domain of 
interest. Given that the experimental data are discrete, 
the numerical discrete resolution of the desired 
fields must be at least the same as the experimental 
resolution to ease the comparison between these data.
	 Bone mechanobiology is a particular field 
in which multiphysics can be applied. Here, 
the interplay between bone multicellular units, 

tissue and proteins is regulated through complex 
processes (Fig. 1h-l) that can be modelled using a 
multiphysics approach. The model proposed and 
subsequently improved by the research groups 
of Pivonka and Scheiner included populations of 
bone remodelling cells that were able to produce 
RANKL, OPG, TGF-β and PTH. These cells could 
differentiate and change the bone microarchitecture 
through the usage of PDEs (Lerebours et al., 2016; 
Martin et al., 2019; Pastrama et al., 2018; Scheiner 
et al., 2012). In one of these versions, Pastrama et 
al. (2018) proposed a model employing continuum 
equations and including a poromicromechanical 
technique that assessed the influence of the pore 
pressure in the lacunae on the bone remodelling 
process. These models were able to simulate bone 
remodelling using data from human and mice 
samples. However, they lacked the multidimensional 
characterisation of bone remodelling because of its 
temporal nature that did not consider the spatial 
variability of bone microarchitecture and cellular 
populations. Another multiphysics model of bone 
remodelling was introduced by Kameo et al. (2020), 
who analysed the regulation of bone formation and 
bone resorption through the expression of RANKL, 
OPG, sclerostin and Sema3A secreted by osteocytes 
in the bone microenvironment. The regulation of the 
cytokines was modelled through PDEs, which were 
based on diffusion, production and degradation, and 
the reaction of the cytokines. Moreover, the activity 
of the cells was modelled using equations that were 
based on the mechanical signal and cytokines. 
For example, the mechanical signal sensed by the 
osteocytes was assumed to be dependent on the 
local density of the osteocytes. Furthermore, the 
production of sclerostin by osteocytes was assumed 
to be inversely proportional to the mechanical signal 
using a Hill function. Finally, the mechanical signal 
was assumed to directly increase the apoptosis rate of 
osteoclasts and reduce the same for osteoblasts. They 
studied scenarios of osteoporosis, osteopetrosis and 
drug treatment for such diseases, highlighting the 
capability of analysing mechanobiological processes 
in real 3D bone structures in silico. The PDE-based 
in silico model of fracture healing proposed by Geris 
and colleagues (Geris et al., 2008; Geris et al., 2010a; 
Geris et al., 2010b) was implemented on simplified 
2D domains-obtained in vivo images. It included 
mainly the cell activity related to bone formation 
and the parameters used for differentiation and 
proliferation of cells were modelled as dependent 
on either fluid flow or hydrostatic pressure. The 
model was able to emulate the results of overload-
induced non-union formation (Geris et al., 2010b). The 
multiphysics model of bone remodelling proposed by 
George et al. (2018) employed continuum equations 
and included external loads, cellular migration and 
differentiation as well as nutriment supply. The 
mechanobiological stimulus was determined based 
on different factors, starting with the concentration 
of nutrients, mechanical energy derived from the 
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application of mechanical loads, cell differentiation 
and proliferation as well as the addition or removal of 
bone. It was tested by predicting the kinetics of bone 
reconstruction on a simple 2D domain and the results 
showed that bone reconstruction depends not only on 
the mechanics but also on the biological phenomena 
and the distribution of bone density. Mullender and 
Huiskes (1995) proposed an in silico model of bone 
remodelling in which the mechanical signal perceived 
by the osteocytes was obtained from stress and strain. 
It was used to indirectly model the bone remodelling 
action of osteoblasts and osteoclasts because bone 
density varied where the mechanical signal differed 
from a reference signal value. A relationship between 
strain and relative fluid/solid velocity over time in 
bone was suggested by Prendergast et al. (1997): 
fibrous connective tissue, cartilage and bone were 
suggested to form based on the evolution of strain 
over time. Conversely, Claes and Heigele (1999) 
proposed a strain-hydrostatic pressure scheme for 
the outcome of fracture healing among endochondral 
ossification, connective tissue and intramembranous 
ossification. Another model of fracture healing was 
proposed by Carter et al. (1998). They aimed to 
demonstrate how mechanical forces can influence 
the basic induction process. They calculated stress 
and strain distribution in the callus and diaphyseal 
bone under compression and an initial period of 
distraction osteogenesis. Furthermore, the FEM 
was used in the version of µFE to compute the SED 
on bone samples (Cox et al., 2011; Huiskes, 2000; 
Kameo and Adachi, 2014a; Ruimerman et al., 2001) 
or on simplified trabecular structures (Adachi et al., 
2010; Kameo and Adachi, 2014b). The frequency 
distribution of SED was used, for instance, as data 
for the probabilities of formation, quiescence and 
resorption (Badilatti et al., 2016; Schulte et al., 2013; 
Webster et al., 2008). These studies aimed to assess 
how bone remodelling is mechanically driven at the 
tissue scale. Advancing to the current state of the 
art, the focus should be on the mechanobiological 
properties starting from the mechanical regulation 
of cells to the protein expression of cells, with more 
quantitative and complete information in a 3D space, 
which should be as close as possible to real structures. 
Multiphysics modelling has the potential to analyse 
these properties on real bone samples using µCT 
data from animal as well as human experiments 
(Badilatti et al., 2016; Christen et al., 2012; Lafage-
Proust et al., 2015; Lambers et al., 2011; Schulte et al., 
2011; Schulte et al., 2013; Torcasio et al., 2012). Overall, 
multiphysics models of bone mechanobiology have 
been used to study specific features of bone; however, 
comprehensive in silico models are required to 
include relationships between biological features 
and mechanical features, such as cell production and 
mechanical strain, respectively.

Agent-based modelling
Features of bone suitable for agent-based modelling
In agent-based modelling, individual entities, called 
agents, can represent single cells, agglomerations 

of cells or subcellular components (Borgiani et 
al., 2015; Buenzli et al., 2012b; Paoletti et al., 2012; 
Seekhao et al., 2016; Sun et al., 2007). These models 
may have different genotypes where genes could 
be represented as internal parameters with specific 
properties and behaviour. As a result, agent-based 
modelling is a highly flexible technique and can be 
tuned depending on the application. The definition of 
the properties of agents and the laws to describe the 
behaviour of the cells might be based on experimental 
findings, limiting the number of hypotheses to 
introduce in the model. In this way, using simple 
rules, it is possible to model the behaviour of every 
cell with one-to-one mapping to the real cell (Sun et 
al., 2007). This reasoning also applies perfectly to the 
presented model system (Fig. 1d), where different 
cell types coexist, evolve and interact with each other 
in the same microenvironment. Hence, agent-based 
modelling can numerically validate and analyse 
properties such as cell movements, cluster size and 
chemotaxis in a multicellular system.

Agent-based modelling of bone
Agent-based modelling can be seen as a technique 
because it studies individual agents of a population 
in a discrete way. ABMs use this technique to 
examine specific features of one or more cell types, 
e.g. an ABM to study the behaviour of osteoblasts or 
osteoclasts in a particular domain, without any other 
information from other scales or fields. It could be 
used to study the ad hoc properties of cells by reducing 
the additional information included in the model. 
These models can be used in combination with other 
techniques to create more complex models, such as 
hybrid models. ABMs can also analyse multicellular 
systems with different cell types focusing on the 
interactions and movements of the modelled agents 
(Borgiani et al., 2015; Borgiani et al., 2019; Checa et 
al., 2011; Khayyeri et al., 2009). An ABM may model 
several entities with little effort once the set of rules 
they follow are defined. CA is a special case of an 
ABM where the cells do not move but the modelled 
properties or fields can change spatially. A CA model 
analyses several static cells in the same domain, 
focusing on possible emerging patterns of clusters of 
cells (Van Scoy et al., 2017). These cells may change 
their state among a limited set of possible states. 
Moreover, CA models are usually defined on a 
uniform grid, prescribing a priori the position of the 
cells. ABMs can also be defined over a lattice domain 
(Fig. 2a), in which case they are called lattice-based 
models (Callaghan et al., 2006; Jasti and Higgs, 2006; 
Plank and Simpson, 2012; Simpson et al., 2010). On the 
other hand, ABMs that can manipulate their entities 
on a domain without prescribed positions (Fig. 
2b) are called “off-lattice” or “lattice-free” models 
(Drasdo et al., 2007; Galle et al., 2005). The definition 
of time in ABMs is not unique. If it is defined as a 
stochastic process, then a quantitative definition of 
the time step is required. For example, the time step 
might be associated with the cell cycle in the case 
of modelling biological cells (Fig. 1h-l). In the case 
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of an off-lattice ABM, the time step should be less 
than the cell growth time so that fine changes in cell 
deformation and growth are appropriately captured 
(Drasdo et al., 2007; Galle et al., 2005; Van Liedekerke 
et al., 2015). This might be an important feature to 
model, as cells also show different morphologies 
in microenvironments with high or low strain. In 
addition, the algorithm should pay attention to the 
concurrency of events in neighbouring locations 
at the same time step. Moreover, the choice of the 
spatial domain in which these entities reside can 
differ depending on the application used. Off-lattice 
models can represent more complex deformations 
of cells and various cell sizes (Galle et al., 2005; Van 
Liedekerke et al., 2015; Van Liedekerke et al., 2020), 
whereas lattice-based models are usually defined 
with a grid that constrains the position and size of 
the cells. An ABM might use a domain obtained 
from other experiments to insert and model cells in 
such an environment. For example, µCT scans might 
provide a 3D domain for a lattice-based ABM because 
those images have voxels that could represent cell 
positions. If the resolution is in the range of tens of 
µm, such a model may be directly used for modelling 
cells because this voxel size is close to a typical cell 
size. However, it is possible to increase the resolution 
of such images using a more refined lattice grid 
(Block et al., 2007). Then, this ABM could study more 
refined cellular properties or behaviour. However, 
the position of the cell is less straightforward when 
the voxel size is less than the cell size.
	 Recently, in silico ABMs have started analysing 
bone remodelling (Buenzli et al., 2012a; Paoletti 
et al., 2012). Nonetheless, these models can still 
be improved in terms of accuracy and fidelity. 
They usually employ simplified domains in terms 
of dimensionality or representation of real bone 
structures. For example, some ABMs have focused on 
the mechanoregulation of fracture healing (Borgiani 
et al., 2015; Borgiani et al., 2019; Checa et al., 2011) 
assuming that bone is a 3D cylinder. The model 
developed by Checa and Borgiani simulated the 
differentiation, proliferation, apoptosis, migration, 
matrix synthesis and degradation of osteoblasts, 
fibroblasts, chondrocytes and MSCs. A Taguchi 
design of the experiments was carried out to 
investigate the contribution of each cell-related 
parameter. Two possible set of values were measured, 
one for elderly and another for adult mice, leading 
to 16 experiments. This shows a possible way to 
explore how the parameters can be calibrated for an 
agent-based model. This model was able to predict 
the tissue patterning in the presence of rigid and 
semirigid fixation. Nonetheless, the later stage of 
bone remodelling was not captured despite the 
model being designed to capture that stage as well. 
Consequently, even with a simplified domain, it is 
difficult to capture bone mechanoregulation of the 
cells using ABMs. However, it is also possible to use 
in vitro data to analyse more specifically cell clusters 
of reduced size. For example, Van Scoy et al. (2017) 

validated a CA model of bone formation against in 
vitro data on osteoblastic cells, with a special focus on 
bone mineralisation. Another 3D ABM of osteoblastic 
behaviour was validated against in vitro data (Kaul 
et al., 2015), with a particular focus on osteoblast 
polarity. The cell types included in the model were 
mesenchymal cells, preosteoblasts, osteoblasts 
and osteocytes. Matrix deposition and osteocyte 
embedding were analysed by changing the related 
parameters in the model, such as preosteoblast 
proliferation and matrix deposition rate. ABMs 
are a powerful tool with growing usage in bone 
mechanobiology, but a multicellular description, 
including several cell types and all cellular events 
from recruitment to differentiation, movement, 
production and regulation still needs to be developed 
to enhance the understanding of bone remodelling 
through ABMs.

Hybrid modelling
Hybrid properties of bone
A hybrid ABM is defined as a model that combines 
aspects of continuous and discrete model units 
(Cilfone et al., 2015). Previous sections highlighted 
how multiscale, multiphysics and agent-based 
modelling reflect the properties of bone. Bone can be 
identified as a hybrid system (Frenk and Houseley, 
2018; Häusler et al., 2004; Pinzone et al., 2009) of 

Fig. 2. A lattice-based ABM and an off-lattice ABM. 
The main difference is related to the positions of the 
agents. (a) The positions of the agents are constrained 
to the lattice (Stiegelmeyer and Giddings, 2013) (b) 
The agents do not occupy a predefined position 
in the space (Kaul et al., 2015). (a,b) Reproduced 
in adherence with the CC BY licence applied by 
Springer Nature.
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discrete and continuous components: cells are discrete 
(Sun et al., 2007), while chemical concentrations and 
bone density are continuous (Bouxsein et al., 2010; 
Dallas et al., 2009; Tang et al., 2006; Xiong et al., 2011). 
Therefore, hybrid ABM is suitable for analysing such 
components concurrently in a multiscale manner to 
improve the understanding of bone mechanobiology.

Hybrid modelling of bone
In this review, the potential combination of multiscale, 
multiphysics and ABM modelling techniques into a 
hybrid ABM is highlighted due to a growing interest 
in such an approach (Chang et al., 2015; Cilfone et al., 
2015; Kaul et al., 2013; Wells et al., 2015). Continuum 
models are employed to describe mechanobiological 
properties for each variable of interest, usually by 
employing differential equations. ABMs describe the 
behaviour and properties of discrete entities such 
as cells. A hybrid ABM might be called multiscale 
when the spatiotemporal scales between the 
continuum models and the ABM are different (Fig. 
1j). The multiphysics component of a hybrid ABM 
model employs computational spatial and temporal 
discretisation, which might be greater than or equal 
to the corresponding discretisation used for analysing 
the agents.
	 There are very few examples of such techniques in 
the context of bone mechanobiology because of their 
innovative nature. Fracture healing was studied with 
a hybrid model that combined the paradigms of ABM 
and multiphysics simulations (Tourolle et al., 2019). 
It included signalling pathways such as the RANKL-
RANK-OPG axis and TGF-β signalling along with 
sclerostin to quantify their effect on osteoclastic and 
osteoblastic cell differentiation. The local mechanical 
signal was computed using µFE on a real bone 
microarchitecture obtained from µCT of murine 
femora and it was further mechanotransduced into 
the production of cytokines from cells modelled as 
individual agents. This model was developed for 
assessing pharmaceutical and tissue-engineered 
treatments. The mechanical stimulus sensed by the 
cell was defined as a linear combination of fluid 
flow and shear strain in a hybrid ABM of tissue 
differentiation and blood vessel growth (Checa 
and Prendergast, 2010). This model included stem 
cells, fibroblasts, chondrocytes and osteoblasts and 
it showed the influence of the initial distribution of 
the cells on angiogenesis. The initial distribution 
of the cells is likely to be important in other bone-
related processes, such as fracture healing and bone 
remodelling. The mechanotransduction dynamics 
of osteoblasts and osteoclasts were analysed using 
a hybrid multiscale ABM, showing that osteoblast 
activity depends on the heterogeneity of mechanical 
stimulation of integrins (Shuaib et al., 2019). This 
model included not only osteoblasts but also 
osteocytes through differentiation from osteoblasts 
to osteocytes. However, the intercellular activity 
between osteoblasts and osteocytes was not included 
because the scope of the work was particularly 

focused on the complex intracellular regulation of 
osteoblasts through multiple proteins. This highlights 
the implementations of a hybrid multiscale ABM for 
a multiscale cellular system including the information 
at the protein and gene scales.

Reproducibility
The reproducibility of models is a key feature to 
ensure that the model is appropriately validated. At 
the same time, such models can be further improved 
by duplicating the results, making it more accurate 
and acknowledged by the scientific community. 
Shared platforms that track the parameters chosen 
for simulations might be the first step for extending 
the reproducible models. These platforms should 
enable easier and better version control and cross-
checking of the model, from the initial to the final 
implementation (Bradley et al., 2011; Passini et al., 
2016). An open-source platform would be the best 
choice for this idea because it is accessible to all users 
and developers (Van Leeuwen et al., 2009; Mirams et 
al., 2011; Osborne et al., 2017; Pitt-Francis et al., 2009).
	 The (pseudo) code is more relevant than the 
software because it is often possible to adapt the code 
to the software. Most of the code used in these models 
is not publicly available because it is written using 
in-house technology such as C++, Python, MATLAB 
or another type of programming environment. With a 
flexible shared platform, it is possible to build in silico 
models that may progress towards a comprehensive 
multiscale approach for bone mechanobiology. 
Fracture healing and bone remodelling are very 
diverse processes that are based on different cell and 
biochemical mechanisms and they might include 
specific subprocesses, e.g. angiogenesis is present 
only in fracture healing. Nonetheless, the modelling 
of fracture healing and bone remodelling can benefit 
from code sharing and shared platforms. These 
aspects can ensure the reproducibility of simulations 
and can help in modelling subprocesses present in 
both fracture healing and bone remodelling. For 
example, the presence of osteoblasts and osteoclasts 
in both the remodelling phase of fracture healing and 
bone remodelling and their mathematical description 
can be encoded in a common platform. Moreover, 
the idea could even be incorporated into the larger 
context of biology or other mechanical, physical and 
biological studies.

Examples of reproducibility
Some examples of multipurpose platforms exist and 
have been used for projects in different fields that 
share the common modelling and implementation 
background (Hunter and Borg, 2003; Pitt-Francis 
et al., 2009; Tomita et al., 1999). Integrative models 
among several length scales have been developed 
and inserted into a web-based common platform, 
the IUPS Physiome Project (Hunter and Borg, 
2003), where researchers can share and merge their 
code. This approach has emphasised its ability to 
integrate the benefits of each model and can also 
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be applied to existing models of bone remodelling. 
Chaste is an open-source software library aimed at 
multiscale, computationally demanding problems 
arising in the domain of biology (Pitt-Francis et 
al., 2009). Its most relevant applications are in the 
fields of cancer, cardiac physiology and soft-tissue 
mechanics. For example, Osborne et al. (2017) 
showed an improved open-source C++ library for 
cell-based and multiscale modelling of multicellular 
systems based on Chaste. In this work, five classes 
of cell-based models were applied in four 2D case 
studies to analyse the influence of each method on 
the modelled cellular phenomenon. The authors 
illustrated appropriate mapping between models and 
related applications such as adhesion, proliferation, 
short-range and long-range signalling. These models 
were also implemented for 3D simulations but 
the results were not reported. CellML is a markup 
language for modelling equations of biological 
systems (Cuellar et al., 2003) that are easily readable 
by humans and machines. It can also model the 
relationship and encapsulation of components along 
with the biochemical reactions. The general-purpose 
framework introduced by Zwart et al. (2009; 2013) is an 
example of a multiphysics object-oriented data model 
where the function calls are combined with physically 
based interfaces. Here, the authors illustrated 
the flexibility of their framework by applying it 
in the astrophysics domain. With this platform, 
simulations can be performed using different solvers 
and exchanged without completely refactoring the 
underlying codes. The differences in length scales 
and time steps required to simulate astrophysics 
problems lend to similar issues in simulating biology; 
protein interactions take place at the nanoscale 
in nanoseconds, while overall structural changes 
take place in weeks. Another example of software 
developed for reproducibility across several models 
is E-CELL (Takahashi et al., 2003; Tomita et al., 1999). 
It focuses on the implementation and simulations 
of biochemical and genetic processes, with the 
possibility of defining complex specific properties of 
cells such as protein-protein interactions and protein-
DNA interactions. As an example, they presented 
a model of a cell with 127 genes for transcription, 
translation and other metabolic activities. E-CELL 
also has an interactive graphical interface. Overall, 
these platforms can provide a foundation for an 
improved understanding of bone mechanobiology.

Conclusion and future directions

Bone mechanobiology is a field that studies the 
interlinking of biological, physical and mechanical 
processes occurring in a complex hierarchical system, 
namely, the bone. While experimental tools can 
provide some insights into the (patho)physiology, 
the use of simulation models is vital in addressing 
existing quantitative gaps. The existing computational 

methods can be employed to obtain comprehensive 
data with better quantitative validation.
	 Hybrid models can be used as tools to study 
the different yet related biological responses to 
mechanical loading. Such models will be able to 
investigate mechanobiological properties, such as 
cell movement, apposition rate and bone growth. 
The modularity of the agent-based technique inside 
a hybrid model is ideal since it considers the natural 
heterogeneity among the cells. Moreover, the ease 
of the potential comparison with in vivo data was 
highlighted. The hybrid model by Tourolle et al. 
(2019) was used to perform bone remodelling 
simulations on a murine caudal vertebra (Boaretti et 
al. (2018) Studying how the link between mechanical 
stimulation and cellular activation effects bone 
microarchitecture; 25th Congress of the European 
Society of Biomechanics, Vienna, conference 
abstract; Boaretti et al. (2020) Improved initialisation 
of a multiscale in silico model of trabecular bone 
remodelling using in vivo murine data; American 
Society for Bone and Mineral Research’s Annual 
Meeting, conference abstract). This is the first step 
towards the full integration of in vivo data into an in 
silico model of bone mechanobiology.
	 Experimental data should reflect the modelled 
properties and vice versa. This goal can be achieved if 
the experimental data is expressed quantitatively, i.e. 
in terms of numerical values, along with qualitative 
observations. In addition, in silico models need to use 
the biological knowledge available to run simulations 
and eventually validate their numerical data against 
the experimental data. Such synergy is fundamental 
to building upon the state of the art. Accordingly, 
a continuous collaboration between modellers and 
biologists is vital.
	 The techniques of agent-based, multiscale and 
multiphysics modelling each provide a framework 
in which biological phenomena can be directly 
translated into simulations. Then, knowledge can be 
expanded by testing the development of the systems 
they model against the sparse data available from 
experiments. Shared modelling platforms provide a 
basis for developing an in silico model from existing 
work, with the possibility of improvements and 
merging different models. A hybrid model that 
combines multiscale, multiphysics and agent-based 
techniques can describe bone mechanobiology across 
all length scales, i.e. from the organ to gene and 
protein scale. Such a model can validate the certainty 
of recent biological observations and potentially 
be used to discover new molecular targets for 
treatments.
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