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Abstract

The prevalence of degenerative orthopaedic diseases, such as osteoarthritis, osteoporosis, and intervertebral disc disease, has increased
due to the increasing prevalence and unsatisfactory therapeutic methods. Recently, different types of bioactive nanomaterials, such as
iron oxide nanoparticles (IONPs), have raised much concern due to their ability to positively regulate the bone remodelling balance.
Due to their magnetic characteristics, IONPs have been applied in magnetic resonance imaging in the clinic, but their ability to treat
degenerative orthopaedic diseases has recently been shown both in vitro and in vivo. However, a comprehensive review of the potential
utilization of IONPs in the orthopaedic field is lacking. Here, we summarize previous works in this review and discuss future research
directions in this field.
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Introduction
With the acceleration of ageing, the prevalence of

degenerative orthopaedic diseases has increased rapidly,
which has raised much concern. Degenerative orthopaedic
diseases, which include many highly prevalent diseases,
such as bone-featured osteoporosis (OP) and cartilage-
featured osteoarthritis (OA)/intervertebral disc disease
(IDD), are characterized by senescence of bone and carti-
lage tissues. These diseases cause many elderly people to
suffer, which is also the main cause of disability and death.

OP is a common degenerative orthopaedic disease se-
riously threaten the survival quality of elderly (Agrawal
and Garg, 2023; Ensrud and Crandall, 2024). Researchers
have reported that fragility fractures occur more often in
OP patients, especially in the hip and centrum, which can
cause long-term bedrest and eventually death. Although
many drugs, such as bisphosphonates, denosumab and teri-
paratide, are available, their side effects and limited ther-
apeutic effects are still unsatisfactory (Pant et al., 2023;
Wei et al., 2022; Zheng et al., 2022). For example, in

the treatment of OP, the patients with long-termed appli-
cation of bisphosphonates might suffer from atypical frac-
ture in the shaft of femur (Aouad et al., 2023; Black et
al., 2020). The fracture is always defined as low energy
damage due to the patients’ own gravity, which might ow-
ing to the over-inhibition of bone resorption, which affects
the bone remodeling for the trabeculae bone with appropri-
ate micro-architectural structure for load-bearing (Kordoni
et al., 2018; Lisnyansky et al., 2018; Saleh et al., 2013;
Schilcher et al., 2011).

OA is also a common degenerative disease of the
whole joint characterized by pathological cartilage dam-
age, which is the most common cause of joint disability and
pain in elderly individuals and affects more than 250 mil-
lion people worldwide (Allen et al., 2022; Prieto-Alhambra
et al., 2014). In the clinic, stepped therapeutic methods
highlight the importance of pharmacotherapy. However,
the drugs such as nonsteroidal anti-inflammatory drugs
(NSAIDs), glucosamine sulfate and sodium hyaluronate are
always “safe but ineffective”, which cannot intervene the
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process of diseases, which makes it difficult to achieve
a satisfactory therapeutic effect (Eckstein et al., 2006;
Ibrahiem et al., 2023; Liu et al., 2021; Moseng et al., 2024;
Pei et al., 2023; Shavlovskaya et al., 2023; Wu et al., 2023).
Those patients can barely avoid receiving the surgical treat-
ment due to the progression of diseases and the disease-
modifying drugs is still in development (Li et al., 2023;
Makarczyk et al., 2021; Shavlovskaya et al., 2023). The
situation of IDD is similar to that of OA. Hence, the novel
pharmacological therapeutic method is in urgent need for
those degenerative orthopedic diseases.

Recently, with the development of nanotechnology,
the treatment of degenerative orthopaedic diseases has be-
come possible. These nanomaterials easily pass through
physiological barriers due to their unique physicochemical
properties, such as a high surface-to-volume ratio, which
allows them to be applied in drug delivery and enhances
their therapeutic effect (Bartkowski et al., 2024; Liang et
al., 2023b). As a typical nanomaterial, iron oxide nanopar-
ticles (IONPs), including Fe3O4, y-Fe2O3, and hybrid fer-
rites, have garnered much attention. These nanoparticles
can carry iron, which can be detected by existed medical
device such as magnetic resonance imaging (MRI). Also,
it can induce biological activities due to the releasion of
iron ions and the properties of nanoparticles. In previous
translational research, IONPs exhibited excellent biocom-
patibility and biodegradability in vivo (Paik et al., 2015;
Patil et al., 2015). Additionally, they are sensitive to mag-
netic fields, enabling their use in both diagnostic and thera-
peutic approaches, especially for the cellular and subcellu-
lar diagnosis (Kim et al., 2020; Shi et al., 2020; Vallabani
et al., 2019; Wu et al., 2015). Meanwhile, due to the mod-
ifiable property, the IONPs have been used to prepare a lot
of multi-functional agents with the integration of diagnosis
and treatment have been developed, especially in the onco-
logical field.

Although the IONPs have been maturely applied in
the biomedical field, the research is in its infancy in or-
thopedic field. According to previous reports, IONPs has
been explored to be applied in the diagnosis and treatment
of different orthopedic diseases, such as OA, OP, bone
tumors, fractures, osteolysis, and bone defects (Fig. 1)
(Guo et al., 2020; Pang et al., 2021; Sadeghzadeh et al.,
2023; Vergnaud et al., 2022; Wang et al., 2021a; Zhang
et al., 2024). The nanoparticles exhibited great bioactivity
when locally administrated in bone tissues alone or com-
bined with other motifs, such as the enhancement of os-
teogenic and chondrogenic differentiation. Also, the unique
magnetic properties make the IONPs could be used for
magnetic-respond drug/stem cell tracing and delivery in or-
thopedic diseases (Chang et al., 2021; Xia et al., 2019b).
When combined with the intervention of external magnetic
field, the IONPs might translate the magnetic into other
stimulation via different electromagnetic effect, such as the
magnetocaloric effect, magneto-force effect (Del Bianco et

al., 2022; Hamad et al., 2021; Ma et al., 2022; Wang et
al., 2021b). The physical intervention is especially empha-
sized in the abundance of bone matrix, which finally act on
the cells and induced the alteration in the cellular behav-
iors, such as the regulation of osteogenic and chondrogenic
differentiation (Harris et al., 2015).

Although the IONPs is a promising agent due to the
magnetic properties and biological activity, the biosafety
and efficiency in diagnosing and treating degenerative or-
thopedic diseases are still worrying. As is known, the iron
ions are tightly related to the ferroptosis, which has been re-
garded as the key pathological process in the inflammation
and senescence (Coradduzza et al., 2023; Fan et al., 2024;
Sun et al., 2024). In the oncological field, the ferroptosis is
an effective weapon for killing the tumor cells. However,
in the treatment of degenerative diseases, it might be re-
garded as a “double-edged sword”, which might contribute
to the acceleration of pathological process. Also, too many
kinds of IONPs have been developed for the biomedical ap-
plication due to the excellent extensibility. However, how
to use an appropriate IONPs agent to intervene the deter-
mined pathological process in the degenerative orthopedic
disease is still unclear. Briefly, a retrospective review based
on the translational application perspective in orthopaedic
field is still in lack. Herein, we summarize the applica-
tion of IONPs in diagnosing and treating degenerative or-
thopaedic diseases, which might provide new insights for
future research in this field.

The Preparation of IONPs
IONPs can be prepared by various methods, includ-

ing physical, chemical and biological methods, which is
tightly linked with the physicochemical properties (Laurent
et al., 2008; Wu et al., 2015). Due to the lack of ability to
precisely control the size of IONPs in the nanoscale, the
physical approachs, such as the electron beam litography,
aerosol, gase phase deposition, and powder ball milling,
are not widely applied (Ling et al., 2015). The biological
process relies on the redox reaction, which is more promis-
ing to be explored in the future. We considered that the
in-situ synthesis of IONPs in vivo might be a ultimate aim
of the biological method. However, the present application
is still limited, and the application of physical and biolog-
ical methods account for less than 10% in the preparation
of IONPs (Ali et al., 2016; Revathy et al., 2023; Samrot
et al., 2021). Hence, we focus on introducing the chemical
synthesis routes.

The co-precipitation method is among the most sim-
ple and efficient synthesis procedures, which involves the
mixing of multiple metal salts and precipitants to trigger
a reaction, ultimately leading to the formation of a mix-
ture comprising iron oxide and metal ions in the reac-
tion solution (Sharouf and Saffour, 2024; Wahfiudin et al.,
2024). The adjustment of factors such as pH value, reac-
tion time, precipitant type, and solution concentration en-
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Fig. 1. Application of iron oxide nanoparticles (IONPs) for treating orthopaedic diseases.

ables the achievement of control over product particle size
and composition (Wahfiudin et al., 2024). Nevertheless,
this method is associated with a broad particle size dis-
tribution and challenges in precisely controlling product
composition. To overcome these challenges, the improved
co-precipitation techniques with the assistance of magnetic
field, ultrasound, or functionalized bases have been devel-
oped (Liu et al., 2011; Pereira et al., 2012; Petcharoen and
Sirivat, 2012; Remya et al., 2016; Roy et al., 2016; Suh et
al., 2012; Wu et al., 2011).

To precisely control the size and shape of IONPs, the
solvothermal method, which is also named as thermal de-
composition, was developed (Hufschmid et al., 2015; Park
et al., 2004). The method entails the heating of a solution
comprising a mixture of metal ions and surfactants to yield
IONPs with tunable particle sizes. By manipulating param-
eters such as temperature, concentration, surfactant type,
and heating duration, this method allows for the precise at-
tainment of desired product particle sizes and shape (Sharifi
et al., 2012). However, this approach necessitates high tem-
peratures and a complex preparation process, which make it
not environmentally friendly. Also, the application of toxic
chemicals in the synthesis processes make its own a risk in
biocompatibility to be directly applied in the medical scene
(Roy et al., 2021).

The sol-gel method is also a common method for
the preparation of IONPs, which involves the swelling of

metal ions in an organic solvent, followed by hydrolysis
and repolymerization to form an iron oxide gel system (Dar-
mawan et al., 2010; Puscasu et al., 2016). Subsequent heat
treatment leads to the production of nanoparticles. This
approach exhibits high precision and controllability, en-
abling the regulation of product morphology and crystal
form through the manipulation of conditions such as hy-
drolyzing agent type and concentration (López-Sánchez et
al., 2022; Panda et al., 2024; Waqas et al., 2024). However,
it necessitates a prolonged preparation time, a complex pro-
cess, and may result in environmental pollution due to the
use of organic solvents.

Besides, a lot of methods such as microemulsion, hy-
drothermal, sonochemical and electrochemical deposition
methods were employed for the preparation of IONPs. The
microemulsionmethod used two immiscible liquids to form
a confined environment for the nucleation and controlled
growth of nano- and micro-particles (Hwang, 2024; Morán
et al., 2023; Rahman et al., 2024). Although the size of
the IONPs could be easily controlled by regulating the mi-
celles, the limited crystallinity and yield make it hard to be
translated in clinic use (Chaudhari and Panda, 2023). The
hydrothermal method is relatively low-cost and easy to be
performed. However, the final size of particles is not easy
to be controlled (Hang et al., 2024; Ta et al., 2024). We
have listed the advantages and disadvantages of different
methods in the Table 1 for the future reference. The more
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Table 1. The comparison of different synthesis method of iron oxide nanoparticles (IONPs).
Method Complexity Energy intensity Homogeneity Shape control Crystallinity Yield

Co-precipitation Very simple Low Bad Bad Low High
Solvothermal Very complicated High Excellent Excellent High High
Sol-gel Relatively simple Low Good Good Low Low
Microemulsion Complicated Low Good Good Low Low
Hydrothermal Relatively simple High Good Bad High High

preparation methods with ability to balance the yield and
the ability to control the size and shape of IONPs is still in
need to be developed.

The Biocompatibility of IONPs
When IONPs are applied in biomedical applications,

biosecurity, which includes adverse effects when animals
are exposed to nanoparticles, is highly important. Thus,
we used a single section to exhibit the biocompatibility of
IONPs before the application in orthopedic field. A pre-
vious review reported the therapeutic efficacy, migration
and metabolism of IONPs in vivo (Malhotra et al., 2020).
Although IONPs have been used in different ways in the
biomedical field, toxicity is still a challenge that hinders
their clinical translation. Although many types of IONPs
exist, they have similar structures, including iron oxide
cores, polymer coatings, and external layers. Previous work
has shown that the toxicity of IONPs ismostly dependent on
the shape and size of the nanoparticles and the presence of
coating materials (Hussain et al., 2005; Jeng and Swanson,
2006; Karlsson et al., 2008; Karlsson et al., 2009; Malehmir
et al., 2023). Herein, we separately introduce the aspects
for the reference to prepare more bio-friendly IONPs for
treating degenerative orthopaedic diseases.

The size of IONPs is an important factor affecting the
cellular toxicity, which is mainly related to metabolism in
vivo. In general, smaller IONPs (<10 nm) are metabolized
by renal extravasation, while larger IONPs (>200 nm) are
captured by the spleen, which indicates that IONPs with a
size of 10-100 nm are more suitable for application in vivo
(Choi et al., 2007; Gupta and Gupta, 2005). Additionally,
many studies have shown that different shapes of IONPs are
linked to toxicity. For example, spherical IONPs have been
observed to have lower toxicity than other shapes, while
rod-shaped IONPs have been reported to have greater toxi-
city (Ran et al., 2015).

Previously, it was reported that a polymer coating is
themost important structure for relieving the toxicity of iron
oxide and could also prevent the aggregation of nanoparti-
cles (Gupta and Gupta, 2005). The possible potential mech-
anisms include enhancing the stability of IONPs and reduc-
ing the speed of iron ion release from the iron oxide core.
Previous results have shown that the albumin nanoparticle
coating provides a stable biocompatible shell and prevents
the cytotoxicity of magnetite nuclei. After prolonged expo-
sure (48 hours), IONPs become cytotoxic due to the produc-

tion of free radicals, but this toxic effect can be neutralized
by the use of polyethylene glycol (Abakumov et al., 2018).
Previously, we found that polymer coatings could relieve
iron overload-induced OP by scavenging reactive oxygen
species (ROS) (Yu et al., 2020). As is widely known, the
ferroptosis is a kind of cellular death based on the lipid per-
oxidation and the generation of ROS, which means that the
ROS-scavenging polymers are also promising in reducing
the toxicity by intervene the cellular behavior (Cao et al.,
2024; Endale et al., 2023; Teschke, 2024). So, a lot of poly-
mer materials with excellent antioxidant properties is also
promising to be used for the synthesis of novel IONPs with
more excellent biocompibility and diversified bioactivity,
and the area is worth to be explored in the future. Each coat-
ing material has its own advantages and disadvantages, and
we should pay attention to the selection (Abakumov et al.,
2018). However, studies on the relationship between coat-
ing materials and toxicity in different microenvironments
are still limited, and more studies need to be conducted.

The biosafety of IONPs is a crucial aspect that should
be thoroughly examined and addressed for their success-
ful clinical translation (Wang et al., 2024a; Yang et al.,
2023). While IONPs offer immense potential in various
biomedical applications, such as drug delivery, magnetic
resonance imaging, and hyperthermia treatment, their long-
term safety profile remains a significant concern (Marycz
et al., 2020; Moacă et al., 2023). IONPs are typically de-
signed to degrade over time, releasing iron ions that are
subsequently metabolized by the body. However, uncon-
trolled degradation can lead to excessive accumulation of
iron, potentially causing oxidative stress and cellular dam-
age. Therefore, strategies to precisely regulate the degra-
dation rate of IONPs are crucial. As is shown in Fig. 2,
a work used a continuous flow system to unveil the bio-
logically degradation behavior in vivo and characterize the
degraded products, which is important in promoting the
clinical application of IONPs (Yang et al., 2024). The im-
provement of biosafety can be realized by the application of
novel coatings or modifications that stabilize the nanoparti-
cles for a desired duration, ensuring that they degrade only
when needed (Gu et al., 2024; Natarajan and Tomich, 2020;
Zhong et al., 2019). Moreover, the use of targeting ligands
that specifically deliver IONPs to target cells while mini-
mizing accumulation in healthy tissues could also be ex-
plored (Israel et al., 2020; Liao et al., 2015; Park et al.,
2008; Riegler et al., 2013; Zhi et al., 2020; Zhou et al.,
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Fig. 2. A flow system which can dynamically monitor the degradation behavior of IONPs in vivo. Image cited from Yang et al.
(2024).

2022). The biosafety of IONPs is a multifaceted issue that
requires a comprehensive approach to address. By control-
ling the degradation rate, avoiding long-term accumulation,
and mitigating potential toxic side effects, researchers can
enhance the safety profile of IONPs and pave the way for
their successful clinical translation.

Magnetic Nanoparticles for Imaging
Innovations

In enhanced Magnetic Resonance (MR) detection, the
most widely applied contrast agent is gadolinium (III).
However, its high toxicity, especially in patients with liver
and kidney failure, has raised significant concerns and lim-
ited its clinical application (Chen et al., 2011; Di Marco
et al., 2017). In previous work, ultra-superparamagnetic
iron oxide nanoparticles (SPIONs) were shown to signif-
icantly reduce the transverse relaxation time (T2) during
MRI (Ajayi et al., 2023), and these materials have the po-
tential to be applied as novel contrast agents. Recently,
the imaging properties of newly prepared IONPs have been
shown to be similar to those of gadolinium-based contrast
agents, which are in the process of clinical translation (Liu
et al., 2013)

IONPs can be used for MRI of different tissues. Usu-
ally, nanoparticles less than 10 nm in size are excreted in

the urine, while a large number of nanoparticles larger than
200 nm are engulfed by the digestive system. This phe-
nomenon indicated that the IONPs used for imaging differ-
ent organs need to be of different sizes and shapes. Larger
IONPs accumulate in the reticuloendothelial system (RES),
which enables the imaging of the liver and spleen (Dad-
far et al., 2019). Moreover, particles with sizes between
20 and 150 nm tend to deposit in connective tissues (bone,
tendons, and muscles), stomach, and kidneys, as reported
previously (Wang et al., 2022a). As mentioned above, the
size of IONPs could be easily controlled by adjusting the
preparation process. Determining the relationship between
the size of IONPs and their enrichment in organs is impor-
tant for future research and is highly valuable for preparing
individual products for organ imaging.

In bone tissue imaging, imaging depth is still a chal-
lenge that limits imaging technology, but IONPs might pro-
vide a possible solution. Recently, magnetic particle imag-
ing (MPI) technology, which aims to evaluate the electro-
magnetic properties of IONPs according to the gradient re-
lationship between the magnetic field and concentration of
IONPs, has been developed. IONPs saturate according to
the direction of themagnetic gradient, except in a fieldwith-
out a magnetic field (Graeser et al., 2019; Panagiotopou-
los et al., 2015; Saritas et al., 2013). The oscillating be-
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haviours of IONPs make it possible to visualize and quan-
tify the imaging results, which eliminates common issues
in optical imaging, such as the disturbance of autofluores-
cence and signal attenuation in tissues (Bulte et al., 2015;
Saritas et al., 2013). Moreover, MPI technology is not de-
pendent on negative contrast for screening IONPs, which
could avoid confusion in visualization at the air medium
and tissue interfaces (Talebloo et al., 2020). Moreover,
MPI enables continuous longitudinal screening of signals
in samples, which is vital for cell tracing in vivo (Kang et
al., 2014; Rana et al., 2010). Previously, the IONPs con-
jugated with collagen-binding peptides and IONPs can be
detected via MRI methods for the diagnosis and treatment
of osteoarthritic joints (Guan et al., 2023). We hope similar
studies will contribute to the diagnosis of the pathological
process of orthropedic diseases.

Application of IONPs in the Treatment of OA
OA is a representative degenerative orthopaedic dis-

ease characterized by the deterioration of cartilage and
subchondral bone (Abdelbari et al., 2023). Cartilage tis-
sues are regarded as avascular connective tissue without
a self-renewal ability, but cartilage regeneration has be-
come a challenge (Bullock et al., 2018). Herein, we in-
vestigated the application of IONPs in the treatment of OA
and in the treatment of cartilage-derived degenerative or-
thopaedic diseases, including as nanocarriers and diagnos-
tic/therapeutic agents.

Due to the absence of the vasculature, the entry of
agents into the joint carve has been regarded as a com-
plex problem. Methods to deliver drugs into the joint carve
have raised much concern. The systemic administration of
drugs is limited by systemic side effects and low bioavail-
ability (Abbas et al., 2022b; Mosallam et al., 2022; Yang
et al., 2011). Local intra-articular injection is a promis-
ing method for directly delivering bioactive agents to car-
tilage lesions. However, repeated punctures increase the
risk of iatrogenic infection. Nanocarriers have been devel-
oped for efficient drug delivery via the joint route to ad-
dress these challenges, and they improve drug delivery ef-
ficiency while minimizing adverse effects on other organs
and tissues (Abbas et al., 2022a; Mohamed et al., 2020).
Magnetic targeting combined with IONPs has been shown
to be efficient for drug delivery (Ong et al., 2020, Suryade-
vara et al., 2023). IONPs, which are easy to fabricate, play
a vital role in the controlled delivery of bioactive agents to
the determined area and have shown advantages in terms
of biocompatibility and surface functionalization (Abbas et
al., 2022a, Das et al., 2019, Son et al., 2015). Molecular
drugs can easily bind directly to the iron oxide surface for
local delivery (Ibrahiem et al., 2023; Partain et al., 2020).
In addition, Mei et al. (2016) prepared IONPs with super-
paramagnetic properties using a high-temperature thermal
decomposition method and subsequently coated them with
PEG. The modified IONPs had a particle size of 5.9 ± 1.1

nm and could easily penetrate into cartilage for drug de-
livery. Additionally, other works have used WYRGRL,
which is a short peptide that combines with COL2A1 in
the extracellular matrix of cartilage (Papadimitriou et al.,
2014; Yarmola et al., 2016). Also, the IONPs conjugated
with C5-24 peptides increased the retention of hyline car-
tilage when administrated in OA knees in a previous study
(Guan et al., 2023). Additionally, IONPs contribute to car-
tilage repair and regeneration by recruiting bone mesenchy-
mal stem cells (BMSCs) to specific locations and promot-
ing their expression while causing fewer inflammatory re-
sponses (Yang et al., 2019a and Yang et al., 2019b). These
innovative approaches present promising avenues for ad-
vancing OA treatment.

In addition to drug delivery, IONPs have also been
widely used directly for diagnosing and treating OA (Fig.
3). The use of COL2A1-targeting IONPs can aid in the
use of MRI to distinguish cartilage with early degenerative
characteristics from healthy cartilage to achieve molecular-
level diagnosis (Wu et al., 2023). Additionally, chitosan-
modified IONPs have been shown to be efficient at labelling
cells without altering their differentiation ability, which can
be useful for intra-articular imaging. Interestingly, a team
used IONPs to collect CTX-II, an important biomarker in
osteoarthritic joint carves, which is called “magnetic cap-
ture” and is helpful for the early-stage diagnosis of OA
(Garraud et al., 2016; Yarmola et al., 2016). As metal oxide
nanoparticles, IONPs were proven to significantly improve
histopathological damage to rat knee joints by regulating
OPG, RANKL, ERK1, and MAPK levels (Ibrahiem et al.,
2023). In addition, IONP-containing biomaterials, such
as diphasic magnetic nanocomposite scaffolds, nanovehi-
cles, and PLGA microspheres, have been developed for
the treatment of OA (Butoescu et al., 2009; Huang et al.,
2018; Zhang et al., 2020; Wang et al., 2024b). In vitro ex-
periments have shown that IONPs can promote the differ-
entiation of BMSCs into chondrocytes and upregulate the
Ihh/PTHrP signaling pathway, providing a potential thera-
peutic approach for treating cartilage degeneration-related
diseases (Jiang et al., 2017). Additionally, studies have
explored the effects of IONPs on the chondrogenic differ-
entiation of human bone marrow stromal cells (HBMSCs),
neonatal, and adult chondrocytes. It was found that the vi-
ability of all cell types was unaffected; however, the cell
morphology shifted to a “stretched” phenotype after SPIO
uptake, and the proliferation of neonatal chondrocytes de-
creased after SPIO uptake (Saha et al., 2013). In vivo stud-
ies have found that 12.75 µg/mL M-SPIO can successfully
label human articular cartilage-derived chondroprogenitor
cells with minimal impact on cell viability, MSCmarker ex-
pression, and differentiation potential (Vinod et al., 2019).
It also does not affect the production of major cartilage
matrix components (Ramaswamy et al., 2009). However,
the potential regulatory mechanism has not been elucidated
well, andwhether the therapeutic effects are due to nanopar-
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Fig. 3. IONPs have been proven effective in treating osteoarthritis (OA). (A) COL2A1 targeted IONPs for treating OA. Image cited
from Wu et al., (2023). (B) IONPs based hybrid system for treating OA. Image cited from Wang et al. (2024b).

ticle properties or degradation products remains unclear and
is worth exploring (Table 2).

In addition to the application of IONPs as drugs to treat
OA, IONPs are more likely to be applied in combination
with stem cells or chondrocytes in the cell tracing field and
can exhibit therapeutic effects. IONPs combined with MRI
T2 imaging can maintain the stemness of adipose-derived
stem cells (ADSCs), which is promising for application in
MRI-assisted cartilage tissue engineering (Xie et al., 2019).
Naosuke Kamei et al. prepared a cell delivery system to de-
liver mesenchymal stem cells (MSCs) to the cartilage defect
area for cartilage repair (Kobayashi et al., 2008). They sub-
sequently conducted clinical work and reported that IONP-
labelled autologous MSCs were safe for repairing cartilage
defects in the knee, while newly formed cartilage was ob-
served 48 weeks after surgery (Kamei et al., 2018). Ad-
ditionally, IONP-labelled chondrocytes can also be guided
by a magnetic field to the cartilage defect area for cartilage
repair (Gong et al., 2018). As the autologous chondrocyte
implantation (ACI) technique has been regarded as effec-
tive for treating cartilage defects, the use of IONP-labelled
chondrocytes is similar to that of chondrocyte transplanta-
tion, which seems to have the advantage of minimal inva-
sion. Briefly, IONPs combined with stem cells or chondro-
cytes are easy to translate in the clinic. However, long-term
studies on the safety and effectiveness of these treatments
are still needed.

Application of IONPs in the Treatment of OP
OP is a common bone degenerative disease with an ex-

tremely high prevalence in elderly individuals. OP can be
divided into two subtypes: decreased bone formation ac-
tivity and increased bone resorption activity (Compston et
al., 2019; Ensrud and Crandall, 2024). Previously, IONPs
were shown to be effective in regulating the behaviour of
osteoblasts and osteoclasts. Chitosan-coated IONPs mod-
ified with chitosan and hydroxyapatite were reported to

be effective at enhancing the proliferation of osteoblasts
while protecting the cells from exogenous stimuli and pro-
moting osteogenic differentiation (Shi et al., 2012; Tran et
al., 2012; Tran and Webster, 2011). Similar osteogenic-
enhanced effects of IONPs were found in osteoporotic frac-
ture models, while implant osseointegration was signifi-
cantly enhanced (Anjum et al., 2023; Fouad-Elhady et al.,
2020; Hedvičáková et al., 2023, Paun et al., 2018). More-
over, with the assistance of a magnetic field, IONPs can
be guided to any bone area needed to enhance the forma-
tion of bone tissue, which could reverse the process of OP
(Tran and Webster, 2013). In the same period from ap-
proximately 2012-2015, bone-targeting IONPs were devel-
oped for the radiological evaluation of bone metabolic ac-
tivity (Panahifar et al., 2013). Additionally, the inhibitory
effect of IONPs on osteoclasts was reported to be depen-
dent on the TRAF6-p62-CYLD pathway (Li et al., 2021;
Liu et al., 2019). However, with the increased aware-
ness of iron overload-induced OP, the application of IONPs
in treating this disease is controversial. In 2020, we re-
ported that IONPs coated with antioxidative polysaccha-
rides can release iron ions in bone mass without causing
iron accumulation-related OP, which might be explained by
the ROS scavenging effect of polysaccharides (Yu et al.,
2020). Subsequently, IONPs combined with typical anti-
OP drugs, such as bisphosphonates, were prepared for the
treatment of OP in our and other works (Lee et al., 2016;
Zheng et al., 2022, Panseri et al., 2012). Furthermore,
Guan H et al. (2023) combined IONPs, Piezo1 activators
and zoledronic acid in a hybrid system for the treatment of
OP, which was shown to have an excellent therapeutic ef-
fect. Also, Yuanyuan Guo et al. (2021) used the IONPs
to remote-controllable deliver estradiol to treat OP in rats
models and achieved a success. However, the potential
mechanism by which IONPs regulate OP is still unclear.
In our previous work, we found that IONPs could regu-
late the inflammatory microenvironment in bone tissues,
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Table 2. The researches of the effect of IONPs on chondrogenic differentiation.
IONPs Magnetic field intensity Cell type The effect of IONPs on the

chondrogenic differenetiation
Reference

Magnetospirillum sp-isolated
IONPs

0.25 mT BMSCs Enhanced (Son et al., 2015)

Crbon quantum dots-doped
IONPs

0.05 T WJ-MSCs Enhanced (Das et al., 2019)

Ferumoxytol None MSCs Enhanced (Suryadevara et al., 2023)
Superparamagnetic iron oxide None BMSCs Transient inhibition (Saha et al., 2013)
Superparamagnetic iron oxide 1 T ADSCs Inhibited (Kolecka et al., 2017)
Kartogenin-loaded ultrasmall
super-paramagnetic iron-oxide

None BMSCs Enhanced (Suryadevara et al., 2023)

BMSCs, bone mesenchymal stem cells; MSCs, mesenchymal stem cells; ADSCs, adipose-derived stem cells; WJ-MSCs, Wharton’s jelly
mesenchymal stem cells.

which is beneficial for bone renewal and the function of bis-
phosphonates (Fig. 4). IONPs can be combined with dif-
ferent materials, such as calcium phosphate cement (CPC)
(Xia et al., 2019a), or synthesized into mesoporous silica-
coated magnetic (Fe3O4) nanoparticles (M-MSNs) (Jia et
al., 2019), both of which enhance the osteogenic activity
of stem cells through the WNT/β-catenin signaling path-
way. Marycz K et al. (2020) synthesized the α-Fe2O3/γ-
Fe2O3 nanocomposite does not induce an immune response
and regulates integrin expression; it also enhances the os-
teogenic differentiation of osteoblasts and triggers apopto-
sis of osteoclasts. The combined use of a 1-2 T static mag-
netic field (SMF) and IONPs reduces iron uptake by os-
teoclasts and decreases oxidative stress levels during os-
teoclast differentiation. At the molecular level, the 1-2
T SMF combined with IONPs inhibits the expression of
the NF-κB and MAPK signaling pathways (Zhang et al.,
2022). Meanwhile, the appropriate ratio of Fe/Ca = 1:15,
mol/mol (SPIO@15HA) inhibited the formation of osteo-
clasts through the TRAF6-p62-CYLD pathway. Besides,
the osteogenic differentiation process was enhanced by the
regulation of TGF-β, PI3K-AKT, and calcium signaling
pathways. Furthermore, the overexpressed cytokines such
as OPG, CSF2, and CCL2 also contributed to the main-
tainence of bone remodeling balance (Li et al., 2021). The
senescence-associated secretory phenotype of immune cells
and bone-related cells is widely recognized as an important
source of inflammatory cytokines that contribute greatly to
the progression of OP. Whether IONPs have a regulatory
effect on the production of inflammation still needs to be
explored.

Application of IONPs in Intervertebral Disc
Diseases

The intervertebral disc is another site that is linked
to orthopaedic degenerative diseases and is also a lead-
ing cause of disability in elderly individuals, and the com-
mon clinical manifestation is low back pain (Xin et al.,
2022). The exploration of IONPs in intervertebral discs

has focused mainly on diagnosis or combination with stem
cell therapy for IDD. For example, Guillaume Bierry et al.
(2009) used IONP-enhancedMRI to identify infectious and
degenerative vertebral disorders, which could distinguish
between the two diseases according to the quantitative re-
sults. In other studies, IONPs were used to mark MSCs
to evaluate their survival and differentiation (Handley et
al., 2015; Hang et al., 2017; Saldanha et al., 2008). Ad-
ditionally, recent research has used IONPs as a magneto-
fection system to deliver miR-21 into stem cells for inter-
vertebral fusion operations, which is the only therapeutic
application of IONPs in IDD (Wang et al., 2023a). Studies
have shown that inflammation, mitochondrial DNA dam-
age and apoptosis play an important role in the pathologi-
cal process of intervertebral disc cell degeneration (Zhou et
al., 2024). Silence-activated transcription factor 3 (ATF3)
blocks the pathological process of IVDD by regulating iron
apoptosis, apoptosis, inflammation, and extracellular ma-
trix (ECM) metabolism in nucleus pulposus cells (NPCs)
(Wang et al., 2024c). Sirtuins/SIRTs and their related ac-
tivators regulate autophagy, myeloid apoptosis, oxidative
stress and extracellular matrix degradation, and have posi-
tive effects on the treatment of IVDD (Shen et al., 2024).
Prolonged exposure to high concentrations of IONPs may
induce oxidative stress and inflammatory translation (Vidya
Balakrishnan et al., 2024), but there is insufficient evidence
of INOPs and inflammatory response in the treatment and
imaging of IDD. Overall, the application of IONPs for treat-
ing degenerative diseases of the spine is still in the initial
stages. Based on the similar pathogenesis of IDD and OA,
future work on the spine is warranted.

Discussion
In the field of biomaterials, nanoparticles have been

widely applied due to their unique physicochemical prop-
erties (Zheng et al., 2024). These nanoparticles can be
widely used for diagnosing, treating and preventing or-
thopaedic diseases. Herein, we chose IONPs as repre-
sentative nanoparticles and summarized their application
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Fig. 4. Modified IONPs for treating osteoporosis. (A) Bone-targeting IONPs for treating postmenopausal osteoporosis; images were
obtained from Zheng et al., (2022). (B) Bone-targeting IONPs combined with estradiol for treating postmenopausal osteoporosis; images
were obtained from Guo et al., (2021). (C) Bone-targeting IONPs combined with Yoda1 for treating osteoporosis, images were obtained
from Guan et al., (2023). Abbrevations: EDC, 1-Ethyl-3-(3- dimethylaminopropyl) carbodiimide; NHS, N-hydroxysuccinimide.

in the orthopaedic field. Compared with other types of
nanoparticles, IONPs have the unique advantage of mag-
netic properties and are also an important trace element in
the human body. Iron metabolism in humans is a com-
plex process involving duodenal enterocytes, plasma, ery-
throid bone marrow, the spleen, and the liver (Chifman et
al., 2014). Many degenerative diseases have been linked
to ferroptosis, which is a unique type of cell death medi-
ated by iron-dependent lipid superoxidation (Jiang et al.,
2021). Thus, the biosecurity of IONPs has been challenged.
However, in our and others’ previous work, suitable poly-
mer coatings that can scavenge the existing ROS produced
during ferroptosis can help to prevent iron accumulation-
induced degenerative diseases (Guan et al., 2023; Yu et al.,
2020; Zheng et al., 2022). Recently, many biosynthetic
polymers with antioxidant activity, such as lignin, chitosan,
and functional lipidosomes, have been identified (Pei et al.,
2023; Zheng et al., 2021a; Zheng et al., 2021b). Surpris-
ingly, we also found that IONPs can prevent the senescent
secretion phenotype (data not published), which means that
the intracellular delivery of Fe2+ might involve an inde-
pendent pathway to improve the inflammatory microenvi-
ronment. The crosstalk between IONPs and the immune
system is worth exploring.

In addition to their direct effects, the synergistic ef-
fects of IONPs with typical therapeutic methods attracted
our attention. The most common application is the combi-
nation of IONPs with stem cells, in which the IONPs play

a multimodal role. In the process of clinical translation of
stem cell therapy, the greatest obstacle is the risk of tumori-
genicity, while the IONPs can act as surveillants. In preclin-
ical and clinical experiments, IONPs can be used to collect
data for the analysis of the proliferation and differentiation
of stem cells. On the other hand, the IONPs could directly
act on stem cells and regulate their behaviour, enhancing
their ability to promote osteogenesis/chondrogenesis for tis-
sue repair to treat degenerative orthopaedic diseases (Table
3). In addition to the advantage of integration of IONPs
with stem cells, several distinct challenges still remained
to be addressed. A major challenge lies in achieving high-
efficiency labeling of stem cells with IONPs while main-
taining cell viability and functionality (Berman et al., 2011;
Küstermann et al., 2008; Lin et al., 2017; Zheng et al.,
2016). It was reported that the surface modified IONPs
performed better in the long-term trancing of stem cells,
such as the application of glucosamine, self-assembled pep-
tide amphiphile, high-molecular polymers, amine and silica
(Guldris et al., 2017; Yang et al., 2016; Yao et al., 2020;
Liang et al., 2023a, Liu et al., 2020). Current methods of-
ten result in variable labeling efficiencies, which can limit
the accuracy of tracking and monitoring stem cells, which
could be improved by the development of device to generate
focusing magnetic field and IONPs with more precise mag-
netic properties (Liu andHo, 2017;Wang et al., 2020;Wang
et al., 2022b). Furthermore, the translation of IONP-based
stem cell therapies from the laboratory to clinical settings
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Table 3. The researches of the effect of IONPs on osteogenic differentiation.
IONPs Magnetic field

intensity
Cell type Animal model Conclusions Reference

Collagen–chitosan–
hydroxyapatite–
Fe2O3

250 mT MG-63
osteoblast-like

cells

None Enhances ALP activity,
osteocalcin synthesis and new

bone tissue formation

(Paun et al., 2018)

PLA-nHA-Fe2O3 0.05-25 mT None Rabbit model of lumbar
transverse defects

Accelerates new bone tissue
formation and remodelling in

vivo

(Meng et al., 2013)

ECM-RSF-Fe2O3 1 mT-1 T Rat BMSCs Critical-sized femur
defect in a rat model

Enhances the osteogenic
differentiation of BMSCs in
vitro and new bone formation

in vivo

(Liang et al., 2023a)

R-IONPs-HA Not clear MC3T3-E1 None Promotes proliferation and
osteogenic differentiation

(Wang et al., 2021a)

Fe-HA 320 mT Saos-2 human
osteoblast-like

cells

A rabbit critical bone
defect model

Promotes cell proliferation and
osteoblast activity in vivo

(Panseri et al., 2012)

APTES Not clear MC3T3-E1 and
4B12

None Enhances the metabolic
activity of osteoblasts and
diminishes osteoclasts’

metabolism

(Marycz et al., 2022)
-nHAp
-IONPs

IONP-CPC Not clear hDPSCs Subcutaneous
implantation in mice

Enhances ALP activity and
bone mineral synthesis in vitro
and enhances osteogenesis in

vivo

(Xia et al., 2019b)

Silk fibroin–
hydroxyapatite–
IONPs

Not clear BMSCs Subcutaneous
implantation in mice

Promotes cell adhesion,
growth, and osteogenesis in
vitro and facilitates bone

formation in vivo

(Liu et al., 2020)

faces numerous hurdles, including concerns regarding bio-
compatibility, long-term safety, and regulatory approval.

IONPs exhibit significant potential when integrated
with drugs, genes, and biomaterials to form multifunctional
nanoplatforms aimed at synergistic therapeutic outcomes.
As drug carriers, IONPs facilitate precise delivery via mag-
netic targeting, enhancing bioavailability and therapeutic
efficacy. They also function as sustained-release agents,
extending drug release and therapeutic duration (Tran et
al., 2022). The multifunctional hybrids are used to treat
cancers and achieved a lot of success (Ghadimi Darsajini
et al., 2023; Feng et al., 2023; Hasani et al., 2023; Wang
et al., 2023b). However, in the orthopedic field, the ap-
plication of multifunctional IONPs containing hybrids in
diagnosing and treating diseases is still in the early stage.
Previously, the combination application of IONPs with dif-
ferent drugs, such as salicylic acid, dexamethasone, folic
acid, alendronate, and exosomes were proven efficient in
treating OA and OP (Ibrahiem et al., 2023; Marycz et al.,
2020; Shah et al., 2017; Tran et al., 2022, Marycz et al.,
2022, Meng et al., 2013). However, current work are more
likely to use the IONPs as a drug which can synergetically

perform therapeutic effect with the typical drugs. As we
previous reported, the multifunctional nanoplatforms can
be obtained as two styles: the multifunction of one single
functional unit, and the combination of different functional
units (Zheng et al., 2024). Due to the complex structure and
physicochemical properties, IONPs are easily to be used
as therapeutic core and nano-vechiles which is easily to be
translated to treat diseases with different pathologies, such
as OA. However, various factors, such as charge, particle
size, and surface modifications, influence the nanoplatform
preparation methods based on IONPs. Also, drug-IONPs
integration may alter physicochemical properties, affecting
stability and bioactivity. The integration process requires
careful consideration of compatibility, stability, biological
activity, and safety of the nanoplatforms.

In conclusion, IONPs are novel nanoagents that could
be translated to the clinic for the treatment and diagnosis
of orthopaedic degenerative diseases. However, some un-
solved questions worth studying persist, such as the im-
provement of biosecurity and potential molecular mech-
anisms involved in regulating cellular behaviours. After
these obstacles are solved, more clinical trials are needed
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in the future.
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