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Haematopoietic stem cells (HSCs) are the most criti-
cal cell type in the human blood system, capable of differ-
entiating into all types of blood and immune cells, thereby
fully rebuilding the haematopoietic and immune systems.
Haematopoietic system transplantation represents one of
the earliest successful approaches in stem cell transplanta-
tion, effectively used to treat immunodeficiency, autoim-
mune diseases, and advanced cancers (including haemato-
logic malignancies and solid tumours) [1-3]. However, the
limited source of bone marrow donors poses a significant
challenge, and bone marrow transplantation can also cause
considerable harm to donors. The scarcity of donor cells
and the difficulties associated with human leukocyte anti-
gen/major histocompatibility complex (HLA/MHC) match-
ing greatly restrict the application of this treatment [4].

Cord blood and mobilised peripheral blood contain
HSCs that can be utilized for transplantation therapy; how-
ever, their content is relatively low, and the quantity of
HSC:s collected from a single individual is often insufficient
for transplantation [5,6].

The establishment of two types of human pluripotent
stem cells (hPSCs), namely human embryonic stem cells
(hESCs) and human induced pluripotent stem cells (hiP-
SCs), offers a potentially unlimited source of HSCs [7,8].
Theoretically, these cells can be differentiated into HSCs
and functional blood and immune cells. Nevertheless, it
is technically easier to obtain the latter two types of cells,
as achieving and maintaining the cellular status of HSCs
through haematopoietic differentiation from hPSCs in vitro
is exceedingly challenging. While hiPSCs share many cel-
lular characteristics and functions with hESCs, hiPSCs cir-
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cumvent the ethical implications associated with human
embryos, as they can be derived from reprogramming most
types of terminally differentiated cells. This provides a con-
venient and abundant cell source while minimizing the risk
of immune compatibility conflicts after HSC transplanta-
tion, making them the most promising source of HSCs and
other stem cells [9,10]. As the inventor of hiPSCs, Prof. Ya-
manaka established the hiPSC bank at Kyoto University in
2008. Since then, numerous similar hiPSC banks have been
set up worldwide to collect diverse hiPSC lines with vari-
ous genetic backgrounds, addressing the cell therapy needs
of patients [11].

Moreover, hiPSC-derived blood and immune cells
have been successfully generated in in vitro differentia-
tion systems, with notable progress in clinical applica-
tions. Currently, despite challenges related to quantity and
quality, certain types of blood cells, such as red blood
cells (RBCs) and platelets, can be produced at scale from
hiPSCs using these methods [12,13]. Notably, platelets
have shown significant advancements in clinical trials [13],
alongside various immune cell types, including neutrophils,
T cells, natural killer (NK) cells, and dendritic cells (DCs)
[14-17]. Century Therapeutics Inc. is currently test-
ing two projects in clinical trials: CNTY-101 for autoim-
mune diseases (NCT06255028) and for B-cell malignan-
cies (NCT05336409). Fate Therapeutics Inc. also has three
projects in Phase 1 trials, including FT819 for systemic
lupus erythematosus (NCT04629729), FT825 for solid tu-
mours (NCT06241456), and FT522 for B-cell lymphoma
(NCT05950334). However, efforts over the years to differ-
entiate hPSCs into HSCs in vitro have not yielded substan-
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tial progress, with seldom preclinical studies achieving sig-
nificant results, making this a challenging frontier in stem
cell biology [18].

It is important to acknowledge that some progress has
been made in hPSC differentiation into HSCs in recent
years. Research indicates that transplantable HSCs were
generated by injecting hPSCs into immunodeficient mice;
however, this method poses a risk of tumour formation in
vivo, rendering it unsafe for clinical application [19,20].
Sugimura et al. [21] developed a novel approach that in-
duced hPSCs into HSC precursor cells through overexpres-
sion of transcription factors such as RUNXI, demonstrat-
ing the capability to generate functional HSCs in vitro with
multipotent haematopoietic capacity in mice. Nonetheless,
the overexpression of multiple tumour-related factors and
transgenic manipulations limit clinical applications, and the
inherent tumorigenic potential of HSC precursor cells raises
safety concerns [21]. Overall, while advances have been
made, research on hPSC differentiation into HSCs remains
exploratory, facing challenges of low efficiency, incom-
pleteness, and instability. This highlights a critical need
for a deeper understanding of the regulatory mechanisms
involved in HSC generation [22].

Since 2023, significant progress has emerged in the
generation of hiPSC-derived HSCs. A study published in
Cell Stem Cell by the team of Guyonneau-Harmand and Jaf-
fredo reported the discovery of a non-transgenic and non-
embryonic feeder layer culture system that, following op-
timisation, can induce hPSCs to generate HSCs with con-
tinuous transplantation capabilities, fully reconstructing the
haematopoietic system in vitro [23]. Their method is sim-
ple and elegant, requiring no special reagents or techniques,
and the results are promising, aligning well with clinical
application requirements. Although replicable results from
other laboratories are still pending, the simplicity of their
differentiation method enhances the potential for broader
adoption.

A similar breakthrough was recently reported in Na-
ture Biotechnology by Elefanty’s group [24]. They suc-
cessfully differentiated hiPSCs to form embryoid bodies
(EBs) in a defined culture medium and patterned meso-
derm in a Homeobox A (HOXA) configuration. Follow-
ing this, they specified hemogenic endothelium using bone
morphogenetic protein 4 (BMP4) and vascular endothelial
growth factor (VEGF), ultimately achieving differentiation
into CD34+ blood cells through an efficient endothelial-
to-haematopoietic transition. The HSC-like cells derived
from four independent hiPSC lines were transplanted into
immunodeficient recipient mice, demonstrating a close re-
semblance to functionally defined HSCs in 25-50 % of
cases. These significant advancements achieved through
traditional methods offer a glimmer of hope for ultimately
resolving the functional differentiation of hPSCs into HSCs
in vitro. The anticipated success of this approach is note-
worthy, as the EB-based method may closely mimic actual
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embryonic development [25]. Importantly, they utilized a
feeder-free in vitro differentiation system, suggesting that
further breakthroughs in such systems could improve the
quantity and quality of hPSC-derived HSCs. Utilizing
nanomaterials or an extracellular matrix (ECM) to repli-
cate the natural haematopoietic microenvironment (charac-
terized by optimal stiffness, low oxygen levels, and porous
conditions) could prove beneficial. There have already
been successful attempts in this area within in vitro differen-
tiation systems [26,27], indicating that important work still
lies ahead.

In comparison to cell therapies that utilize functional
cells, whether sourced from donation or derived from stem
or progenitor cells (hPSCs or adult stem/progenitor cells),
therapies involving hPSC-derived HSCs or other adult stem
cells offer unparalleled advantages. hPSC-derived adult
stem cells, including HSCs, have the potential to rebuild
corresponding organs and tissues in vivo, thoroughly cure
genetic diseases or cancers while restoring their functions
simultaneously. In contrast, functional cell infusions, such
as RBC and platelet transfusions, typically provide only
temporary alleviation of disease conditions and necessitate
long-term or even lifelong repeats of treatment, creating a
substantial economic burden and the potential for treatment
tolerance [28]. From both an economic and a patient wel-
fare perspective, the transplantation of hPSC-derived HSCs
represents a far superior choice.

It is well recognized that the production and clini-
cal application of hPSC-derived HSCs present significant
technical challenges. However, these cells offer a pow-
erful means for curing genetic diseases, cancers, and im-
mune disorders, generating profound and immeasurable so-
cial and economic value, which motivates us to overcome
these technological obstacles. After three decades of dili-
gent research and effort, we are now witnessing the dawn
of breakthroughs that herald potential clinical applications
in the future. Thus, it is essential to remain dedicated to
achieving final success in this critical area of research.
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