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Abstract

Instruments for microanalysis are now able to
provide several images of the same specimen area. In this
paper, two groups of methods are described for handling
these multivariate maps. One group concerns dimensionality
reduction, i.e., the projection of N-dimensional data sets
onto a M-dimensional parameter space (M<N). It is shown
that, in addition to linear mapping which can be performed
by Multivariate Statistical Analysis, nonlinear mapping can
also be performed (Multi-dimensional Scaling, Sammon’s
mapping, Self-Organizing mapping). The other group
concerns Automatic Correlation Partitioning (ACP). With
these methods, pixels are grouped into several classes
according to the different signals recorded. This can be
done by classical clustering methods (K-means, fuzzy C-
means) or by new methods which do not make hypotheses
concerning the shape of clusters in the parameter space.
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Introduction

With the advent of parallel detection procedures,
analytical instruments have become able to record several
signals of interest for a given position of a probe on a
specimen. By scanning the probe, we are able to record
several maps of the same specimen. This is true for many
types of microanalysis such as X-ray (XR) microanalysis,
electron energy-loss (EEL) microanalysis, secondary ion
mass (SIM) analysis, Auger electron (AE) analysis, X-ray
fluorescence (XRF) microanalysis and nuclear probe (NP)
analysis. It is even possible to combine several
microanalytical techniques in some instruments, in order to
increase the number of elements which can be investigated,
or to perform coincidence experiments.

Simultaneous maps of a specimen enable recognition
of the different chemical species which constitute the
specimen, and  quantification of their concentration or their
spatial distribution. However, this is possible only if software
tools dedicated to this purpose are available.

At present, only a few tools have been used by
microscopists in this context. More tools have been
developed in the context of pattern recognition, but they
have not been tested in the framework of multivariate
imaging. Thus, the aim of this paper is to describe the
limitations of the few tools already in use and to introduce
some new ones for multivariate image analysis.

In the next section, we review the tools commonly
used for analyzing two or three microanalytical maps:
scatterplots and interactive correlation partitioning.

Then we discuss dimensionality reduction which is
a possibility for dealing with more images than two or three.
We show that dimensionality reduction can be accomplished
by linear methods or by nonlinear methods. Since linear
dimensionality reduction is more well-known by
microscopists, we emphasize nonlinear dimensionality
reduction.

Subsequently, we discuss the problem of going from
interactive correlation partitioning (ICP) to automatic
correlation partitioning (ACP). The aim is to perform an
automatic segmentation of the multivariate set, either with
or without preliminary dimensionality reduction. Several
methods are already available and well-documented in the
field of pattern recognition, but these methods (K-means
method, fuzzy C-means method) assume that clusters of
patterns can be represented by hyperspheres or
hyperellipsoids in the parameter space. Thus, we suggest a
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new clustering method which does not make such an
assumption.

Finally, we illustrate the whole set of methods on
two examples: one with synthesized images and one real
example.

Conclusions and suggestions for future work are
given in the last section.

Tools Already in Use for Analyzing Two or Three Images
(Maps) of the Same Specimen

When two maps of the same specimen are available,
one way to analyze the information content of the whole
data set is to build a scatterplot. This very useful tool was
introduced in the context of microscopy by Jeanguillaume
(1985) and in the context of microanalytical techniques by
El Gomati et al. (1987) and by Bright et al. (1988).

The scatterplot relates the information content (gray
levels) of image 1 to that of image 2, and is an estimation of
the joint probability distribution function (pdf) p(g1, g2),
where g1 is the gray level in image I1 while g2 is the gray
level in image I2:

( ) ( ) ( )[ ]
P

g2 = yx,I2 g1; = yx,I1 card
=g1g1,p (1)

where P is the number of pixels in images I1 and I2 and card,
the cardinality of the set, is the number of pixels with gray
levels g1 and g2.

Clouds of points appear in regions of the scatterplot
where the joint pdf is high, while few representative points
appear where the joint pdf is low. Thus, the information
content of the image pair can be interpreted in terms of
number, size, shape and position of clouds in the scatterplot.
The number of clouds is related to the number of phases, or
regions of the analyzed specimen area with relatively
homogeneous composition (provided the two maps are
sufficient to give an indication of the overall composition).
The population of the clouds (that is the number of
representative points they contain) is proportional to the
spatial extension of the corresponding region. Clouds around
the first diagonal of the scatterplot represent groups of pixels
for which the two recorded signals are correlated while
clouds around the second diagonal of the scatterplot
represent pixels for which the two signals are anti-correlated.
Overlapping of the clouds means that there is no clear
distinction between the two regions but a gradient of
composition exists between them. A boundary between two
phases can also be evidenced by streaks between otherwise
well-separated clouds. It should be stressed that noise or
beam-specimen interaction effects may also produce
overlapping distributions and streaks.

Examples of the application of this kind of analysis
can be found in, among others, Browning et al. (1987),

Prutton et al. (1990), and Kenny et al. (1992).
The scatterplot can easily be generalized to three

maps (Bright and Newbury, 1991; Kenny et al., 1994). The
principle remains identical: the aim is to estimate the joint
probability distribution for three images:

( ) ( ) ( ) ( )[ ]
P

g3=yx,I3g2;=yx,I2g1;=yx,I1 card
 = g3g2,g1,p

(2)
The only difference is in the technical tricks which have to
be used for visualizing the three-dimensional scatterplot.

In addition to displaying the estimated joint pdf, the
scatterplot can also be used in order to obtain a partition of
the data set into groups of pixels with a homogeneous
composition. This is the aim of multivariate image
segmentation: partitioning the analyzed area into several
regions corresponding to homogeneous sub-areas. If this
task can be accomplished, then other tools can be used in
order to perform subsequent quantitative analysis, on the
basis of region areas or spatial distribution analysis. Up to
now, the partitioning of the data set has been done
interactively, hence the terminology “interactive correlation
partitioning” (ICP). Clouds in the scatterplot are identified
by the user and selected by means of the computer mouse.
Then it is possible to return to the real space (images) in
order to identify pixels and regions (sets of connected pixels)
which correspond to the selected clouds (Paque et al., 1990).
This procedure is called the “back-mapping procedure” or
the “traceback procedure” (Bright and Newbury, 1991).

Obviously, the two procedures described above are
insufficient in two respects: first, they are limited to data
sets composed of two maps, or at most three when dedicated
infographic tools (for three-dimensional display and
interactivity) are available to the user; second, they require
interactivity from the user and are thus not being automatic.
Methods for handling a larger number of maps in a more
automatic way are described in the following sections.

Dimensionality Reduction

When more than two or three maps of the same
specimen are recorded, it becomes difficult, even for the
very proficient human visual system, to interpret the content
of the whole data set. This is because the information related
to each pixel is in fact contained in an N-dimensional space,
where N is the number of maps. Each pixel can be represented
(in this space) by a vector whose coordinates are the N
gray values in the N different maps:

V(x,y) = { I
1
(x,y), I

2
(x,y), I

3
(x,y) ..... I

N
(x,y) }

However, due to the correlations and anti-correla-
tions between the different maps, the true dimensionality
(also called the intrinsic dimensionality) of the data set is

(3)
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often smaller than the number of recorded maps. This means
that the data set can often be represented in a space of
dimension M lower than N, without loosing much useful
information. The process of representing an N-dimensional
data set in a space of lower dimension is often called a
“mapping” (Note that this mapping should not be confused
with the process of recording the “map” of a given element
inside a specimen. The latter is an experimental process
while the former is a data processing activity).

Mapping can be performed by linear processes or
nonlinear processes.

Linear mapping processes

Linear processes involve defining a new space for
representing the data where the new coordinates of
individual objects (pixel vectors in our case) are computed
according to an axes rotation matrix. The new representation
space is chosen in such a way that the whole data set can
be represented with a smaller number of components (M<N)
than in the original representation space. Belonging to this
group are the methods pertaining to Multivariate Statistical
Analysis (MSA). These methods, Principal Components
Analysis (PCA), Karhunen-Loeve Analysis (KLA) and
Correspondence Analysis (CA) are based on the variance-
covariance matrix of the data set and defined as new axes of
representation the orthogonal directions of the parameter
space which represent a high percentage of the total
variance in the data set. (The first eigenvector is the one
which explains the largest variance; the second one, which
is orthogonal to the previous one, explains most of the
residual variance, and so on). The coordinates of pixels on
the new representation axes (eigenvectors) can be used to
create new images (called eigen-images). Since the number
of significant eigen-images is generally smaller than the
number of original images (M<N), dimensionality reduction
usually results. Such techniques have been used for many
years in high resolution electron microscopy of
macromolecules, when one has to find different classes of
images and to explain the differences between subsets (Van
Heel and Frank, 1981; Frank and Van Heel, 1982).

The application to microanalytical images has also
begun (Geladi and Esbensen, 1989; Bonnet et al., 1992;
Bonnet and Trebbia, 1992; Van Espen et al., 1992; Swietlicki
et al., 1993; Quintana and Bonnet, 1994a,b; Bonnet, 1995a;
Trebbia et al., 1995). Thus, we will not describe it further in
this paper, but we would rather concentrate on nonlinear
mapping methods.

Let us only remark that when the N-dimensional data
set can be mapped onto a two-dimensional space (M=2) or
a three-dimensional data set (M=3) the scatterplot technique
can be used (with the two or three eigen-images) in order to
estimate the joint probability distribution function
corresponding to these eigen-images, and then to analyze
the data set in terms of number of clusters. But when the N-

dimensional data set cannot be reduced so efficiently (M>3),
the techniques described in the previous section become
difficult to apply and other techniques must be used. In the
following sections, we describe some techniques related to
nonlinear mapping.

Nonlinear mapping processes

As early as the beginning of the 1960s, techniques
were developed by American psychologists in order to
visualize the proximities between “objects” (stimuli)
described by N features, i.e., represented in an N-dimensional
space. Their idea was to project these data onto a subspace
of reduced dimension (generally, M=2), with as little
distortion as possible. This requirement means that the
separation between objects must be maintained as well as
possible. This idea led to several algorithms, named Multi-
Dimensional Scaling (MDS) (Shepard, 1962; Kruskal, 1964)
or Sammon’s mapping (Sammon, 1969). To our knowledge,
the only application of these techniques in microscopy was
performed by Radermacher and Frank (1985). In the next
subsections, we describe how such techniques can be used
for solving the problem we have in mind, that is the mapping
of multivariate images onto a space of reduced dimension-
ality, in order to visualize the content of the whole data set
and to deduce useful information. Other methods for
mapping are neural networks methods, the Self-Organizing
Map (SOM) (Kohonen, 1984) being a typical example.

An empirical method for nonlinear mapping. As a
preliminary investigation of the problem, we have suggested
the following approach (Bonnet et al., 1995): since the
scatterplot is only efficient when two images are handled
simultaneously, the first step of dimensionality reduction
should consist of replacing the N experimental images by
two new images, computed from the experimental ones. For
this, we define the concept of “observers” of a data set:
“observers” are positions of the N-dimensional parameter
space from which the data set is looked at (see Figure 1 in
Bonnet et al., 1995). By “looked at”, we mean that some
measure is defined for a comparison of the observer position
and the data point position. For simplicity, assume that this
measure is the Euclidean distance. Since the distance
between the observer and each pixel of the maps can be
computed, a new image can be created which stores the
information “seen” by the observer. If two such observers
can be defined, two images are produced and thus, a
scatterplot can be built. Since the two synthesized images
contain information related to the whole data set, it can be
expected that the scatterplot displays also this information,
in terms of clouds of points. The key point which we have
not addressed yet is the choice of “good” observers (a
“good” observer is one which “sees what it is interesting to
see”). In Bonnet et al. (1995), we have described two
possibilities for choosing observers (other possibilities
could also be defined): the corners and the diagonals of the
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N-dimensional hypercube in the parameter space. There are
thus many possibilities to define pairs of observers. For
example, in a five-dimensional space, there are 32 corners
and thus 496 possible pairs of observers. Among these
many possibilities, some of them are interesting, in the sense
that the corresponding scatterplot displays a useful mapping
of the data set, and some of them are not interesting, in the
sense that they produce a degenerated (non optimal) map
of the data set, with overlapping clusters. At this stage, the
only possibility we have described is to compute all possible
scatterplots, to display them, and to choose the ones we
think are the most appropriate for a given purpose. For
instance, the number of clouds observed in a scatterplot is
necessarily a lower bound of the number of clusters present
in the data set. Thus, if the purpose of the mapping is to
know the number of regions with a significantly different
composition, one has to choose the scatterplot with the
highest number of separated clusters (this means that the
observers are situated at positions where they can “see”
the different clusters without significant disturbance by the
other clusters).

Nonlinear mapping obtained by minimization of a
distortion criterion. As stated previously, psychologists
were the first to define criteria for obtaining an optimal
nonlinear mapping. We define two objects (pixels in our
case) i and j (i=1...P; j=1...P) and D

ij
 and d

ij
 the distances

between them in the original N-dimensional space and in
the M-dimensional destination space. We will restrict to
M=2 in this discussion.

Examples of criteria which can be used to quantify
the distortion of the data set after mapping onto a lower-
dimensional space are:

- the stress criterion (Kruskal, 1964):

( )

D

d-D

=s
2
ij

1-j

=1i

P

j=1

ijij
2

1-j

=1i

P

j=1

∑∑

∑∑

- Sammon’s criterion (Sammon, 1969):

( )

D

D/d-D

=E

ij

1-j

=1i

P

j=1

ijijij
2

1-j

=1i

P

j=1

∑∑

∑∑

As stated by Radermacher and Frank (1985), these two
criteria can be generalized to:

( )

w/D

w/d-D

=C

ij
2
ij

1-j

=1i

P

j=1

ijijij
2

1-j

=11

P

j=1

∑∑

∑∑

where w
ij
 is a weighting factor which can be used to preserve

short distances at the expense of long distances, or the
reverse. Once a criterion is defined, nonlinear mapping
reduces to an optimization (actually, a minimization) problem
and can be solved by any of the methods available nowadays
for this problem (steepest descent method, simulated
annealing, genetic algorithms, etc.). Up to now, a Newton-
like steepest descent method has mainly been used:
coordinates of point i in the destination space are changed
iteratively according to the formula:

( ) ( )

( )

( )
1..M=k ; 

x

)dC(

x

dC

-1-tx=tx

i
k

ij
2

i
k

ij

i
k

i
k

||
2∂

∂

∂
∂

α

(4)

(5)

(6)

(7)

The efficiency of the mapping, in terms of preserva-
tion of distances (or, equivalently, limitation of distortion)
can be ascertained through several additional tools. First, a
scatterplot can be built which relates the distances (d

ij
) in

the destination space to the distances (D
ij
) in the original

space. In this scatterplot, distortion manifests itself as points
(or clouds) off the first diagonal. This deviation can be
quantified by the entropy of the scatterplot.

One of the main drawbacks of this approach for
nonlinear mapping is the computation time (remember that
these methods were developed for analyzing data sets
composed of tens of objects, while we are attempting to use
them for hundreds of thousands of pixels, and that the simple
computation of (Σ

i
 Σ

 j
 D

ij
)

 
has a complexity P2, where P is the

number of pixels). Thus, we have to choose among several
solutions when the size of images exceeds some thousands
of pixels:

- algorithmic methods try to perform iterative
mapping on a parallel basis (all objects are moved
simultaneously, instead of one at a time) (Demartines,  1994),

- a subsampling is performed so that only a limited
portion of pixels is submitted to the analysis (for a discussion
of subsampling, in the context of linear mapping (Geladi,
1995),

- the “observers”-based empirical solution described
in the previous section is used, and “good” solutions are
selected  on the basis of the criteria defined in this section.
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Towards the Automatic Segmentation of Multivariate
Microanalytical Maps

In the previous section, we have considered the
problem of displaying N-dimensional data sets within a space
of reduced dimensionality (generally, M=2). The main
purpose was to help in the qualitative interpretation (through
visualization) of the data sets, in terms of number of distinct
clusters (corresponding to different compositions of the
specimen), of cluster overlapping, etc.

Another aim is to generalize the interactive correla-
tion partitioning (ICP) approach to a number of images greater
than two or three: if the (linear or nonlinear) mapping onto a
space of reduced dimension is successful, interactive
techniques can be used to isolate a cloud of points and to
go back to the original image space, in order to identify
pixels and regions which constitute this cloud. Then
quantification (e.g., surface, spatial distribution) becomes
an easy task.

Another (more ambitious) task consists of trying to
avoid any interaction by the user with the data set and to
go towards a complete automation of the process of
identifying regions with a homogeneous composition, that
is the automatic segmentation of multivariate images. We
conducted a preliminary investigation of this problem in
(Bonnet, 1995b). More specifically, we investigated two
methods: one starting from concepts in the field of automatic
classification and the other one starting from the concept
of monovariate image processing (the region growing
approach). In this paper, we limit ourselves to the
classification approach, but we present several extensions
to our preliminary study.

Automatic classification is a general problem which
has been studied for a long time, but continues to be of
interest. Thus, we will discuss techniques well-documented
in the field of pattern recognition, as well as a new technique
we have proposed recently.

Automatic classification (as any technique relevant
to pattern recognition) can be approached either as a
supervised method or as an unsupervised one. In the former
case, the user has to train the classifier with a set of
prototypes (objects which belong to previously known
classes) while in the latter case, the classification is made
on the basis of the data themselves, without reference to
any a priori knowledge. Although supervised classification
may have some meaning for microanalytical studies, we limit
ourselves to the discussion of unsupervised classification
techniques, also called clustering techniques. The aim is to
group  data (pixels) into several clusters, on the basis of the
different measurements. This replaces interactive correlation
partitioning (ICP) with automatic correlation partitioning
(ACP). This can be done either in the original (N-
dimensional) parameter space or in the reduced (M-

dimensional) space after linear or nonlinear dimensionality
reduction. We will begin with a discussion of classical
techniques, and of the associated problems. We will then
describe the new technique we have suggested.

The K-means technique.

This technique is described in detail in many
textbooks on pattern recognition (Duda and Hart, 1973;
Fukunaga, 1990) and in our preliminary paper on the subject
(Bonnet, 1995b). Thus, we simply recall its principle. The K-
means technique performs an iteratively refined partitioning
of the data set into a predefined number of classes (K). At
each step of the iterative process, objects are associated to
the class whose center is the closest, according to a chosen
distance (e.g., Euclidean, city-block, Mahalanobis). Then
the centers of the different classes are updated, taking into
account the objects which now belong to these classes.
The process is iterated until convergence.

This method is easy to implement, but unfortunate-
ly, it suffers from a certain number of drawbacks:

- it is very sensitive to the initialization of the class
centers. We have described in (Bonnet, 1995b) a method
which works often as well (and faster) than the repetition of
the procedure with a large number of different random
initializations,

- when the number of classes is unknown, the
procedure must be repeated with a varying number of
classes, and the optimal solution must be chosen. The
question raised is thus: “what is an optimal solution for the
clustering problem?” In Appendix 1, we give a non-
exhaustive list of clustering criteria which can be used to
characterize the quality of a partition. Unfortunately, these
criteria do not always predict the same number of clusters
for a given data set,

- the main problem concerns the shape and size of
clusters (in the parameter space). The K-means technique
is efficient in the case of hyperspherical (when the Euclidean
distance is used) or hyperelliptical (when the Mahalanobis
distance is used) clusters. But it is much less efficient when
clusters of arbitrary shape are present (this is due to the use
of the distance to a center). Moreover, these clusters must
have approximately the same extension, especially when
the Euclidean distance is used. Obviously, these
requirements are not always satisfied.

When the process of clustering is performed, several
graphical tools can be used to display and analyze the
results. First, since each object is labeled (i.e., assigned to a
class), a map of these labels can be built and displayed,
which indicates the spatial distribution of classified objects
(pixels). In addition, the experimental values obtained (for
the different signals) can be averaged for all objects
clustered in the same class, thus producing a new multi-
dimensional image where the pixels are described by the
vectors:
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V′(x,y) = {I′
1
(x,y), I′

2
(x,y), I′

3
(x,y) .... I′

N
(x,y)}

with I′
n
(x,y) = 1/card (C

i
). Σ I

n
 (x,y), the summation being

performed over all pixels belonging to the class C
i
. From

this averaging operation, new images (one for each recorded
signal) are constructed, which generally result in an important
signal-to-noise ratio improvement. Finally, a map of
confidence can be built: one way to do this is to compute,
for each pixel, the correlation coefficient ρ between the
vector describing the experimental data (V) and the vector
corresponding to the averaged data (V′):

( ) [ ] [ ] [ ]
( ) ( )V’.sdVsd

V’.EVE-V’V,E
=yx,ρ

(8)

(9)

with E = expectation value and sd = standard deviation.
When the pixel is classified unambiguously, this

correlation coefficient is close to one, but when the pixel is
more or less arbitrarily classified (when the chosen number
of classes is wrong, for instance), the correlation coefficient
is diminished.

The fuzzy C-means (FCM) technique.

When applying the K-means technique, we assume
that one object belongs to one class or another, depending
on the relative closeness of their class centers. Although
this assumption can be considered as being true (within the
limits indicated previously) at the end of the iterative
process, it seems better to avoid using it at the very
beginning of the process, when class centers are still
imperfectly defined. One theory which does not assume
strict membership is fuzzy logic. Within this theory, an object
may be a member of several classes simultaneously, with
partial degrees of membership (the sum of these degrees
equals one). For instance, degrees of membership of an
object i to a class c may be defined as:

[ ]
[ ]d1/

d1/
=

2
ic

1)-1/(m
C

=1c

2
ic

1)-1/(m

ic

∑

µ (10)

where C is the number of classes (we have kept this usual
notation here, but it must be recognized that C=K, according
to the notation of the previous section), d

ic
 is the distance

of object i to the center of class c and m is a fuzzy parameter
(m=2 is used commonly). The iterative process used to
perform fuzzy C-means clustering is very similar to that of
the K-means technique. For a set of class centers, the
membership degrees are computed for all the objects to
classify. Then the centers of the classes are updated,
according to:

∑

∑

µ

⋅µ
=

i
ic

i
iic

c

x

x

and the process is repeated until convergence. Then the
defuzzification step takes place: objects are assigned to the
class for which the degree of membership is maximum.

The fuzzy C-means technique has been claimed to
be superior to the K-means technique in a number of ways,
including a better convergence and the avoidance of being
trapped in local minima. For the few examples for which we
have compared the two techniques so far, we found that
FCM was not greatly superior to KM. (FCM works well
when KM works well, but does not surpass it significantly
when KM fails, i.e., in situations indicated at the end of the
last section). However, one advantage of FCM is that one
can compute the degree of confidence of the classification
result for every pixel. One way to do it is to compute the
entropy of the degrees of membership:

( ) ( )µ⋅µ∑ icic
c

 -=yx,H log

(11)

(12)

This quantity can be displayed as an image, visualiz-
ing the degree of certainty with which the classification of
the pixels was performed. This can help determine the “true”
number of classes, because when the chosen number is
incorrect, many pixels are difficult to classify, and this can
be observed in the confidence map.

Other criteria can also be used to determine the
number of classes. A non-exhaustive list is given in
Appendix 2.

The FCM technique is not supposed to solve the
problem of non-spherical and non-elliptical clusters
mentioned previously.
A technique for finding clusters of arbitrary shape.

We now describe the application of a general
technique, which is not limited to microanalytical maps, not
even to image segmentation (more details on this technique,
together with relevant discussion, can be found in Herbin
et al. (1996). The technique is non-iterative, and consists of
two steps.

The first step consists of an estimation of the
continuous probability density function (pdf). This can be
achieved by the Parzen window technique: in the parameter
space (either the original one or the reduced one, after linear
or nonlinear mapping), one N- or M-dimensional smooth
kernel h is assigned to any point r

i
 (representative of the

pixel i) and these kernels are added. The result constitutes
an estimation of the pdf (Duda and Hart, 1973):

( ) ( )r-rh=rpdf i

P

=1i
∑ (13)
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where r represents any position in the parameter space and
h is a kernel (a Gaussian kernel for instance). It is assumed
that this estimated pdf is composed of several peaks (or
modes), which represent the different classes present in the
data set. Thus, we have to detect the zones of influence of
these different peaks. Finally, points (i.e., pixels) within these
different zones are attributed to the different classes. There
are several ways to define the zones of influence of the
different peaks, i.e., the subsets of the parameter space
corresponding to a particular cluster (regardless of its
shape). In the first description of the method (Herbin et al.,
1996), we have reported a variant based on the iterative
thresholding of the estimated pdf, starting from low values.
Thresholding is then followed by a technique known as the
skeleton by influence zones (SKIZ) (Serra, 1982). Other
techniques based on mathematical morphology can also be
used, for instance the concepts of catchment basins and
watersheds (Beucher, 1992; Beucher and Meyer, 1992). For
this technique there is no need to perform segmentation:
the pdf is inverted; the local minima thus serve as holes
from which a simulation of immersion by water is performed
(Vincent, 1990) and in this way the boundaries between
clusters can be located.

This technique (whatever the variant), does not
involve the concept of distance to a center of a class. Thus,
the shapes of the clusters do not influence the results of
classification. In the same way, the extension and population
of the clusters are also irrelevant (within limits).

One important point which remains to be discussed
is that of the number of classes. The number of classes
detected (as modes of the estimated pdf) depends largely
on the width of the kernel h(r) used for estimating the pdf.

For instance, when a Gaussian kernel is used, the number of
distinct peaks depends on the standard deviation (sd) of
the Gaussian kernel (the larger the sd, the smaller the number
of peaks detected). The idea is thus to compute the
estimation of the pdf for different values of the standard
deviation and to plot the number of modes detected as a
function of this parameter. What is observed frequently on
this curve is a plateau, which corresponds to the number of
classes present. Of course, it may happen that several
plateaus appear, reflecting the fact that the data set may be
composed of several classes, which can themselves be
divided into several subclasses. In this situation, the user
has to choose the resolution at which he wants to perform
the classification task. The whole process is schematized in
Figure 1.

The technique described above is not limited to a
two-dimensional parameter space (i.e., to two images only).
But when the number of maps is larger than three, it is better
to perform dimensionality reduction first, because the
computations, such as pdf estimation or the  watershed
technique, become prohibitively long in a multi-dimensional
space.

Dimensionality Reduction and Automatic Correlation
Partitioning: Illustration

In this section, we illustrate the methods described
previously with two examples, one with synthesized images,
the other with real images taken from X-ray fluorescence
microanalysis. There is of course no restriction to this
particular type of microanalysis.

Figure 1. Illustration of the clustering
procedure based on the estimation of the
probability density function (pdf) followed
by the clustering of the parameter space
by the watershed technique.
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Figure 2. (a-d) Four simulated maps from
which we expect to determine the number of
regions with homogeneous composition. (e-
h) Four of the six scatterplots which can be
built with the four images. Some scatterplots
display the four expected clusters, but not all
of them. (i-k) First three eigen-images obtained
after linear mapping by Correspondence
Analysis. (l) Scatterplot built from the first two
eigen-images (fig. 2i-j). As expected, four
clusters are observed, corresponding to the
four different regions.

Figure 3. (a-h) Application of our heuristic
method for nonlinear mapping. (a-d) Four
images synthesized from the computation of
distances of points in the four-dimensional
space to “observers” placed at four corners of
the hyperspace. (e-h) Four scatterplots (among
the 120 scatterplots computed) built by
combining pairs of synthesized images of
distance. Several of them (e, f) display the four
expected clusters, while others (g, h) do not.
(i-j) Application of the nonlinear Sammon’s
mapping method: (i) Result of the automatic
nonlinear mapping onto a two-dimensional
mapping space. The four expected clusters can
be observed. (j) Scatterplot built from the
interpoint distances (D

ij
) in the original four-

dimensional space and the interpoint distances
(d

ij
) in the mapping space. This scatterplot

serves only to check the quality of the mapping.
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Simulation example

We simulated four noisy images assumed to be
representative of a situation where we want to depict the
number of regions of the specimen with approximately similar
composition (on the basis of four recorded signals: A, B, C,
D) and to deduce the relative area of each region. This is a
rather simple example (signals A and B are anti-correlated,
so are signals C and D) and we can expect to find four
regions with homogeneous composition (noted (1010);
(0110), (1001) and (0101) for simplicity, where 1 stands for
the presence of signal X and 0 stands for its absence).

The four images are displayed in Figures 2a-d. Four
of the six scatterplots are displayed in Figures 2e-h. We can
see that some of them give an indication about the four
clusters of pixels, but some of them (Figure 2e for instance)
do not, because only a limited part of the total information
is taken into account. In more complicated situations, it
may happen that no scatterplot displays the true number of
classes.

One way to improve the situation is to perform
dimensionality reduction. Linear dimensionality reduction
can be performed through MSA. Figures 2i-k display the

Figure 4. Results of segmentation using
the K-means clustering (KMC) technique.
a-d) Results of segmentation (pixels
belonging to the different classes are repre-
sented by different gray levels) for a number
of classes K equal to 2, 3, 4 and 5,
respectively. (e-h) Display of the local (on
a pixel basis) correlation coefficient between
the experimental vector (four components)
and the vector obtained after classification
and averaging, for the four classification
results displayed in Figure 4a-d. Pixels with
a small correlation coefficient are represent-
ed in dark. For four classes (or more), only
border pixels are badly correlated with their
classified counterpart. (i-l) The four original
images after averaging according to the
classification into four classes.

Figure 5. Some indices of the quality of the
partition (see Appendix 1 for their
meanings) plotted as a function of the
number of classes K. (Classification with
the K-means procedure). Minima of these
criteria are obtained for K=4, indicating that
this is the number of classes present in the
data set.
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three eigen-images obtained using Correspondence
Analysis [(CA); see Trebbia and Bonnet (1990) for details
concerning the implementation]. The scatterplot built from
the first two eigen-images is displayed in Figure 2l. For this
simple example the four clusters are evident, but in more
complex situations, the information can be spread onto more
than two eigen-images and thus, the scatterplot approach
may still be insufficient.

In this case, nonlinear dimensionality reduction may
be attempted. Figure 3 displays some results obtained with
our empirical method. The information (normalized
distances) seen by “observers” placed at several corners
of the four-dimensional parameter space is displayed in
Figures 3a-d. We can observe that the existence of four
regions with different composition is coded in these
computed images. Figures 3e-h display some scatterplots
built from pairs of these images. We can see that some of
them (e,f) help to distinguish separated clouds of points
(and can thus be used for interactive or automatic correlation
partitioning) while some others (g,h) provide only a blurred
view of the pixel clusters (and cannot be used for
partitioning).

Better results can be obtained by optimized nonlin-
ear mapping (“optimized” means that we force the mapping
to preserve the distances between points in the original N-
dimensional parameter space). Figure 3i represents the
results of a mapping (R4→ R2) obtained with Sammon’s
algorithm. Here, the four clusters are clearly evident. Figure
3j represents the scatterplot (D

ij
 - d

ij
), which permits us to

verify that the mapping onto the two-dimensional space
preserves the original distances (weak distortion).

So, the linear and nonlinear mapping methods help
the user to interpret the data set in terms of the number of
independent clusters, shapes of clusters, etc. The next step
is to depict the corresponding regions in the image space.
This can be done starting from the original data set or from
data mapped onto a reduced parameter space.

Figures 4a-d display the results of segmentation
obtained using the K-means technique (applied to the
original 4D data set), for two, three, four and five classes,

respectively. Figure 5 shows the curves of quality criteria
computed as a function of the number of classes (these
criteria are described in Appendix 1). As expected, the optimal
number of classes is found equal to four, but the situation is
not always as favorable. In addition to the segmentation
itself, several additional images can also be produced. For
instance, the degree of confidence in the classification
results (computed, for each pixel, as the correlation
coefficient between the original vector and the vector
representing the class center) can be displayed (see Figures
4e-h for the four previous classification trials). Also, when
the optimum number of classes is selected, it becomes
possible to average the experimental values for all those
points which belong to the same class, which results in a
smoothed image series (see Figures 4i-l, obtained for K=4).

The segmentation allows us to perform quantitative
evaluations of the data set, in terms of relative area  and of
composition. For this simulated data set, the results
obtained are given in Table 1.

Similar results are obtained using the fuzzy C-means
technique. Some of them are displayed in Figures 6 and 7.
Figure 6 shows different results of classification into two to
five classes (a-d), the local entropy of the membership
degrees for these different classifications (e-h), from which
it can be deduced that the best classification is obtained for
four classes, and the four averaged images obtained for a
classification into four classes (i-l). Figure 7 shows different
criteria (described in Appendix 2) obtained as a function of
the number of classes, which (except HTmin) confirm that
the best partition is obtained for four classes.

It should be stressed that these good results come
from the fact that the four clusters were relatively well
separated (with little overlapping) and of hyperspherical
shape. When one of these conditions is not fulfilled, things
become harder. This is why more sophisticated methods,
like the one illustrated below, are necessary.

We start with Figure 8a, which is a reproduction of
Figure 3i and represents the nonlinear mapping of the four-
dimensional data set onto a two-dimensional parameter
space (Note that Figure 2l, which is the result of a CA-

Table 1. Results for the simulated data set.

Region Area (pixels) Averaged values for the four signals

(1010) 1676(1686) A: 197 (200) B: 23 (20) C: 22 (20) D: 221 (225)
(1001) 361(366) A: 197 (200) B: 23 (20) C: 167 (175) D: 30 (20)
(0110) 1621(1613) A: 23 (20) B: 149 (150) C: 23 (20) D: 220 (225)
(0101) 438(431) A: 26 (20) B: 147 (150) C: 169 (175) D: 30 (20)

Values prior to addition of simulated noise are shown in brackets.
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based linear mapping could be used as well, in this case).
Figure 8b displays the result of the estimation of the
probability density function with a Gaussian Parzen window
(sd = 25 out of 256 quantization levels). Figure 8c displays
the result of segmenting the parameter space automatically,
by the watershed approach explained above (four clusters
were found). Figure 8d shows the equivalent result of
segmentation, but in the image space. We can observe that
the difference from the result obtained by classical clustering
techniques is rather slight, but this is not always the case.
Figure 9 shows the number of depicted clusters (modes of
the estimated pdf) as a function of the standard deviation

of the Parzen smoothing kernel. A plateau (corresponding
to four classes) is observed for sd ranging from 15 to 35
quantization levels. The value sd = 25 used for computing
Figure 8b was chosen at the middle of this plateau.

Real example

Figures 10a-e display five micro X-ray fluorescence
(µ-XRF) maps of a specimen of granite, recorded at the
Department of Chemistry, University of Antwerp. The maps
are those of K, Ca, Fe, and Sr. Their size is 39x40 pixels. The
study of a similar specimen, including the combined use of
Principal Components Analysis (PCA) and K-means

Figure 6. Results of segmentation using
the Fuzzy C-means clustering (FCMC)
technique. (a-d) Results of segmentation
(pixels belonging to the different classes
are represented by different gray levels) for
a number of classes C equal to 2, 3, 4 and 5,
respectively. (e-h) Display of the local (on
a pixel basis) entropy of the degrees of mem-
bership to the different classes, for the four
classification results displayed in Figure 6a-
d. Poorly classified pixels are represented
in dark. (i-l) The four original images after
averaging according to the classification
into four classes.

Figure 7. Some indices of the quality
of the partition (see Appendix 2 for
their meanings) plotted as a function
of the number of classes C.
(Classification according to the fuzzy
C-means procedure). Extrema of these
criteria (minimum of σ

w
2.C and maxima

of NFI, HTmin and HTmean)
 
are

obtained for C=4, indicating that this
is the number of classes in the data
set.
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clustering (KMC), was conducted by Vekemans et al. (1997).
Readers interested in the interpretation of the classification
results are referred to this paper.

Some of the methods described above are illustrated
with this experimental data set.

Figures 10f-i display the four eigen-images obtained
by Correspondence Analysis. Figure 10k displays the

scatterplot obtained by combining the first two eigen-
images. We can observe three main clusters. One of them
seems to be composed of two smaller clusters. Figure 10m
shows the result of Sammon’s mapping (projection of the
five-dimensional data set onto a two-dimensional parameter
space). Again, we can make similar observations (three or
four clusters are present). Figures 11a and 11b display the

Figure 8. Application of a new method for
clustering, which does not make
assumptions concerning the shape of
clusters. (a) Representation of pixels by
points in a two-dimensional parameter
space (this was obtained by nonlinear
mapping, see fig. 3i). (b) Estimation of the
probability density function with a Gaussian
Parzen window (standard deviation = 25
quantization levels). (c) The parameter
space is labeled according to the zones of
influence of the four modes of the pdf,
according to the watershed algorithm. (d)
The image space is segmented according
to the labels of the parameter space.

Figure 9. Curve of the number of modes of
the probability density function as a
function of the standard deviation (sd) of
the Gaussian Parzen window. A plateau is
observed for sd ranging from 15 to 35
quantization levels. Thus, a value of sd =
25 was chosen for computing Figure 8b.



Multivariate image analysis and segmentation

13

estimated pdf (the estimation was performed with sd = 25
and sd = 15 quantization levels, respectively, for a parameter
space sampled with 256 quantification levels). In the former
case, the number of modes is equal to three. Figures 11c
and 11d represent another way of representing the
probability density functions, as 3D plots in which density
is coded as height. The corresponding classified parameter
space (classification performed with the watershed
technique) and classified image space are represented in
Figures 11e and 11g, respectively. In the latter case, the
number of modes of the pdf is equal to four. The
corresponding labeled parameter space and image space
are shown in figures 11f and 11h, respectively. Figure 12
displays the number of classes (modes of the estimated
pdf) as a function of the standard deviation used for the
estimation. The values sd = 25 and sd = 15 quantization
levels (Figures 11a,b) were selected on the observed
plateaus. Figure 13 displays the results obtained when the
classical K-means clustering approach is applied to the
original (5-dimensional) data set. Figure 15 displays the
results obtained when using the fuzzy C-means technique.
Figures 14 and 16 are curves of different classification quality
criteria, computed for the K-means and fuzzy C-means
algorithm, as a function of the number of classes of the
partition. When comparing these different results of
classification of the same data set, one can make the
following observations. Up to three classes, the results
produced by the different algorithms are very similar. The
three classes were identified by Vekemans et al. (1997) as
corresponding to the K-rich microcline phase, the Fe-rich
mineral grains and the Ca-rich albite phase. When we try to
split the data into four classes (as suggested by some of
the criteria of a “good” partition), things become more

complicated. The classical methods for clustering (K-means
and fuzzy C-means techniques) tend to find the fourth class
at the periphery of the three classes identified previously,
which seems to indicate a more or less continuous transition
between them. On the other hand, the new technique we
have developed finds the fourth class by splitting the group
of three regions of the K-rich phase into two groups,
reflecting the fact that their composition could be slightly
different (essentially, they differ by their content in Sr). We
did not try to push the interpretation further, our purpose
being just to point out the fact that one must be careful
when interpreting results of automatic classification, because
different algorithms may provide different results.

Conclusion

In this paper, we have described techniques for
analysis of multi-dimensional maps which are being recorded
more and more frequently by microanalysts. Two types of
technique were investigated. The first one performs
dimensionality reduction. When more than two or three
images are recorded, it becomes difficult for the human visual
system to infer even qualitative information. There is thus a
need to project data onto a parameter space of two or three
dimensions. This is then comparable to the scatterplots
commonly used when two (or three) images are recorded.
We have described several techniques able to perform this
dimensionality reduction. Some of these techniques, like
Multivariate Statistical Analysis, are linear. But we have
put emphasis on nonlinear techniques, which are more
general. We have described some algorithms for nonlinear
mapping (heuristic mapping, Sammon’s mapping). These
techniques have to be investigated more deeply, for different

Figure 10 (a-e) Five micro X-ray
fluorescence images (representing maps
of K, Ca, Fe, Rb and Sr) of a specimen of
granite (courtesy of K. Janssens, Depart-
ment of Chemistry, University of Antwerp).
(f-i) First four eigen-images obtained by
Correspondence Analysis. (k) Scatterplot
built from the first two eigen-images (f and
g). Three clusters can be observed. (m)
Result of Sammon’s nonlinear mapping to
a two-dimensional parameter space. Three
clusters are also observed.
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microanalytical techniques, before a conclusion can be
drawn concerning their relative efficiency. The conse-
quences of the distortion introduced by the nonlinear
dimensionality reduction have also to be evaluated.

The second group of techniques we have investigat-
ed is related to the problem of automatic segmentation of
multivariate images. We have described several methods
for unsupervised automatic classification or clustering of

objects. We have shown that classical techniques (K-means,
fuzzy C-means) can be relatively fast, but work only when
restricted assumptions are fulfilled. When this is not the
case, other techniques have to be used. We have described
one of them, which is based on the estimation of the pdf
followed by the partition of the parameter space using
techniques inherited from mathematical morphology. This
technique is rather efficient when the parameter space is

Figure 11. Results of segmentation
obtained with the new clustering method.
(a, b) Probability density function estimated
with sd = 25 quantization levels and sd =
15, respectively. (c, d) Another way to
represent the probability density functions.
(e, f) Segmented parameter space (for the
two values of sd given above). The number
of classes found are three and four, respec-
tively. In the latter case, the top-left peak in
the pdf is split into two smaller peaks. (g,
h) Segmented image space (for the two
values of sd). In the latter case (fig. 11h),
we can observe that the three particles
represented by the darkest gray levels in
figure 11g are now considered as belonging
to two different classes, which means that
their composition is slightly different,
which can be confirmed by looking
carefully at the mean values of the signals
recorded for each of them.
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two-dimensional. Otherwise, a reduction of dimensionality
must be performed first. We are also investigating whether
other techniques, including neuromimetic ones (networks
based on the Adaptive Resonance Theory (ART) (Carpenter
and Grossberg, 1987; Wienke et al., 1994), for instance, can
be used for the purpose of clustering). Again, more
experiments have to be conducted before conclusions can
be drawn concerning the relative figures of merit of the
different clustering techniques.

With the development of such techniques, we hope
we are able to predict that multivariate image analysis will
attain a mature state in the very near future.

Appendix 1: Criteria Used for Evaluating the Quality of a
Partition (Hard Clustering)

Due to the Huyghens theorem, the total variance σ
t
2

of a data set is the sum of the within-class variance σ
w

2 and
of the between-class variance σ

b
2 (Duda and Hart, 1973).

Most of the criteria are based on some combinations of
these last two variances. Of course, the within-class variance
σ

w
2 decreases as the number of classes increases (as a limit,

σ
w

2 decreases to zero when the number of classes
approaches the number of pixels) and cannot be used as a
valid criterion. Different possibilities we have tested are:

- the within-class variance times the number of
classes: a minimum of this criterion is often a good indicator,

- the ratio of the maximum within-class variance to
the minimum between-class variance:
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- the Bow estimator (Bow, 1992), expressed as:
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where K is the number of classes, (σ
w

2)
k
 is the within-class

variance of class k and d
k,k

′ is the distance between classes

k and k′.
Minima of these criteria are expected for the true

number of classes of the data set.
New criteria have been suggested recently in the

literature (Xu et al., 1993). We have not studied these criteria
yet.

Appendix 2: Criteria Used for Evaluating the Quality of a
Partition (Fuzzy Clustering)

(14)

(15)

NFI goes toward zero for a uniform (i.e., completely
fuzzy) partition and toward 1 for a hard (i.e., unambiguous)
partition.

(16)

In addition to the previous criteria, several other ones
can be used, based on the fact that a “good” partition is
one for which the fuzziness is at a minimum (before
defuzzyfication). This means that, on average, each pixel
must be assigned to a class with as little ambiguity as
possible. Many criteria have been suggested for evaluating
the amount of fuzziness of a partition (Windham, 1982). Some
of these criteria are:

- the non-fuzziness index (Roubens, 1982):
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Figure 12. Curve of the number of modes of
the probability density function as a function
of the standard deviation (sd) of the Gaussian
Parzen window. One large plateau is
observed for three classes, but a small
plateau is also observed for four classes.



16

N. Bonnet, M. Herbin and P. Vautrot

(17)

(18)

- the minimum hard tendency (HTmin) and mean hard
tendency (HTmean) criteria defined by Carazo et al. (1990):

( )T-=HTmin c10c logmax

( )T- 
C

1
=HTmean c10

C

=1c

log∑

Figure 13. Results of classification using
the K-means procedure. a-e) Results of
classification for K=2, 3, 4, 5 and 6 classes,
respectively. (f-j) Display of the local (on a
pixel basis) correlation coefficient between
the experimental vector (five components)
and the vector obtained after classification
and averaging, for the five classification
results displayed in fig. 13a-e. (k-o) The
five original images after averaging
according to the classification into three
classes. (p-t) The five original images after
averaging according to the classification
into four classes.

Figure 14. Some indices of the quality of
the partition (see Appendix 1 for their
meanings) plotted as a function of the
number of classes K (classification was
made according to the K-means procedure).
Two of the criteria indicate an optimum
number of classes equal to 4, but the Bow
criterion does not show a clear minimum.

where T
c
 = [ Σ

i
 r

i
 ]/ card (C

c
), r

i
 = µ

c2,i
/µ

c1,I 
, µ

c1,i
 is the highest

membership degree of pixel i, µ
c2,i

 is the second membership
degree and C

c
 is class c.

Maxima of NFI, HTmin and HTmean are expected for
the true number of classes.
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Discussion with Reviewers

N.K. Tovey: One of the problems in supervised classification
is determining the number of relevant classes. The same
applies in supervised classification as this presupposes that
the interactive user does truly know the correct number of
classes to start with. Frequently in an x-ray microanalysis
set of image, there are a few classes which are well defined
and relatively extensive in area, while others are less obvious.

Would it be possible to proceed as follows? Identify
perhaps the three most dominant classes in parameter space,
classify the images with just these three, but only accepting
the class if the confidence is above a given level, say 90 or
95%. Now copies of the source images are modified so that
where classification has taken place, all pixels are set to zero
in all images, and these are then used in a second pass of
the analysis except that the existing classified areas will
appear as one dominant class which is removed before
extraction of the next three most dominant classes. Repeat
the procedure until say 99+% of the image has been
classified.
Authors: We agree that the method you suggest has to be
tried. However, we do not think it would solve the problem
of finding the “true” number of classes. The reason is that,
if you only accept the classification (during the first run)
when a high degree of confidence is reached, you still have
the tail of the distribution present during the second run,
and this tail will indicate a new class, which will add,
erroneously, to the ones found during the first run.

We think we had better rely on criteria working on
the whole data set, as the examples of criteria described in
the paper. It is true that some classes with small populations
can be hidden by classes with large population. In this case,

it could be better to work with the logarithm of the probability
density function.

N.K. Tovey: One interesting point in the paper is the
difference between the K-means and the new technique
when defining four classes on the real sample. Boundaries
between regions will always be regions of transition, and
the new method would seem to have advantages. However,
have the authors considered using an edge detection routine
to define the outlines of the features in the X-ray maps in
Figures 13a-f, and exclude those regions from classification?
This would tend to remove the confusion between the
methods. Any over-segmentation may be removed by the
method described by Tovey et al. (1992).
Authors: As stated below, we are not convinced that the
superiority of the pdf-based method concerns its ability to
process better the regions of transition. But, if one wants to
avoid classes associated with these regions, we agree with
you on the fact that these can be excluded from the main
classification step, and then the corresponding pixels can
be aggregated to the most similar class. We agree also with
the fact that the method described in your paper can be
used to reduce some kind of over-segmentation, which
concerns the number of regions created in the image space.
Another kind of over-segmentation concerns the number
of different classes, in the parameter space.

N.K. Tovey: Some of the examples shown are relatively small
images. There is an implication in the text that some methods
could be very time consuming. Could the authors give an
estimate of the time required to classify say 8 images each
512x512 with perhaps 8 classes in each?
Authors: The computations whose times are indicated below
were performed with a Sparc10-SUN workstation. The data
set corresponded to 8 images each 512x512 and 8 classes (it
was assumed that the number of classes was known). The
K-means clustering procedure took 5 minutes. The fuzzy C-
means procedure took 11 minutes
Linear mapping (PCA or CA) took 1 minute. With the
implementation described in this paper, the Sammon’s
mapping would take several hours. Therefore, we limit the
application of this procedure to 64x64 pixels. We are
currently investigating another implementation which,
hopefully, will reduce the computation time by one or two
orders of magnitude.

When the dimensionality of the problem can be
reduced to two, the pdf-based clustering technique (Parzen
+ watersheds) takes 15 seconds (with 256 quantization
levels). When the dimensionality of the problem can only
be reduced to three, the pdf-based clustering technique
takes 3 minutes and 30 seconds (with 64 quantization levels).

These computation times are obtained when the
number of classes (8 in the exemple) is known. When the
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number of classes is unknown, the computation time
increases significantly, because the clustering procedure
must be applied several times and the number of classes
must be chosen according to some criterion.

P.G. Kenny: Figures 9 and 12 show the numbers of classes
as a function of Parzen window standard deviation for the
simulated and real images. You state the correct number of
classes can be deduced by looking for plateaus in these
graphs. However, the correct choice of plateau for the
simulated data is much less obvious than for the real data,
even though it comprises exactly four well-defined phases.
Can you comment on why the graph for such a simple case
is so difficult to interpret?
Authors: The number of classes in a data set is not a perfectly
well defined concept. The classification may be described
by a hierarchical tree: the whole data set can be split into a
few large classes (in hierarchical classification, a binary tree
is generally built). Then, large classes can be split into
subclasses, which can themselves be split again. This
hierarchical structure of the data set is also apparent in the
framework of the pdf-based method that we suggest in this
paper: when the standard deviation of the Parzen window is
large, only the main classes are detected. When the standard
deviation is decreased, a larger number of classes (in fact,
subclasses of the previous ones) are detected. The different
plateaus in the curves indicate several possible levels for
classification. It is then the responsibility of the user to
choose among these different possibilities, according to
the purpose of the classification procedure.

In the simulated case, a classification can be per-
formed into two classes (it can be remarked that the result
of this classification corresponds approximately to the first
factorial image obtained by MSA, see fig. 2i). Classification
can also be made into four classes, which can be explained
easily on the basis of the first two factorial images (fig. 2i
and 2l). A refined classification (suggested by another
plateau) can also be performed into five classes: one more
class (corresponding to the boundaries between the
previous regions) is then added. Thus, the reason why the
graph is difficult to interpret is simply an indication that the
classification problem is not so trivial, although it
corresponds to a simulation. Of course, a simpler simulation
(without noise nor boundary transitions) would led to a
much simpler curve and interpretation.

In the real example, the situation is somewhat simpler,
with three main classes (a very stable situation indicated by
a large plateau) and the possibility to split one of them into
two subclasses.

P.G. Kenny: The watershed segmentation technique applied
to the real image data provides a more satisfactory
partitioning for the case of four classes (fig. 11f) than is

revealed by the K-means or fuzzy C-means segmentation
methods (figs. 13c and 15c). Could the difference between
the results be due entirely to the different versions of the
scatterplot/pdf used in each case? (The watershed
technique was applied to the smooth estimated pdf in fig.
11b, whereas the other methods were presumably applied
to the sparse scatterplots in figs. 10k or 10m.) Have you
attempted to apply the K-means or fuzzy C-means methods
to a smooth estimated pdf?
Authors: We would not conclude that the segmentation
result provided by the watershed technique is “better” than
the other results, because there is no ground truth on the
subject. Even the observation of the experimental images
must be cautioned, because it can lead to very subjective
conclusions.

From a technical point of view, we do not think the
difference between the results can be attributed to smoothing
(The K-means and fuzzy C-means techniques do not make
use of the pdf explicitly. Thus we do not think that smoothing
in the parameter space can be envisaged in these cases).
Rather, our point of view in this paper is that the classical
techniques assume hyperspherical or hyperelliptical pdf
while the pdf-based technique does not (see Herbin et al.
for a more detailed discussion of this problem). Although
the pdf for the different classes of this example do not seem
to be very far from isotropic distributions, the deviation
may be sufficient for explaining the differences. But it is
difficult to be sure because we are working in a five-dimen-
sional space, where it is difficult to visualize pdf and their
detected boundaries.

P.G. Kenny: The new techniques reported in this paper
appear to offer a robust solution for the partitioning of data
that can safely be reduced to two dimensions. Would it be
feasible to extend the techniques to cope with data that
have a higher intrinsic dimensionality? If so, can you
comment on the computational complexity (i.e., the
relationship between intrinsic dimensionality, execution time
and memory requirements). Also, for the case of a higher
intrinsic dimensionality (say M=5), would it be better to
apply your sophisticated techniques to a reduced form of
the data (M=2) or to apply a simple K-means technique to
the full form (M=5)?
Authors: Until now, we have limited our implementation of
the techniques described in this paper (Parzen window pdf
estimation, watershed-based boundary detection) to two-
or three-dimensional spaces. This is not an ultimate limit:
we could probably extend these techniques to work in a
four- or five- dimensional space, provided the number of
quantization levels Q is reduced in parallel. (The complexity
of the methods is of the order of QM, in terms of memory
requirements and execution time).

The choice between applying a simple K-means
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technique to the full form (say M=5) or applying a pdf-
based technique to a reduced form (say M=2 or 3) is not
mainly governed by computation considerations. Returning
to your previous question, one must be aware that applying
a technique which assumes hyperelliptical clusters in a
situation where they are not present will produce highly
erroneous results. The error has to be estimated and
compared to the error caused by the distortion resulting
from the mapping (M=5 to M=2 or 3). It should also be
added that other techniques than the one described in this
paper are available for performing clustering without making
assumptions concerning the shape of clusters (Bonnet N,
Vautrot P, “A comparative study of clustering methods which
do not make assumptions on the shape of clusters”, in
preparation).

D.S. Bright: Could you comment a little bit on your equation
(7) ?
Authors: This formula describes the way points (repre-
senting pixels) in a N-dimensional parameter space can be
mapped onto a parameter space of reduced dimension (RN

→ RM). At first, the coordinates of each point i are initialized
as x

k
i(0), k=1...M. This initialization can be random, or

governed by heuristics, or be the result of a preliminary
linear mapping. Then, each point is moved (in the M-
dimensional parameter space) in such a way that its new
position (xi(t)) corresponds to a decrease of a criterion (as
expressed in formula (4) to (6)) as compared to its previous
position (xi(t-1)). Equation (7) represents a classical way
(Newton-like steepest descent) to ensure the decrease of
the criterion C (the first derivative governs the direction of
the displacement while the second derivative governs the
amount of displacement). These derivatives must be
specified according to the chosen criterion, which gives
several variants (Sammon’s mapping, MDS) for the
approach.

From a computational point of view, the drawback of
the method is that the distances (D

ij
 and d

ij
) of a point i to all

the other points j must be computed a large number of times.

Additional Reference

Tovey NK, Dent DL, Corbett WM, Krinsley DH
(1992) Processing multi-spectral scanning electron
microscopy images for quantitative microfabric analysis.
Scanning Microsc Suppl 6: 269-282.


