
Energy filtered lattice images

31

Scanning Microscopy Vol. 11, 1997 (Pages 31-42)                                                                                           0891-7035/97$5.00+.25
Scanning Microscopy International, Chicago (AMF O’Hare), IL 60666 USA

QUANTIFICATION OF ENERGY FILTERED LATTICE IMAGES AND COHERENT
CONVERGENT BEAM PATTERNS

Abstract

The extent to which energy filtered imaging allows
quantitative matching of experimental and theoretical
electron microscope images is investigated using two
examples. In the first example, the matching of high
resolution lattice images of (WO
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filtered and unfiltered with a carbon surface layer, with
corresponding simulations is considered. It is shown that
in both cases even after all possible microscope and
specimen parameters have been taken into account in the
simulations, the contrast in lattice images obtained
experimentally is only 1/3 of the contrast of corresponding
simulated images. In the second example, energy filtered
convergent beam patterns in a scanning transmission
electron microscope are shown to depend sensitively on
the microscope lens parameters and are used as a method
of measuring defocus, spherical aberration and other
microscope parameters.

Key Words: Energy filtering, coherent convergent beam
patterns, quantification, lattice images, (WO

3
)

8
(Nb

2
O

5
)

9
,

inelastic scattering, lens aberrations.

*Address for correspondence:
C.B. Boothroyd
Department of Materials Science and Metallurgy, University
of Cambridge,
Pembroke Street,
Cambridge CB2 3QZ, UK

Telephone number: +44 1223 334564
FAX number +44 1223 334567

C.B. Boothroyd

Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK

Introduction

The quantitative comparison of experimental trans-
mission electron microscope images with theory is an
important goal that has always been difficult to realise. It is
difficult to include inelastically scattered or “absorbed”
electrons in image simulations and so the general procedure
has been to arbitrarily scale the intensity and the contrast
in the simulation to match the experimental image. The recent
development of imaging filters coupled with charge-coupled
device (CCD) detectors for image recording has meant that
images can be filtered to separate the zero loss from the loss
electrons for comparison with image simulations (Krivanek
et al., 1992). However, even for filtered images, a full
quantitative comparison of experimental images with
simulations is still not straightforward.

The purpose of this paper is to show the extent to
which images and diffraction patterns can be analysed
quantitatively with the aid of an imaging filter, and to this
end two contrasting examples are given. Firstly I will give a
brief summary of quantitative matching of high resolution
images of (WO
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. Only the major results are

presented here, for more details see Boothroyd et al. (1995).
The second example shows how lens aberrations can be
determined from energy filtered coherent convergent beam
patterns taken in a scanning transmission electron
microscope.

Quantitative Matching of High Resolution Images and
Simulations of (WO3)8(Nb2O5)9

Typically, high resolution images are acquired
unfiltered and are compared qualitatively with image
simulations that have been calculated assuming only elastic
scattering. Such comparisons are often poor when the
images are compared quantitatively and good matches are
generally only obtained because the imaging parameters
and crystal thickness are left as free parameters to be
determined during qualitative matching (Hÿtch and Stobbs,
1994). Boothroyd and Stobbs (1988, 1989) have shown that
the effect of inelastic scattering on high resolution images
is significant.  Comparisons of the effects of inelastic
scattering and carbon contamination on high resolution
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Table 1. Percentages of the electrons lost from the incident
beam for isolated (WO
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 and carbon layers of the

thicknesses analysed here.

oxide  carbon

inelastically scattered 15% 15%
lost completely 11%  2%

images of (WO
3
)
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9
 have also been made by

Boothroyd et al. (1995). Here, I will summarise the major
results concerning the matching of images and simulations
of (WO
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.

Images were obtained using a JEOL (Tokyo, Japan)
4000FX (C

s
=~2°mm and C

c
=1.4°mm) at 400°kV and a Gatan

(Pleasanton, CA) imaging filter. The area examined consisted
of a clean wedge-shaped crystal overlapping the edge of a
carbon film, allowing the comparison of images of identical
thickness with and without a carbon overlayer to model the
effects of carbon contamination. All images were scaled so
that the incident intensity when no specimen was present
was unity. The words intensity and contrast have been used
to mean different things in different papers. Here, to avoid
confusion, I will use intensity to mean the average value in
an image, contrast to mean some measure of the local
variation in intensity (such as the standard deviation divided
by the mean) and pattern to refer to the qualitative
distribution of bright and dark dots in a lattice image.

About 8 unit cells of similar thicknesses from near
the crystal edge were averaged to reduce noise from an
elastic filtered image with no carbon and from an unfiltered
image with a carbon layer, and are shown at the top of Figure
1 for a measured defocus of –74°nm. From these images,
and similar elastic filtered images with carbon and unfiltered
images without carbon, it is possible to deduce the fraction
of the electrons inelastically scattered and lost completely
(“absorbed”) on passing through the thickness of
(WO
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 and carbon examined here. These values

are shown in Table 1. The surprising result is that, even for
the very thin region (~10°nm) of crystal examined, about
15% of the electrons have been inelastically scattered and
when a carbon layer is also present this rises to 28% (i.e., (1
– (1–0.15)×(1–0.15))×100).

In order to produce simulated images all the neces-
sary experimental parameters (e.g., defocus, energy spread,
and beam divergence) were measured immediately after
image acquisition, except for the crystal thickness which
had to be estimated by comparison with simulations for
different thicknesses. Although the thickness is a possible
source of error, it was found that only a thickness of 10°nm

provided a good match to the pattern of the image. The
method of simulating inelastic images is as described
previously (Boothroyd et al., 1995; Boothroyd and Stobbs
1988, 1989). For the simulations of the unfiltered image with
a carbon layer, the proportion of inelastic electrons included
was that measured from the images and shown in Table 1,
and their energy distribution was obtained from an energy
loss spectrum acquired after the images from a similar area.
The resulting simulations are shown at the bottom of Figure
1. The mean image intensity and its contrast, measured as
the standard deviation divided by its mean is shown beneath
each image. No attempt has been made to calculate from
first principles the fraction of inelastic electrons for 10°nm
of oxide. This fraction has been measured from the
experimental images and hence the mean intensities for the
simulations in Figure 1 agree with the experimental images.
However, there is no agreement for the image contrast. In

Figure 1. Comparison of energy filtered (left) and unfiltered
(right), experimental (top row) and simulated (bottom row)
lattice images of (WO
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9
 for a defocus of –74°nm.

The images were printed such that black corresponds to 0.5
and white to 1.4 on a scale where the incident intensity is 1.
“Mean” is the average intensity in the image on this scale
and “contrast” is given by the image standard deviation
divided by the mean.
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both cases, the contrast in the experimental images is about
1/3 of that in the simulated images. A factor of 3 is a large
disagreement and as I will show, there is no way of reducing
it significantly. The beam divergence was measured from a
selected area diffraction pattern. A specimen vibration
amplitude of 0.05°nm was used in the simulations and it
was found that larger values for the vibration, required to

reduce the contrast to match the experimental images,
removed too much high frequency detail before the contrast
was reduced to the experimental level (the same would also
apply to specimen drift). The focal spread, whose source is
in the voltage and lens instabilities has, to first order, a
similar effect on the image as vibration and thus could not
be much larger than the value used, while an upper limit for

Figure 2. High resolution images of (WO
3
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9
, (a) unfiltered, (b) zero loss filtered, (c) plasmon loss filtered, and (d)

second plasmon loss filtered, taken using a Philips CM200 FEG at 200 kV. The intensities in (c) have been multiplied by 20 and
(d) by 40 times.
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the voltage spread was in any case derived from the width
of the zero loss peak in an energy loss spectrum. In this
work, the effect of the point spread function of the detector
was not included, but subsequent work has shown that
under the conditions used here the contrast in the
experimental images will have been reduced to no lower
than 0.8 of its real value by the detector point spread
function. Given that all these parameters have been measured
accurately and none can be adjusted to reduce the contrast
any more it is depressing that there is such a large
discrepancy in the image contrast levels, especially given
that intensities in diffraction patterns appear to have been
calculated to greater accuracy (e.g., Saunders et al., 1995).

To end this section on a more optimistic note, recent
images of the same oxide have been obtained on a Philips
CM200 field emission gun (FEG) electron microscope (Philips
Electron Optics, Eindhoven, The Netherlands) at 200kV
(courtesy of Dr C.J.D. Hetherington and the National Center
for Electron Microscopy, Lawrence Berkeley National
Laboratory, Berkeley, CA) to assess the degree to which
plasmon loss electrons do contribute contrast to a lattice
image. Figure 2 shows unfiltered, zero loss filtered, first and
second plasmon loss images of (WO
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. The first

plasmon loss image defocus was close to Scherzer defocus
with the zero loss image being underfocus and the second
plasmon loss image overfocus. The presence of lattice
fringes in both the first and second plasmon loss images is
clear and it will be interesting to determine whether the
specimen thickness that most closely fits the plasmon loss
images will be the same as that fitting the same area of the
zero loss image. Figure 2 demonstrates that the methods
used to include plasmon scattering in high resolution
calculations are realistic.

Determination of Microscope Lens Parameters from
Coherent Convergent Beam Patterns

The quantification of lattice images requires the
fitting of image intensities to simulations and the last section
has shown that this can be difficult. In this section I will
give a preliminary description of how information can be
obtained from energy filtered coherent convergent beam
diffraction patterns. I will concentrate on the fringe
positions, although the amplitude of the fringes depends
on the spot size and coherence and in principle could provide
a means of measuring these parameters (James et al., 1995).

It is well known in convergent beam electron
diffraction that if the incident convergence angle is made
larger than the Bragg angle for the diffraction maxima then
the discs will overlap and interference may occur (e.g.,
Vincent et al., 1993). The criterion for interference fringes to
be visible in the overlap region is that the spot size has to
be small enough so that the image of the incoherent source

when projected on the crystal is smaller than the plane
spacing of the corresponding overlapping discs in the
diffraction pattern. The spacing of the fringes produced
depends on the probe defocus and can be thought of as a
shadow image of the lattice planes. The fringes are straight
for small incident convergence, but as the convergence is
increased the spherical aberration of the probe forming lens
becomes significant and the fringes are distorted into
shapes that are dependent on the lens defocus. An example
of the fringes formed as a function of defocus for a 111
GaAs systematic row collected using a Gatan imaging filter
attached to a VG HB501 scanning transmission microscope
(VG Microscopes, East Grinstead, UK) are shown in Figure
3. If the probe is overfocus (i.e., focused on a plane between
the electron source and the specimen) then the fringes curve
inwards at their ends (Fig. 3a). If the probe is well underfocus
then the fringes curve outwards (Fig. 3d), and if the probe is
only a little underfocus then more complicated patterns result
(Figs. 3b, c). Given that these patterns consist mainly of
bent fringes perpendicular to the g

111
 vector one might expect

that the amplitude of their Fourier transform would contain
a pair of fuzzy satellite spots whose distance from the center
depended on the inverse of the fringe spacing. It is thus
amusing that the patterns shown in Figure 4 for different
probe defoci were discovered entirely by accident. Although
the shape of the fringe patterns in the convergent beam
pattern images changes considerably with defocus, their
Fourier transforms always consist of two comet-shaped
satellite spots whose position relative to the origin changes
with defocus but whose shape, which resembles that of a
spot affected by coma, remains constant.

Simulating Coherent Convergent Beam Patterns

As a first start towards understanding the origin of
the fringes and the reason for the constant shape in the
Fourier transforms, simulations of the patterns are required.
A full simulation would involve calculating the phase shifts
produced by the objective lens in the incident cone of
electrons for the defocus required, and thus the shape of
the probe on the specimen entrance surface, then
propagating this electron distribution through the GaAs
crystal using a multislice calculation. However, for thin
specimens, as used here, it can be assumed that the diffracted
beams are simply copies of the unscattered beam tilted by
an angle corresponding to g. The diffracted beams have a
different amplitude and are phase shifted by the crystal by
an arbitrary constant amount with respect to the unscattered
beam, but the change in amplitude only alters the amplitude
of the resulting fringes and the crystal phase shift simply
alters the phase of the fringes, leaving their spacings un-
changed. Thus, a simple way of calculating the fringe
positions in coherent convergent beam patterns is to
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calculate the effect of the objective lens on the unscattered
beam as a complex wave, then add copies of this with the
same amplitude at angles corresponding to g and –g and
calculate the modulus squared to get the intensity. The
result of such a calculation for the conditions corresponding
to Figure 3a, i.e., GaAs 111 with a defocus of 350°nm

overfocus and a C
s
 of 3.1°mm, is shown in Figure 5a and its

Fourier transform in Figure 5b. The fringe pattern of Figure

5a resembles closely that of Figure 3a and the comet-shaped
satellite peaks of the Fourier transform are reproduced in
Figure 5b. The first pair of comet-shaped peaks in Figure 5b
away from the origin arises from the primary set of fringes in
Figure 5a formed as a result of interference of the unscattered
beam with the g and –g beams. These two peaks are crossed
by fine straight fringes perpendicular to g, caused by the
presence of the two identical sets of fringes in Figure 5a.

Figure 3. (a-d) Coherent convergent beam patterns from a 111 systematic row in GaAs with defocus changing from overfocus
in (a) to underfocus in (d).
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These fine fringes are also visible experimentally in Figure
4. The pair of comet-shaped peaks furthest from the origin
in Figure 5b arises from the interference fringes formed in
the single small region of Figure 5a where the g and –g
beams overlap and are thus not crossed by fine fringes.
This second set of peaks is not seen in the Fourier transform
of the experimental images (Figure 4), indicating that the
microscope stability was not good enough for coherent
interference between g and –g.

I have shown earlier how the Fourier transforms are
affected by a change in the microscope defocus (Fig. 4) and
it can be seen that the shape of the comet-shaped peaks
remains unchanged and the comet’s tail angle is always
60°. Next, I will discuss the effect of other microscope

parameters on the coherent convergent beam fringes and
their Fourier transforms. If no limiting objective aperture is
used (Figs. 5c and 5d), then the comet-shaped peaks extend
to much higher frequencies and ‘wrap around’ due to the

Figure 4. Amplitude of the Fourier transform of the convergent beam patterns in Figure 3. (a-d) correspond to Figure 3a-d
whilst (e) and (f) are further underfocus.

Figure 5 (next three pages). (a) Coherent convergent beam
simulation for a defocus of 350°nm, C

s
 of 3.1 mm and 100 kV

corresponding to Figure 3a. (b) Fourier transform of (a). (c-
n) As for (a) and (b) except (c) and (d) no objective aperture,
(e) and (f) C

s
 = 10°mm, (g) and (h) astigmatism = 200°nm

parallel to g, (i) and (j) astigmatism = 200°nm at 45° to g, (k)

and (l) three-fold astigmatism = 2000°nm parallel to g, (m)

and (n) three-fold astigmatism = 200°nm at 30° to g.
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undersampling of Figure 5c. If the spherical aberration is
reduced to zero, then not surprisingly the fringes become
straight and the comet-shaped peaks lose their tails and are
reduced to spots. For a larger C

s
 (Figs. 5e and 5f) the comet

shape is again unchanged with the same 60° angle, but the
comet’s tail extends to higher frequencies. Figures 5g to 5j
show the effect of 200°nm of astigmatism applied parallel to

g (Figs. 5g and 5h) and at 45° to g (Figs. 5i and 5j). When the
astigmatism is parallel to g (Figs. 5g and 5h), the effect is the
same as if the defocus had been reduced by 200 nm, i.e., the
fringe spacing is increased and the comet separation is
decreased. For astigmatism applied at 45° to g (Figs. 5i and
5j) the fringes become ‘S’ shaped (including the central
fringe in each pair of overlapping discs), and the comet-
shaped peaks are displaced perpendicular to g, but again
there is no change in the comet’s shape. It can be seen that
there is a little astigmatism present in the experimental Fourier
transforms because of the asymmetry of the central fringe

in Figure 3b and particularly in Figure 3c. Finally, if three-
fold astigmatism is applied parallel to g (Figs. 5k and 5l), the
fringes become more bent on one side of the central fringe
in each pair of overlapping discs than the other and each
peak splits into two comet-shaped peaks with different tail
angles. For three-fold astigmatism applied at 30° to g (Figs.
5m and 5n), the fringes distort into an ‘S’ shape just as for
two-fold astigmatism (Fig. 5i) but the central fringe in each
pair of overlapping discs remains straight, and surprisingly
there is very little change in the Fourier transform (Fig. 5n).
Interestingly, the tails of the peaks in the experimental Fourier
transforms in Figure 4 are split slightly into two tails with
different angles, suggesting that three-fold astigmatism is
present. This is especially noticeable in the underfocus
images (Figs. 4i and 4j).

Quantifying coherent convergent beam fringe spacings

As shown in the last section and by Lin and Cowley
(1986), the fringe positions contain information about the
lens aberrations, although it is probably not possible to
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derive all of the lens parameters from just one pair of
overlapping discs. In this section, I will attempt to show
how the fringe positions can be measured from experimental
convergent beam patterns and thus derive quantitative
values for some lens parameters.

The fringes in a coherent convergent beam pattern
can be treated like the fringes in a hologram in order to
extract their amplitude and phase. The convergent beam
pattern is Fourier transformed, a circular mask is drawn round
one of the comet-shaped peaks and everywhere outside
this mask is set to zero, then inverse Fourier transformed to
give a complex image. The amplitude and phase of the
complex image derived from Figure 3a are shown in Figures
6a and 6b. Moving the head of the comet-shaped peak to
the center of the Fourier transform before inverse
transforming simply removes a constant phase ramp and
makes the phase look like that which would be obtained
near zero defocus. This method will only work for large
overfoci, and even larger underfoci, when the comet-shaped
peaks in the Fourier transform are separated from the origin
sufficiently to allow masking of one peak without including

the origin or any part of the tail of the other peak.
In order to quantify the phase, I will consider a line

through the unscattered 000 beam towards the g beam in a
convergent beam pattern. The amplitude in the 000 disc will
be constant up to the edge of the aperture then drop to
zero, while the phase, φ

0
, will be given by

φ
0
 = πλ3C

s
k4/2 + πλdk2 (1)

where λ  is the electron wavelength, C
s
 the spherical

aberration, d the defocus and k the reciprocal distance from
the center of 000 towards g. The diffracted beam, g, will
suffer a similar phase shift φ

g
 centered around k°=°g, plus

the phase change introduced by the crystal, φ
g0

. The
resulting phase difference ∆φ between the two beams will
be

∆φ = πλ3C
s
/2 (-4gk3+6g2k2-4g3k+g4) +

πλd(-2gk+g2) + φ
g0

(2)

In principle it should be possible to fit the phase from Figure
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6b to the above equation and so derive C
s
, d and φ

g0
.

However, this is a messy process due to discontinuities in
the phase. Fitting the differential of the phase was found to
be a better way, viz:

d∆φ/dk = 2πλγ (-3λ2C
s
k2+3λ2C

s
gk-λ2C

s
g2-d)

Figure 6. (a) Amplitude and (b) phase of the fringes derived
from Figure 3a by masking one comet-shaped peak in the
Fourier transform. (c) Phase differentiated along g.

(3)

which depends only on C
s
 and d, and does not suffer from

phase discontinuities.
d∆υ/dk for the experimental images should be

calculated directly from the complex image to avoid phase
discontinuities and is shown in Figure 6c. It is now possible
to extract a strip from Figure 6c along the line joining 000
and g and derive C

s
 and d by least squares fitting to the

equation for dDf/dk to give the values shown in Table 2.
The values of C

s
 are all generally lower than the

manufacturer’s value of 3.1 mm for the lens and there is a
large spread in the measurements. The figures from the
underfocus values closest to focus are the least reliable, as
a small part of the tail of the peak in the Fourier transform is
cut off in the masking process because it lies too close to
the origin. Nevertheless, it is exceptional that it is possible
to measure any value for C

s
 and it must be remembered that

only a small fraction of the available data are being used
here. To make use of the full area of the disc overlaps in
Figure 6c requires d∆φ/dk in 2 dimensions and as a function
of astigmatism and three-fold astigmatism.

In conclusion, coherent convergent beam patterns
provide a useful means of quantifying a microscope’s
spherical aberrations coefficient and defocus, while energy
filtering is essential for the fine fringes to be visible.

Conclusions

I have shown how the intensity and contrast in
energy filtered lattice images can now be compared
quantitatively with image simulations. Unfortunately, such
comparisons have shown that the experimental lattice image
contrast is still about 3 times lower than that from the best
fitting simulated images. This discrepancy needs to be
understood before it is possible to match image patterns
quantitatively. I have also shown that energy filtered
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coherent convergent beam patterns provide a way of
measuring the defocus, spherical aberration and astigmatism
of the probe forming lens from their fringe positions. It is
anticipated that their fringe intensities will enable the probe
size and coherence to be measured.
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Discussion with Reviewers

M. Saunders: Your results indicate that similar problems in
matching the experimental and calculated contrast are
observed in both unfiltered and filtered images indicating
that the problem is still present after the inclusion of the
majority of inelastic scattering events. One conclusion that
could be drawn from this result is that the problem relates to
phonon scattering which would still be present in the filtered
image. How possible is it that errors in the modelling of
phonon scattering give rise to these contrast problems?
Author: The inelastic scattering included in the calcula-
tions is only that due to plasmon and secondary electron
losses. Phonon scattering is normally treated in low
resolution images by the use of imaginary parts of the
potential which to a first approximation reduce the beam
intensities as the specimen thickness increases, distribut-
ing this intensity between the diffracted beams where it is
stopped by the objective aperture, thus reducing only the
image intensity and not the contrast. For high resolution,
account has to be taken of the contribution this scattered
intensity makes to the image as it is now not prevented from
reaching the image by the objective aperture. Given these
difficulties phonon scattering was ignored in these
calculations, and I would expect it to be partially (but not
wholly) responsible for the contrast problems observed.

P.D. Nellist: Would the author like to speculate on the origin
of the discrepancy between the contrast in the simulated
and experimental images? Does it not really indicate that
the model of inelastic scattering used in the simulations is
not accurate enough?
Author: It is quite possible that the inelastic scattering model
used is not accurate enough, but at least for plasmon
scattering it seems to account for the additional loss of
contrast between filtered and unfiltered images. I believe
the origin of the discrepancy is not simple, but is a
combination of many factors that are not taken into account

Table 2.  Values of spherical aberration coefficient, C
s
 and

defocus, d (underfocus negative), derived from d∆f/dk on
the central line through 000 and g of the convergent beam
patterns

d (nm) C
s
 (mm)

————————————————————————

  360 2.5
   90 2.5
- 890 3.3
–1090 3.6
–1290 2.6
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in simulations. More work is needed to determine what the
discrepancy is.

J. Rodenburg: The fact that the comet-like features in the
Fourier Transform of the interference patterns described in
the second half of the paper always have edges at 60 degrees
is interesting. I presume it must be the result of a simple
geometric constraint. The Fourier Transform of the shadow
image is the auto-correlation of, as a first approximation, the
product of the probe and specimen functions. Presumably
spherical aberration (and, I believe, higher order aberrations)
induces rings of equal phase in the probe, such that the
integral of the autocorrelation goes to zero outside the
comet-like features. Does the author have any
understanding why this necessarily results in the comet
shape? - or is there a better way of formulating the problem?
Author: I have thought about this problem a lot, but have
not yet come up with a simple explanation for the comet
shape.
P.D. Nellist: Measurements of the coefficient of spherical
aberration using coherent convergent beam diffraction
patterns has already been performed by Lin and Cowley
(1986). How does the method of the author compare to their
method, particularly with respect to their quoted accuracy
(15%)?
Author: The method of Lin and Cowley (1986) requires a
coherent convergent beam pattern where the objective
aperture is large enough and the crystal aligned well enough
so that the two diffracted beams are of the same intensity
and all three beams overlap and interfere. This means that
the lattice spacing of the crystal must be large enough (they
used Beryl, lattice spacing 0.8°nm) to permit interference of
the two diffracted beams with each other so that the ellipses
that his method depends on are visible. For the material
used here (GaAs 111, spacing 0.33°nm) this was not the
case, and no ellipses are visible on Figure 3 although they
are visible in the simulations of Figure 5. My method as
described is less accurate than that of Lin and Cowley for
determining C

s
 but it does work for the GaAs 111 discs

shown and it’s accuracy could be improved greatly by
comparing the whole pattern rather than just the central
row.


