
Interpretation of ptychographical reconstructions

43

Scanning Microscopy Vol. 11, 1997 (Pages 43-52)                                                                                           0891-7035/97$5.00+.25
Scanning Microscopy International, Chicago (AMF O’Hare), IL 60666 USA

THE INTERPRETATION OF PTYCHOGRAPHICAL RECONSTRUCTIONS FROM
SPHALERITE STRUCTURES

Abstract

Ptychography is an electron diffraction technique
in which Bragg reflections are interfered coherently in order
to measure the phases of diffraction orders directly.  Two
simple reconstruction methods exist, which require different
degrees of coherence in the illuminating electron beam.
Simulations on InP <110> for two electron accelerating
voltages suggest that the asymmetric ‘dumbbells’ can be
reconstructed for small thicknesses, but that the
reconstruction methods break down at thicknesses around
10 nm.  At larger thicknesses one reconstruction method
yields images which show the phosphorus atom.  The phase
object approximation is shown to break down at thicknesses
of about 3.3 nm.
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Introduction

Much research is currently being done to extract the
phase information in electron microscope images and to
reconstruct the electron wavefunction at the exit surface of
the specimen in amplitude and phase.  A project funded by
the European Community was set up, which aimed at the
recovery of structural information at 0.1 nm resolution using
holography (Lichte, 1992) and focus variation (Coene et al.,
1992; Van Dyck et al., 1993).  A different class of image
reconstruction methods, comprising tilt series in the
conventional high-resolution transmission electron
microscope (HRTEM) (Kirkland et al., 1995) and super-
resolution imaging in the scanning transmission electron
microscope (STEM) (Rodenburg and Bates, 1992) are
currently being developed in Cambridge, the latter method
being the subject of this paper.  Although these advances
are being made in the quantitative analysis of image
contrast, the interpretation of the new information in terms
of specimen structure remains somewhat limited.  This paper
is concerned with the discussion of the limitations and the
opportunities of super-resolution imaging in STEM as these
are determined by the dynamical interaction of the electron
wave with the potential distribution in the local environ-
ment of atoms.  Throughout the paper, the assumption of a
perfect crystal structure will be made, in which case super-
resolution imaging is a straightforward extension to a
technique called “ptychography” which was introduced by
Hoppe (1969a, 1969b, 1982) as a means of measuring the
phases of diffraction orders directly.

Nellist et al. (1995) showed that Si in the <110>
orientation with its dumbbell features can be comfortably
reconstructed at a resolution of 0.136 nm using ptycho-
graphy on data recorded in a STEM, which had a nominal
resolution of only 0.42 nm.  Here we examine the applicability
of the same method to the imaging of zinc-blende
semiconductor compounds.  We discuss the conditions
under which it is possible to resolve and identify the
sublattices of the different constituents in the <110>
orientation.
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Ptychography

Hoppe proposed to perform a diffraction experiment
with a coherent primary wave of suitable shape instead of
plane wave illumination, which is used in conventional
diffraction experiments.  If we assume that the structure is a
perfect crystal, for which the scattered waves are
concentrated at discrete points in reciprocal space, then
the philosophy behind the technique is to widen the
reciprocal space points into regions which overlap.  In the
overlap region a phase sensitive addition of the beams of
adjacent lattice points occurs.  If the interaction of the
specimen with the illumination is multiplicative, as in the
case of a two-dimensional (infinitely flat) crystal, then the
widening of the diffraction spots can be easily described as
their convolution with the Fourier transform of the primary
wavefunction which we call the aperture function.  The
advantage of this approach is that the interferences take
place at the specimen level, from which the wave travels to
the detector without further manipulation.  In contrast to
holography where the phase information is supplied through
the interference of the scattered waves with a single
reference wave which might have travelled a considerably
different path length through the optical system, the basis
of the approach outlined here is the reinterference of
neighboring beams.

Ptychography is a general technique which in
principle could be performed with all types of radiation, but
the requirement of a high degree of coherence favors
electrons over all other types of radiation because field-
emission guns can produce electron beams of suitable
brightness and coherence.  Furthermore, electrons, being
charged particles, can be easily deflected by magnetic and
electric field configurations.  In fact, modern high-resolution
electron microscopes equipped with field-emission guns
are ideally suited for the ptychographical technique, as they
routinely produce electron probes with diameters below one
nanometer.  We will follow the nomenclature of the STEM
where we can record coherent microdiffraction patterns
consisting of coherently overlapping diffraction discs in
the so-called microdiffraction plane.  Hoppe suggested to
use only one or two such patterns.  Indeed, one pattern
alone may contain enough information for a successful
phase assignment if the examined structure consists of a
two-dimensional lattice of a suitable geometry.  Generally,
one encounters a phase ambiguity, which is most easily
resolved if either the beam is defocused - leading to straight
fringes perpendicular to the disc separation vector as
experimentally observed by Vine et al. (1992), Steeds et al.
(1992), Vincent et al. (1993), Tanaka et al. (1994) - or if a
series of patterns are recorded.  Figure 1 shows calculated
microdiffraction patterns for different probe positions both
close to focus and with a large amount of defocus.  The

variation of the intensity distribution in the overlap regions
depends on the direction of the probe movement with respect
to the disc separation vectors.  In Figure 1 the probe is
moved in a direction indicated by the arrow and it is
noticeable that there are interference regions in which the
intensity distribution does not change.  In the following,
we will examine a four-dimensional data set of
microdiffraction patterns |M(µ′, ρ)|2 recorded as a function
of the probe position ρ. In this notation reciprocal space
coordinates are denoted by a dash, µ′  being a two-
dimensional vector describing a position in the
microdiffraction plane (i.e., a certain scattering angle) and ρ
being a two-dimensional vector describing the position of
the probe in the specimen plane.  In the case of a perfect
crystal, the probe movement gives rise to a sinusoidal
intensity variation in the interference regions, and it is the
phase of this intensity variation which we interpret as the
phase difference between the diffraction orders.  After the
Fourier transformation of the data set with respect to the
probe position interference regions as those depicted in
Figure 2 show up for different spatial frequencies
corresponding to different disc separation vectors.  They
yield the phase information which allows us to reconstruct
the diffracted beams in amplitude and phase.  For non-
crystalline materials, applying a super-resolution algorithm
(Rodenburg and Bates, 1992) to the four-dimensional
microdiffraction data-set |M(µ′ ,ρ)|2 allows for the
reconstruction of the wavefunction in amplitude and phase
beyond the spatial frequency cut-off as defined by the
aperture of the probe-forming lens.

Let us express the intensity distribution in the
microdiffraction plane mathematically.  If we assume that
the illuminating aperture is fully coherently filled and that
the interaction of the electron wave with the specimen is
multiplicative, then the wave function in the microdiffraction
plane is a convolution of the specimen function Ψ(a′) with

the aperture function Α(a′) in reciprocal space such that the
intensity distribution is given by

|M(µ′,ρ)|2 =

∫∫ A(µ′-a′) A*(µ′-b′) Ψ(a′) Ψ*(b′)
exp[2πiρ(b′-a′)] da′db′ (1)

When the size of the objective aperture is such that
the diffraction discs have just single overlap, the intensity
in the overlap region between the disc G and G+H can be
easily shown to be

|M(µ′,ρ)|2 = |Ψ
G
|2 + |Ψ

G+H
|2

+ 2|Ψ
G
| |Ψ

G+H
|cos [(α

G+H
- α

G
)

+ (χ(µ′-(G+H)) - χ(µ′-G)) + 2πρH] (2)

where α
G
 and α

G+H 
are the phases of the beams G and G+H,

respectively.  The lens aberrations are expressed by the
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function χ(a′), which is related to the aperture function A(a′)
by A(a′) = |A(a′)| exp (iχ(a′)).  The intensity in the overlap
region is seen to vary sinusoidally as the probe is scanned
parallel to the disc separation vector H.  After taking the
Fourier transform with respect to ρ, G(µ′, ρ′) has considerable

magnitude only for values of µ′ within the overlap region

between the two discs when ρ′ is equal to H or -H.   For ρ′ =
H we have

G(µ′, ρ′) = |Ψ
G
| |Ψ

G+H
|exp [i(α

G+H
 - α

G
)

+ {χ(µ′-(G+H)) - χ(µ′-G)}]

Figure 1.  Calculated microdiffraction
patterns for different probe positions: (a),
(b) close to focus; (c), (d) with a large
amount of defocus.  The variation of the
intensity distribution in the overlap regions
depends on the direction of the probe
movement with respect to the disc
separation vectors.  Here the probe is
moved in a direction indicated by the arrow.
There are interference regions in which the
intensity distribution does not change.

(3)

The magnitude of G(µ′, ρ′) is given by the amplitude product
of the reinterfering beams and its phase by their phase
difference (including the aberrations introduced by the lens).
For the measurement of the phase we shall extract the
information from the point midway between the discs, i.e.,
from the centre of the interference regions, for which µ′ =
G+H/2. In this point the two terms representing the lens
aberrations in Equation (3) cancel if the aperture function is
centro-symmetric.  All the relative phases determined in
this way are insensitive to lens characteristics (McCallum
and Rodenburg, 1993).  Using reconstruction methods as
those discussed in the next section the Fourier space wave
function can be retrieved, which via a Fourier transform
yields a reconstructed real-space wave function in amplitude
and phase.

Simple Reconstruction Methods

In the simple case of a perfect crystal of unit cell

dimensions such that the discs in the microdiffraction plane
just partly overlap as in Figures 1 and 2, all the diffraction
discs can be successively phased (Spence and Cowley, 1978;
Spence 1977, 1978).  Such a reconstruction method - which
we will refer to as reconstruction method I (RM I) - is allowed
if the discs appear uniform, in which case the wavefield in
the microdiffraction plane can be described as a convolution
of the diffraction peaks of the specimen function with an
aperture function - a characteristic which lent its name to
the technique (πτυξ means ‘fold’).  In other words, the
interaction of the electron probe with the specimen should
be multiplicative.  This is only valid in the case of a very
thin but not necessarily only kinematically scattering crystal
(e.g., when the phase object approximation holds) or in the
limit as the wavelength of the scattering radiation tends to
zero.  For a finite wavelength amplitudes and phases of the
scattered wave will vary across the disc diameter, when the
crystal thickness exceeds a certain value.  Broeckx et al.
(1995) have related the assumption of a multiplicative
interaction to the channelling of the STEM probe.  In a
forthcoming publication we will discuss the problems with
the description of ptychography using dynamical diffraction
theory in more detail.

Another simple approach to reconstruct the object
wave function becomes apparent if we increase the radius
of the aperture such that there is overlap between several
diffraction orders and we consider the intensity variation
midway in the overlap between the central disc and each
diffracted disc.  After Fourier transformation with respect
to the probe position we obtain interference regions of the
form depicted in Figure 3 for the case of the <110> zone-axis
of a zinc-blende structure.  In the reconstruction method
discussed in the following, amplitudes and phases of the
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reconstructed beams are taken from the centre of the overlap
between the central disc and the pertinent diffracted disc
(these points are indicated by arrows in Figure 3).  We shall
refer to this approach as reconstruction method II (RM II).
In the case of a strongly-scattering crystal we have to ensure
that the centre of overlap between the central disc and each
diffracted disc does not coincide with any part of the overlap
region of two other discs, as this would lead to mixing of the
interference regions.  However, as Figure 3 indicates, we
can find an aperture size for which the centers of all
interference regions are not obscured.  In particular, the two
pictures on the right of Figure 3 correspond to the (002) and
(004) reflections, respectively.  We can conclude that for a
suitable geometry of the diffraction pattern amplitude and
phase of the reflections of the types G and 2G can be ob-
tained, even if the overlap of the reflection 2G inevitably
overlaps with the disc of the reflection G.  If the aperture
size was increased even further in Figure 3, then reflections
higher than (004) could be reconstructed, but the method
would break down for the low-order reflections (in this case
the (111) reflection).  It should be noted that points midway
the central disc and the different diffraction discs, which
are indicated by arrows, correspond to the Bragg condition
for each beam.  In the kinematical theory, it can be shown

that the reconstructed wave function corresponds to a
perfect projection of the specimen structure (Plamann and
Rodenburg, 1994).  It should be noted that the requirements
on the degree of coherence in the illuminating electron beam
is different for the two reconstruction methods.  While it is
only necessary that neighboring discs interfere coherently
in RM I, the coherence in RM II must be sufficient to ensure
detectable interference between the central disc and the
highest-order disc which we want to phase.

We want to investigate the applicability of the two
reconstruction methods, and we discuss the case of InP in
the <110> orientation as an example below.  The choice of
this structure is motivated by recent, yet to be published
work which demonstrated that the atomic columns of gallium
phosphide can be clearly reconstructed using RM I.  The
reconstruction of the phase showed an excellent match with
the projected structure.  Direct resolution of the atomic
columns along the <111> and <100> direction is more
straightforward given their greater projected separation
distance and the presence of a centre of inversion in these
orientations (Ourmazd et al., 1986; see Kawasaki and
Tonomura (1992) for reconstructions of InP <100> using
holography).  It should be noted that for a satisfying
structural analysis of these materials, we require the ability
not only to resolve the atomic columns but also to identify
the atomic species occupying a given column.  This is
important for defect analysis, as defects in different
sublattices show different mechanical and electronic
properties.

Simulation Method

If we wanted to simulate the probe propagation
through the crystal for each probe position, then we would
have to make great demands on the size and the sampling of
the used supercell.  The computer time required would be
proportional to Nµ′2Nρ′2 log Nµ′, where Nµ′  

is the number of
sampling points in the microdiffraction plane (that is, number
of beams included in the calculation) and Nρ′ the number of
probe positions.  This would be identical to the simulation
of annular dark field (ADF) images (Kirkland et al., 1987),
which is notoriously slow.  However, the propagation of the
probe does not have to be calculated, at least not in the
case of a perfect crystal, because the phase determination
relies on the interference of only two beams from opposite
points in the illuminating convergent beam.  These beams
propagate through the crystal independently of all other
scattered beams and can thus be modelled by (tilted) plane
wave illumination conditions in ordinary multi-slice
programs.  In the case of aperiodic specimens mixing of all
the beams in the scattering process occurs and the full
propagation of the probe has to be simulated.

Multi-slice simulations were carried out using the

Figure 2.  Interference regions which show up after Fourier
transformation of the super-resolution data set with respect
to the probe position for different spatial frequencies ρ′: (a)

ρ′ = 0;  this is the sum of all patterns and corresponds to the
incoherent convergent beam electron diffraction (CBED)
pattern; (b, c, d) finite ρ′, corresponding to different disc
separation vectors and containing the phase information.
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software package CERIUS (developed by Molecular
Simulations, Cambridge, UK).  The electron scattering
factors of Doyle and Turner (1968) were used, and Debye
Waller factors were taken from Reid (1983).  Illumination
tilts K

t
 of the incoming plane wave were modelled by the

alteration of the propagation function P(K) in Fourier space
according to:

P(K)=exp πi λ ∆z(K+K
t
)2

Figure 3.  Interference regions
for the case of a bigger aperture;
in reconstruction method II
amplitudes and phases of the
reconstructed beams are taken
from the centre of the overlap
between the central disc and the
pertinent diffracted disc, indi-
cated by arrows.

Figure 4 (on next two pages).
Comparison of different
reconstruction methods on InP
<110>.

(4)

which corresponds to a slight shear of the specimen such
that every successive slice is shifted by a small amount
(Self et al., 1983).

In contrast to conventional lattice imaging we do
not have to calculate the effect of the lens aberrations on
the lattice interference fringes, as we always choose diffrac-
tion information from the centre of overlap between the
discs, which is not affected by the lens transfer function,
provided that the objective lens is perfectly aligned (see
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above).  Hence, the defocus is not a free parameter in the
calculations.

Simulations on InP <110>

We introduced two different reconstructions
methods above.  In Plamann and Rodenburg (1997) it is
shown that the reconstructed object wave functions do not
correspond to the exit surface wave functions (ESWFs)
obtained under axial illumination conditions, but to
‘backpropagated’ wave functions pertaining to the middle
section of the crystal.  These functions are somewhat closer
to pure phase objects than the ESWFs.  In the following, we
will make a comprehensive comparison between the different
reconstruction methods for two accelerating voltages with
the strict phase object approximation (POA), using InP <110>
as an example.  The examination of the thickness limitations
of the different reconstruction methods is important for the
determination of instrumental parameters such as
accelerating voltage or coherence width which are most
suited for the performance of super-resolution experiments.

In each case (RM I, RM II and POA) the object wave
function was calculated in Fourier space, yielding the
complex values of the 19 innermost beams.  Then a Fourier
transform was taken to obtain a periodic function in real
space.  It is obvious that if we multiply the wave functions
by a constant phase, we obtain another possible solution.
We assigned a phase of -2.5 rad to the central beam in order
to avoid a phase wrap-around on the indium column for
small thicknesses.  The object wave functions in Fourier
space were calculated as follows:

RM I: First, we calculated amplitudes of all beams
including the {004} reflections for axial illumination, that is
K

t
 = 0.  This produced the beam amplitudes for the ptycho-

graphical reconstruction which are extracted from the centers
of the diffraction discs.  Second, we calculated phase
differences between pertinent beams by applying tilted
plane wave illumination conditions.  All beams were phased
successively, using the shortest routes available.

RM II: For the reconstruction of each Fourier
component of the reconstructed wave function, each beam
was set into the Bragg condition, successively.  The
amplitude of the reconstructed Fourier component was set
to the calculated amplitude product of the central beam and
the pertinent beam, and its phase was set to the calculated
relative phase.  The amplitude of the central beam in the
reconstruction was set to unity.

POA: In the POA the potential distribution is
projected onto a two-dimensional surface.  The thickness
values in Figure 4 do not correspond to an actual distance,
but to the scaling factors of the projected potential.  In the
calculation, the propagation between successive slices was
neglected.  Phase transmission functions were calculated

at an accelerating voltage of 100 keV.  The propagator in
Equation (4) was set to unity.  It is apparent that no
illumination tilts had to be modelled, since in the POA the
beam amplitudes are the same for each illumination tilt.

Figure 4 shows the magnitude (m) and phase (p)
components of our reconstructions at thickness steps of
1.7 nm.  For t = 1.7 nm the image features in the five rows
look somewhat similar.  This is expected because at small
thicknesses the POA can be made.  However, even at a
thickness as small as 3.3 nm the images start to look
considerably different:  While for 300 keV the reconstructed
phase for both reconstruction methods matches the phase
in the POA, the indium column shows up much stronger in
the phase of the reconstructions for 100 keV, since the POA
breaks down more rapidly for smaller accelerating voltages.
At slightly larger thicknesses (5.0 - 6.6 nm)  the phase of the
reconstructions consistently shows a close resemblance to
the projected structure, with a greater phase shift on the
upper indium column and a clear expression of the crystal
polarity.  In contrast to the phase, the magnitude
components of the reconstructions do not match the
structure reliably.  We note that there is an apparent
inversion of the dumbbell asymmetry in the magnitude
component between 5 and 6.6 nm for RM I at 100 keV.
Surprisingly, the “dumbbells” look almost symmetrical in
the phase of the POA.  This is a consequence of the
truncation of the wave function in Fourier space.  For a
perfect phase object the indium column scatters into higher
diffraction orders which are not included in the wave function
shown here.  If the POA wave function comprised more
beams, the asymmetry would become more apparent.

At thicknesses exceeding 8.3 nm the image recon-
structions break down successively and do not show the
atomic positions reliably.  The first reconstruction method
to break down is RM I at 100 keV (for RM II at both
accelerating voltages and t = 8.3 nm the indium column
appears dark as a consequence of a phase wrap-around),
but all the others follow quickly.  The images at these larger
thicknesses cannot be called structure images.  However,
let us consider the phases of the RM II wave functions for
thicknesses greater than 10 nm.  They all show strong bright
patches on top of the phosphorus column, while the indium
column is not visible except for the case of 300 keV, in which
it shortly re-appears at 13.3 nm.  The striking appearance of
the phosphorus column in the reconstructions is not yet
understood.  The dynamical scattering for RM II is rather
complicated, since all beams are brought into the Bragg
condition, successively.  However, the reason for the
dominance of the phosphorus column has probably to do
with the strong excitation of its s-states.  The result also
seems to be in agreement with simulations of annular dark-
field images of InP (Hillyard et al., 1993), in which the
channelling peak on top of the indium columns was shown
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to disappear at thicknesses around 10 nm.

Conclusions

Simulations on InP <110> for two electron
accelerating voltages have shown that the asymmetric
“dumbbells” can be reconstructed for small thicknesses
below 8 nm.  In this thickness regime the choice of the
reconstruction methods and of the accelerating voltage does
not make any significant difference.  This is an essential
result as the experiments can be performed at relatively low
voltages and with only modest coherence.  It was shown
that at larger thicknesses the reconstruction method which
requires a high degree of coherence yields images which
show the phosphorus columns very clearly and partly also
the indium columns, though very weakly.
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Discussion with Reviewers

P.W. Hawkes: In the comments on coherence, I think that
spatial coherence (corresponding to source size) is meant.
How will the conclusions be affected by temporal
coherence?
Author: The effects of temporal coherence can be thought
of as a rapid variation of defocus.  In the midpoint of the
overlap region between two diffraction discs, in which the
phase is measured, the defocus term cancels as well as all
other centro-symmetric terms of the aperture function [see
Equation (4) for  µ′ = G+H/2].  As a consequence, temporal
coherence does not affect the measured phase, as long as
the pixel size of the detector is chosen fine enough.

P.W. Hawkes:  What specimens will be studied in the next
stage of the project?
Author:  Previous experiments on silicon and gallium
phosphide have been very successful.  It would now be
very interesting to apply the technique to materials with
large unit cells.  It is clear that for a given reflection, several
routes can now be taken to determine its phase.  The
redundancy in phase information should give a means of
reducing the error of the phase estimate.

R. Hegerl:  Following the original ideas of W. Hoppe,
ptychography should be applied to two-dimensional
crystals of biological macromolecules.  Apart from the much
larger lattice periods, problems may arise from the need of a
low electron dose and the resulting low signal-to-noise ratio.
Assuming a tolerable electron dose of say 1000 el/nm2

(summed over all exposures of the specimen area), is there a
chance to obtain reliable phase information?
Author:  The applicability of ptychography to biological
specimens has yet to await experimental evidence.  However,
it is worth considering the effect of the sampling of the
probe position.  When we record our four-dimensional data
set of microdiffraction patterns |M(µ′, ρ)|2 as a function of
the probe position ρ, we have to ensure that all the probe
positions are equi-distant, but the distance between them
can be chosen quite freely.  The aim would be to choose the
distance as great as possible. That reduces the effect of
specimen damage. However, one has to make sure that the
thickness and orientation of the crystal does not change
too much across the pertaining area.  Furthermore, the
number of probe positions required may be quite small.  On
the other hand, one would probably use neither of the
reconstruction methods described above, in which only
certain points of the microdiffraction plane are considered.
In order to account for every electron contained in the data-
set, a deconvolution as described in Rodenburg and Bates
(1992) could be favorable.


