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Abstract

A new method is described for analysing high
resolution lattice fringe images. The image is considered to
be composed of a reduced set of major image periodicities.
Each periodicity has an associated Fourier component which
is allowed to vary as a function of position.  It is shown that
the local amplitude and geometric phase of lattice fringes
can be determined in this way by filtering in Fourier space.
A direct relationship is then established between the phase
and the displacement of lattice fringes, and between the
gradient of the phase and the local reciprocal lattice vector.
Examples are given illustrating the use of the phase images
for analysing variations in structure from high resolution
images.  The errors in the amplitude and phase measurement
induced by noise are estimated and the circumstances under
which the lattice fringe positions correspond to atomic plane
positions are outlined.
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Introduction

A high resolution electron microscope image of a
crystal can be considered as a sum of several sets of lattice
fringes.  The Fourier transform of the image shows which
periodicities are present and each Fourier component has
an amplitude and phase giving the strength and position of
the lattice fringes.  For a perfect crystal these will limit
themselves to a reduced set of periodicities corresponding
to the Bragg reflections.

A high resolution image is never perfect, however,
whether this be due to changes in the imaging conditions
across the field of view or because the specimen is not
perfectly uniform.  Indeed, it is these variations which are
usually of interest and not the perfect crystal structure,
which is often known.  If we now take a Fourier transform of
the image, then the Bragg spots will still be present but with
associated diffuse intensity corresponding to the variations
in the structure.  Such diffuse intensity in a diffraction pattern
can be interpreted in terms of grain size, strain fields, defects
etc.  However, we have lost the real-space information.  For
example, where are the defects, how are they distributed,
what shape do the grains have?  To answer these questions
we have devised a way of showing the deviations from a
perfect lattice fringe image in real-space.

We shall be showing, in particular, how the variation
in the positions of lattice fringes can be imaged.  There is, in
fact, a renewed interest in using this information in high
resolution electron microscopy.  It was shown some time
ago that rigid body displacements across grain boundaries
can be measured to very high accuracy simply by measuring
the relative displacements of fringes in an image [25], a
methodology which has been developed and expanded more
recently [3].  Lattice fringe images of strained multilayers
have also been analysed to determine compositional
variations [1, 2, 16]. Moiré images, produced either by a
crystal superimposed on the specimen [18] or by a grid
inserted at the level of the projector lenses [7], have been
shown to be useful in obtaining long range information
about crystal distortions.  Finally, it has recently proposed
that the phase information in electron holograms can be
used to determine displacement fields in the specimen [22].
The method of geometric phase analysis described here
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has been previously used to study images of nanocrystals
[12], strained multilayers [10] and antiphase boundaries in
[13].

Image Decomposition

We shall begin with a perfect crystal and assume
that the image is made up of a reduced set of image periodici-
ties, corresponding to the Bragg spots in the Fourier
transform.  If I(r) is the intensity in the image at position r
then:

(1)

where H
g
 is the Fourier component for the Bragg periodicity

.  Since H
g
 is in general complex we can define its amplitude

and phase as being A
g
 and P

g
.  Variations in the crystal

structure can now be introduced by allowing these Bragg
periodicities to vary across the image in real-space, both in
amplitude and phase [9].

The expression for the image intensity, I( ), now
becomes:

(2)

where

(3)

In reciprocal space the equivalent expression is the
following:

(4)

Each Bragg spot in the Fourier transform can therefore
be considered as being convoluted with a function 

g
( ).

For any particular image the choice of 
g
( ) is not unique

so we will define 
g
( ) to be zero for reciprocal vectors 

beyond the first Brillouin zone.  In this way we divide the
information in reciprocal space into each Brillouin zone and
are sure that no information is excluded from the
transformation.  The image can now be studied in terms of
the set of images 

g
( ).

Bragg filtering

In order to explain the usefulness of representing
the image in terms of the set of images H

g
( ) we shall relate

the above derivation to ordinary Bragg filtering.  An image
can be filtered by placing a mask around the spots ±  in the
Fourier transform and back-Fourier transforming.  From
Equation (2) the resulting image will have an intensity
distribution B

g
( ) given by:

(5)

It is easy to show that for a real image, I( ):

(6)

and therefore Equation (5) becomes:

(7)

where ℜ e denotes the real part. Writing H
g
( ) in terms of

amplitude and phase, using Equation (3), we obtain the
following result:

(8)

This equation was the starting point for the descrip-
tion of the method of geometric phase analysis described
elsewhere for the study of images of nanocrystals [12].  By
calculating H

g
( ) we can therefore obtain an image of the

amplitude and an image of the phase of the set of lattice
fringes  as a function of position.  Amplitude images show
how the strength of a set of fringes  varies across an image
and can be related to variations in, for example, the thickness
of a crystal, the composition or local orientation.  They are
the HREM (high resolution electron microscopy) analogue
to dark-field images in conventional TEM (transmission
electron microscopy) and much the same effects need to be
considered in order to interpret them.  There are important
differences too, for example the fact that even in the case of
linear interference the fringes in an image result from the
000,  and - beams whereas in conventional dark-field a
single beam is imaged.  In this paper however we shall be
mostly concerned with the geometric phase images which
are more directly interpretable in terms of the specimen
structure.

Geometric Phase

The phase images show how regular a set of fringes
is across a given image, that is, how even the spacing is
between fringes and how the fringes vary from their ideal
positions.  For an ideal set of fringes, the amplitude and
phase will no longer be a function of position and we can
write that:

(9)

In the presence of a displacement field , the Bragg
fringes of Equation (9) can be rewritten as:

(10)

from which, by comparison with Equation (8), we obtain
that:

(11)

In this way the phase directly measures the compo-
nent of the displacement field, u

g
, for each set of lattice



Geometric phase analysis of HREM images

55

planes, .  Combining the results for each lattice plane will
give the vectorial displacement field.  The representation of
displacements in terms of a phase change is analogous to
that appearing in the kinematical scattering theory of defects
[8].

On the other hand, if the reciprocal vector, , for a
set of lattice fringes changes by a small amount ∆  then
Equation (9) for the lattice fringes becomes:

Figure 1. Antiphase domains in long-range ordered Cu
3
Au: (a) HREM image in [001] projection with objective aperture

excluding the {200} spots (courtesy of Laurence Potez); (b) diffractogram of HREM image showing the {100} order spots and
mask used for 100 filtering.

(12)

Comparing this equation with Equation (8) we find
that:

(13)

In a region where the lattice spacing is slightly
different, due for example to a change in the lattice parameter,
the phase will have a uniform slope corresponding to the
difference.  The greater the difference in the lattice spacing,
the steeper the slope.  Mathematically, we can see that the
gradient, P

g
, is given by:

(14)

This equation allows us to measure local departures from
the average reciprocal lattice vector directly from the phase.
The relation is vectorial, so a rotation of the lattice would

also be revealed in a phase image and ∆  would be
perpendicular to .  Equation (14) could have been derived
directly from Equation (11) as the gradient of the
displacement field gives the local lattice parameter.

Holographic reconstruction

The images H
g
( ) can be obtained from the original

image in exactly the same way as a single side-band
holographic reconstruction except that the reference beam
is the  periodicity (and with no correction of the objective
lens aberrations, see for example [17]).  The reason that the
phase images are called geometric is to distinguish between
the positions of fringes in the image (determined by this
method) and the actual phase of the beams emerging from
the crystal (determined by holography).

The coordinates of  are found from the power spec-
trum of the image, the centre of mass of the intensity in the
peak is generally a good method for obtaining sub-pixel
accuracy.  A mask is placed around the position  in the
Fourier transform of the image and the back-Fourier transform
performed.  If necessary, in order to reduce the noise in the
final image, the mask can be smaller than the Brioullin zone
though the resolution will be reduced.  The resulting image
H′

g
( ) will be:

where

(15)
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(16)

(17)

(18)

The phase image P
g
( ) is obtained by simple

subtraction of the phase ramp 2π .  (followed by a
renormalisation of the phase between ±π) which avoids
problems associated with  lying between pixels in the digital
transform [24].

Examples of Phase Images

Antiphase boundaries

The first example of the use of the method of
geometric phase analysis is taken from a study of antiphase
boundaries in Cu

3
Au [13].  The original image is shown in

Figure 1a taken in [001] projection on a JEOL 4000FX
operating at 400kV.  An objective aperture was used to
exclude the {200} reflections thus making the visualisation
of the antiphase boundaries easier [20].  The digitisation of
the negatives was carried out using a CCD (charge-coupled
device) video camera mounted above a light box and all the
image processing presented in this paper was carried out
using routines within the software package SEMPER
(Synoptics, Cambridge, UK) [21].

The atoms in Cu
3
Au form a face centred cubic lattice

and in the long-range ordered form (as we have here) the
atoms of Au are positioned at the corners of the unit cell.
Looking in [001] projection the {100} planes are alternatively
of pure Cu or rich in Au.  Forming an image with only the
{100} and {110} spots therefore reveals the positions of
the Au rich planes (or the Cu planes depending on the
thickness and defocus).  Given the symmetry of the unit cell
there are four equivalent positions for the origin of the Au
sublattice and so translation domains are formed where the
Au rich planes are all translated with respect to a
neighbouring domain.

This can be seen in the image (Fig. 1a) where across
an antiphase boundary the 100 and/or 010 fringes are shifted
by half a fringe spacing.  By Bragg filtering the original
image using the mask shown in Figure 1b the antiphase
boundaries for the 100 planes can be seen (Fig. 2a) and
similarly for the 010 fringes (Fig. 2b).  The amplitude images
are similar to dark-field images using the corresponding spot
in the diffraction pattern: black lines are seen at the antiphase
boundaries (see Figs. 2c and 2d).  It is, however, the phase
images (Figs. 2e and 2f) which reveal the translation domain
structure directly.  Because the fringes are translated by
half a lattice plane from domain to domain the phase changes
by π.  In one domain the phase will have a certain constant
value and in the neighbouring domain the phase will be
shifted by π.  In this way the domains show up light or dark
in the phase image.  The 100 phase gives the component of

the translation vector in the 100 direction and the 010 phase
in the 010 direction.  The results can therefore be combined
to give a map of the translation domain structure (Fig. 3).
Such an image with four grey levels corresponding to the
four translation domains was obtained by adding half the
010 phase to the 100 phase image.

Displacement fields around dislocations in silicon

The previous example showed how changing the
absolute value of the phase moves the fringes in the image.
The next example shows how a displacement field can
produce a continuous variation in the phase.  Figure 4a
shows a high resolution image of a Σ3 boundary in silicon
taken at 200 kV on a JEOL 200CX along [01] (courtesy of
Jean-Luc Putaux).  It is not the boundary itself which is of
interest here but the edge dislocation located at the step in
the centre of the image.  The Bragg filtered image using the
mask shown in the inset shows the presence of the additional
plane (Fig. 4b) but the displacement field is not directly
measurable.  For this we need the 111 phase image (Fig. 4c).

According to simple elastic theory the component,
u

g
, of the displacement field parallel to the Burgers vector

for the lattice planes, , around an edge dislocation is given
by:

(19)

where d
g
 is the spacing of the planes, θ the angle with respect

to the dislocation core in cylindrical coordinates, and v the
Poisson constant for the material [6].  In this projection the
111 fringes are perpendicular to  and therefore using
Equation (11) we can see that:

(20)

since g
111

=1/d
111

.  In the example shown, b
111

=d
111

 and by
substituting u

111
 from Equation (19) into Equation (21) the

following result can be obtained:

(22)

Figure 2 (on facing page). Bragg filtered, amplitude and
phase images of antiphase domains: (a) 100 Bragg filtered
image, B

100
(r); (b) 010 Bragg filtered image, B

010
(r); (c) 100

amplitude image, A
100

( ); (d) 010 amplitude image, A
010

( );
(e) 100 phase image, P

100
( ); (f) 010 phase image, P

010
( ),

black=–π white=π.  The difference in grey levels
corresponds to a change of π in the phase.

(21)
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The phase image therefore has a discontinuity at
the dislocation core and elsewhere varies linearly with the
angle θ, to a first approximation, given that the second term
is much smaller than the first.  This point discontinuity,
seen in the phase image (Fig. 4c) should not be confused
with the discontinuous line where the phase changes
abruptly from –π (black) to π (white).  The latter is the result
of normalising the phase between these two values and
should not be interpreted as a discontinuity in the structure.
For example, adding a constant phase to the image would
change the location of the transition.  To reveal the second
term in Equation (22) the first term has been removed from
the phase image by adding θ to P

111
( ) as shown in Figure

4d.  Measuring v from this image gives a value of 0.3±0.1
which is not surprising but nevertheless gives an inde-
pendent indication of the validity of the interpretation of
the phase in terms of displacement fields.

The appearance of a discontinuity in the phase at a
dislocation core can be understood in another way.  The
component of the Burgers vector, , for a set of planes 
obeys the following relation:

Figure 3. Translation domain structure.  The four grey levels
correspond to a particular translation domain.  Image was
calculated using the formula P

100
( )+1/2 P

010
( ).

(23)

where l is a segment on the loop L containing the
dislocation [6].  Using Equation (11) we find that:

(24)

where n is the number of extra planes and b
g
 = nd

g
.  The left

hand side of the equation can only be non-zero in the
presence of discontinuities and hence a discontinuity must
be present at the dislocation core.  In this case integrating
the 111 phase gradient around the discontinuity gives 2π
and hence a single addition plane is present.  The next
example shows that fractional Burgers vectors can also be
detected and measured using the phase.

Figure 5a shows the high resolution image of a
dissociated dislocation in silicon.  Taking the same set of
111 planes as before, the phase image can be produced
(Fig. 5b).  Here we see that the global Burgers vector is the
same because integrating around a closed loop described
in Equation (24) gives 2π.  We can remove the associated
displacement field by subtracting θ (the angle with respect
to dislocation core) from the phase image (Fig. 6a).  The
dissociated dislocation is now represented by a line
discontinuity in the phase.  This is shown more clearly by
extracting a section across the dislocation (Fig. 6b) and
then taking the average line profile (Fig. 6c).  The
discontinuity is measured from the height of the step in the
phase at the mid-point according to Equation (21) and gives
a relative displacement of the fringes  of 0.64±0.04 111 planes
(equivalent to 0.20±0.01 nm).  The error is due to the
uncertainty with which the phase can be extrapolated in the
vicinity of the discontinuity.  This result is in accordance
with the expected value of n of 2/3, or –1/3.  In exactly the
same way rigid body displacements across grain bound-
aries can be measured using this technique [11].

Carbon nanotubes

An illustration of the use of the phase images to
measure changes in the reciprocal lattice vector can be found
in the next example taken from a study of carbon nano-
tubes.  Figure 7a shows a high resolution image of a multi-
shell carbon nanotube taken on a TOPCON 002B microscope
(TOPCON, Paramus, NJ) operating at 200kV (courtesy of
Pulickel Ajayan).  The image corresponds closely to a slice
through the structure, the horizontal fringes marking the
outer edges of the individual cylinders of graphene [15].
The phase image shown in Figure 7b was formed using the
mask marked in the inset.  At first sight the 0002 fringes
seem quite regular with the phase remaining constant the
full length of the tube.  Indeed, the phase does remain almost
constant across the tube but along the tube there is a
significant variation, as shown by the averaged phase profile
also marked on Figure 8b.  The phase forms an approximate-
ly v-shape pattern with a constant slope on the left and the
right, abruptly changing from one value to the other at the
middle.  The gradient of the phase is perpendicular to the
lattice vector 

0002
 which means that the changes are due to

a rotation of the lattice.  Using Equation (14) we can measure
∆g

0002
 and hence the rotation which in this case is 1.4±0.1°.



Geometric phase analysis of HREM images

59

The advantage of the phase images over the use of selected
area diffractograms is that the accuracy of the measure is
easy to calculate and comes directly from the measurement
of the gradient of a line.  The other advantage is that we can
see that the tube is rigidly bent in the middle; the tube is not
bend continuously as might have been the case.

Accuracy, Noise and Systematic Errors

The question of accuracy is two-fold.  There is the
accuracy with which lattice fringe positions are measured
from an image using the geometric phase images and there

Figure 4. Displacement field around an edge dislocation in silicon: (a) HREM image in [01] projection of a Σ3 boundary with
associated dislocation (courtesy of Jean-Luc Putaux) diffractogram and 111 mask shown in inset; (b) 111 Bragg filtered image,
B

111
( ); (c) 111 phase image, P

111
( ), black=–π white=π; (d) modified 111 phase image, P

111
+θ, thus revealing the sin 2θ term in

Equation (22), black=–π/4 white=π/4.



60

M.J. Hÿtch

is the accuracy with which the lattice fringe positions
correspond to the atomic plane positions in the specimen.

Measurement of fringe positions

The effect of noise on lattice fringe positions can be
estimated using a simple argument (see Figure 8a for a
schematic representation).  The complex number H

g
( ) is

the signal we are trying to measure in the presence of a
noise n

g
( ).  In general the noise vector will be pointing in a

random direction and can be added to the vector H
g
( ) to

produce the measured value.  We can see from the diagram
that the error in the amplitude ∆A

g
( ) and the phase ∆P

g
( )

will both be given approximately by the signal to noise ratio.
The error in the lattice plane position ∆u

g
 is more

meaningfully expressed as a fraction of the lattice spacing

Figure 5. Dissociated dislocation in silicon: (a) HREM image
in [01] projection (courtesy of Jean-Luc Putaux)
diffractogram and 111 mask shown in inset; (b) 111 phase
image, P

111
( ), black=–π white=π.

Figure 6. Displacement field due to stacking fault: (a) 111
phase image after removal of displacement field due to global
Burgers vector; (b) section of 111 phase across stacking
fault, black=–2π/3 white=2π/3; (c) line profile of 111 phase
across stacking fault. Discontinuity in the phase of
approximately 4π/3 indicates a value of n of 2/3.
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d
g
 so summarizing the results gives the following estimates:

Figure 7. Bending of carbon nanotubes: (a) HREM image
of multi-shell carbon nanotube (courtesy of Pulickel Ajayan)
diffractogram and 0002 mask shown in inset; (b) 0002 phase
image, P

0002
( ), and average phase profile  shown as line

trace.  Change in gradient of the phase gives the rigid
rotation to be 1.4±0.1°.

Figure 8. Schematic diagram illustrating the effect of noise
which produces an error ∆P

g
 in the phase P

g
.  The “signal”

is the complex vector H
g
 with length A

g
 and phase P

g
 and

the “noise” is measured by the length of the vector n
g
 and

has random phase: (a) conditions of high signal to noise;
(b) conditions of low signal to noise.

(25)

(26)

(27)

where the degree of noise is the modulus of n
g
( ) and the

signal is measured as the amplitude A
g
( ).  It has been shown

using simulations that the error in measuring atomic column
positions from high resolution images of crystals increases
with the square root of the thickness of an amorphous layer
covering the specimen [19].  We are now in the position to
offer an explanation.  The contrast of an image of an
amorphous material, measured by the standard deviation of
the image intensities, increases approximately with the
square root of the thickness following simple arguments
from random statistics.  For a constant thickness of crystal
the signal to noise ratio will also follow this progression
and hence the error, given by Equation (27).

A schematic representation of the limiting case where
the noise is almost as great as the signal is given in Figure
8b.  Here we can see that the amplitude is much more affected
by the presence of noise than the phase.  We can estimate
from the geometry of the figure that the maximum errors will
be:

(28)

(29)

(30)
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To illustrate these points, Figure 9 shows two experi-
mental images, one where the level of noise is fairly weak
and the other where the noise is strong. The first image
(Fig. 9a) is of a uniform crystal of aluminum (courtesy of Uli
Dahmen). The noise to signal ratio was estimated as 0.3
which corresponds well to the standard deviation of 0.26
measured from the amplitude image, Figure 9c, and of 0.33
measured from the phase image, Figure 9e. The second
example is a Bragg filtered image of a nanocrystal of
CdS

x
Se

1-x
 in an amorphous matrix (Fig. 9b).  The crystal is

barely visible in the amplitude image (Fig. 9d) but clearly
visible as an area of uniform phase in the phase image (Fig.
9f) thus illustrating the robustness of the phase to the
presence of noise.

The other aspect which affects the measurement of
the position of lattice fringes is the mask used in Fourier
space to produce the phase images.  The size of the mask
determines the lateral resolution, or rather, the averaging
carried out in real space.  For a mask of the size of one
Brillouin zone the averaging is effectively carried out over
one unit cell.  Interpreting the phase on a finer scale is
therefore without sense.

Measurement of atomic plane positions

How closely lattice fringe positions correspond to
atomic plane positions is a more complicated question to
answer and the problems involved are specific to high
resolution electron microscopy.  To begin with we shall
consider slowly varying displacement fields (slow with
respect to the size of the unit cell).  If the crystal is exactly
on a zone axis and the microscope is perfectly aligned the
position of the lattice fringes will follow exactly the atomic
plane positions.  All that might change is that the phases
will all shift by exactly π where the contrast inverts due to a
variation in the thickness or defocus.  These circumstances
allow us to interpret the phase images directly in terms of
displacement fields in the specimen.  The degree to which
these conditions apply determines the accuracy of the
measurements.  In this paper, the examples given satisfy
these conditions to a good approximation, or at least suffi-
ciently for the purposes to which the phase images were
used.  A more detailed analysis requires the consideration
of the following aspects:

•  projector lens distortions;

•  varying microscope misalignments;

•  defocus variations linked with misalignements;

•  thickness or composition variations linked with
misalignments;

•  thickness variations linked with crystal tilt.
The image on the screen is a magnified but distorted

version of the image formed by the objective lens.
Fortunately, the distortions introduced by the projector

lenses are relatively small ≈1% change in the magnification
across the negative) and are stable [5].  The latter allows the
taking of calibration images of, for example, a perfect crystal
and subsequent correction of the phase images.  Lattice
parameters can be measured to an accuracy of ±0.4% with
careful calibration [4].

Beam tilt or astigmatism moves lattice fringes with
respect to the atomic planes by the introduction of phase
shifts [23].  If the thickness, defocus and composition do
not change across the image, these phase shifts will be
constant and will not affect the measurement of the
displacement fields.  Beam tilt can, however, vary across
the image and is very difficult to calibrate and detect.  It is
therefore very important to try and limit its effect by, for
example, spreading out the beam as large as possible when
taking the images.  Experiments need to be carried out using
a perfect crystal to study the limits in accuracy.

For large beam tilts the phase shifts vary with
defocus, so if the exit surface is tilted, the positions of fringes
will move even for a perfect crystal.  Variations in the
thickness and composition will not automatically cause a
problem.  For linear interference involving only one set of
equally strong ±  beams, the phase shift introduced by the
misalignments should be independent of the thickness or
composition.  Variations are introduced when lattice fringes
are produced by multiple interference, whether non-linear
or linear.  The phase shifts will be  different for the different
beams and therefore as the relative strengths vary the
resultant phase shift will be different.

The most common occurrence is probably a combi-
nation of thickness variations and crystal tilt.  The positions
of lattice fringes will vary simply from geometrical consid-
erations and this can even be used to measure the thickness
of the specimen for a known constant crystal tilt.  This
effect is problematic because, as with the variations in the
misalignments, it is difficult to detect.

A rapidly changing displacement field will not be
faithfully reproduced in the image and lattice fringes will
shift due to rapid changes in thickness and composition.
This is primarily because the point spread function of the

Figure 9 (on facing page). Examples of amplitude and phase
images in the presence of noise: (a) HREM image of
aluminum (courtesy of Uli Dahmen) with high signal to noise;
(b) 012 Bragg filtered HREM image of a nanocrystal of
CdS

x
Se

1-x
 in an amorphous matrix (courtesy of Madeleine

Gandais) with low signal to noise; (c) amplitude image of
111 fringes in aluminum, A

111
( ); (d) amplitude image of 012

fringes in CdS
x
Se

1-x
, A

012
( ); (e) 111 phase image, P

111
( ),

standard deviation noise to signal ratio; (f) 012 phase image,
P

012
( ), area of constant phase reveals nanocrystal.
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objective lens has a certain width (for both amplitude and
phase) but also because of dynamical diffraction and
dispersion of the electron wave within the specimen.  It is
these effects which limit the lateral resolution of the method
more than the size of the mask used in reciprocal space.  To
be more precise, it is the lateral resolution of the simple
interpretation of the phase images which is affected.
However, there is no reason why simulations cannot be
carried out and compared with the experimental results.
Indeed, the phase images are much more suitable for
comparisons than the original image with its complex
intensity distribution.  The phase images are also much
more closely related to the desired quantity – the
displacement field – and therefore the estimations of
accuracy are much easier to estimate.  Consider, for example,
the comparison of high resolution images with simulations
by the use of cross-correlation coefficients and then trying
to relate the results to structure [15].

Conclusions

It has been shown how variations from an ideal
structure can be analysed using geometric phase images.
The phase images determine directly the displacement of
the lattice fringes and can be used to measure the local
reciprocal lattice vector.  Under certain circumstances the
positions of the lattice fringes are a good approximation to
the positions of the atomic planes.  The greatest
inaccuracies occur for either short-range structural
variations, due to dynamical scattering and lens aberrations,
or for long-range variations, due notably to combinations
of misalignments and thickness variations.  The examples
shown were interpreted at a medium resolution, on a scale
greater than a few lattice planes but much smaller than the
area covered by the negative.  The important point is that
the use of the phase images is not restricted to the regime
where the interpretation is simplest.  Simulations of phase
images can be carried out to determine the accuracy of the
measurement of the displacement fields and if necessary
compared directly with the experimental phase images.  Such
comparisons are much more straight forward than
comparisons of the original image with simulations.  The
value of the phase images lie in the fact that they can be
used both qualitatively, to reveal important details of the
image such as dislocations, lattice rotations, or translation
domains, and quantitatively, to make measurements of
variations in the structure such as transformation matrices,
Burgers vectors, or rigid body displacements.
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Discussion with Reviewers

K. Scheerschmidt:  Will you please briefly characterize the
difference between your method and Bragg filtering widely
applied.  Is the difference characterized by the interpretation
of the phase as geometrical phase and the resulting
conclusions?
Author: There are two aspects which are important both

from a qualitative and a quantitative point of view.  To begin
with, there is a difference between Bragg filtering by placing
masks around all of the significant spots, and looking at
each of the lattice fringes in turn (the images which I call
B

g
( )).  Multiple Bragg filtering is just a method of cleaning

up the image by removing some of the noise, and is almost
cosmetic.  Looking at the individual lattice fringes, however,
reveals such things as  dislocations with the undisturbed
B

g
( ) images showing the condition .  = 0.  It may also be

possible to see rotations more clearly.  Thus qualitatively
much of the features seen in phase images can be read from
individual Bragg filtering (B

g
( )).  However, measurement is

best carried out with the phase images -rotations via ∆ ,
Burgers vectors via .  = n/3, etc.

K. Scheerschmidt: There is a significant difference between
the object wave phase and the “geometrical phase”, which,
in principle, characterizes solely the lattice fringe shift
because of the always simultaneous recording of +  and -
reflections in HREM images.  Therefore the displacement
field and the change of lattice spacing can directly be
interpreted as displacements and bending of the object on
only very restricting assumptions, e.g. avoiding multiple
scattering and assuming very thin objects.  In this
simplification, however, the argument of the Burgers circuit
holds good for both the displacement and the geometric
phase.  But can this be demonstrated in general as proposed
by your Equations (23) and (24).
Author: The conditions for the simple interpretation of the
phase images is not as restrictive as you suggest.  For the
cases studies here, the underlying assumption is that all
the atoms in a particular column are displaced
simultaneously (i.e., there is no variation of the displace-
ment field over the foil thickness).  Under such circum-
stances, there are strong reasons to suppose that the
wavefunction emerging from the crystal will be peaked at
the real atomic column positions.  (See for example, the work
on electron channeling (see e.g., [26]), or the justifications
for the interpretation of high angle dark field images).
Dynamical scattering will greatly affect the intensities but
is much less likely to shift the apparent column positions.
For rapid lateral variations (<1 nm) this approximation will
break down, but simulations would have to be carried out in
any case given the effect of the objective lens at this
resolution.  Nevertheless, more work has to be carried out
to define the lateral resolution to which the phase images
can be reliably interpreted.  For the point concerning the
Burgers circuit, I think it could be shown generally.  The
integration around a closed loop must be zero in the absence
of point discontinuities.  Only under very special
circumstances would the thickness of the specimen have a
point discontinuity (a ledge or thickness contour would
give a line discontinuity).  The same would apply to bend
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contours.

K. Scheerschmidt: Due to the elastic far field the information
of extended defects is located closely around the reflections.
May this be the reason that Bragg filtering yields much
better results than expected by considering non-overlapping
Brillouin zones?
Author: Information at medium resolution (between 1 and
20 nm) is, as you say, located around the Bragg reflections
and is therefore directly available in the amplitude and phase
images.  The information has always been present in the
HREM images but has been largely unexploited (because
of problems with extracting the information).  There are many
problems for which the important variations in structure
occur over these length scales.  For certain cases, all of the
information is contained in one Brillioun zone, no matter the
resolution limit.  Compositional variations occurring on a
fixed lattice is an example.  This is not strictly true for
distortions of a lattice but it is reasonable to assume that
the majority of the information resides in one Brillouin zone.

N. Bonnet: I appreciate very much this work and consider
that the way the Fourier phase is exploited for obtaining
information (lattice distortion, ...) in the real space is very
innovative.  It was recognized for a long time that the
amplitude spectrum contained only a part of the total
information, but few attempts were made for exploiting the
phase spectrum.  Do you think this original approach could
be extended (with necessary variations) to non-periodic
objects?
Author: The phase method works especially well when
analysing variations which can be described as a modu-
lation of a set of fringes, i.e., where the local reciprocal lattice
vector does not differ greatly from the average lattice vector
.  Analysing non-periodic objects such as grain boundaries

is therefore possible if there are common Bragg reflections.
I am currently working on ways of analysing interfaces where
the Bragg reflections are not continuous.  Another type of
non-periodic object which has been treated is a nanocrystal
(see [12]).  However, if by non-periodic objects you mean
“ordinary” images with no obvious lattice fringes, there is
no immediate way that I can see of extending the method
though it may, as you suggest, give interesting results.

N. Bonnet: I would like to address some questions of
terminology.  First, I think it should be stated that the method
you use (and which you call “single side-band holographic
reconstruction”) can be related to what is called “Gabor
filtering” in the image processing community.  The aim of
Gabor filters (Gaussians modulated by sines and cosines in
the real space) is precisely to obtain the local amplitudes
and phases (at the given central frequency of a band-pass
filter).  In this context, you write (in “Measurements of fringe

positions”) that the size of the mask determines the
resolution.  What about the shape of the mask?  Did you try
to see if any difference occurs when replacing the disc-
shaped mask by a Gaussian mask (Gabor filter)?
Author: The method can, indeed, be related to Gabor filtering
where the creation of local images of H

g
′( ) are a special

case.  Following your suggestion I have included a short
section in a later paper on the phase method [9].  Also in
that paper, Gaussian shaped masks were experimented with
having a standard deviation of g/4.  Qualitatively, the noise
is reduced by using Gaussian filters and there are less
spurious fringes.  The lateral resolution of the images has,
however, been reduced.  The important point is that for
quantitative results at lateral resolutions of less than 1 nm
the results must, in any case, be compared with simulations.
The shape of the mask does not then matter if an identical
mask is used for both the experimental and simulated images.
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