Scanning Microscopy Vol. 11, 1997 (Pages 53-66)

0891-7035/97$5.00+.25

Scanning Microscopy International, Chicago (AMF O’ Hare), IL 60666 USA

GEOMETRIC PHASEANALYSISOFHIGH RESOLUTION ELECTRON MICROSCOPE
IMAGES

M.J. Hytch

Centre d’ Etudesde Chimie M étallurgique, Centre National de Recherche Scientifique, Vitry-sur-Seine, France

Abstract

A new method is described for analysing high
resolution latticefringeimages. Theimageisconsidered to
be composed of areduced set of major image periodicities.
Each periodicity hasan associated Fourier component which
isallowed to vary asafunction of position. It isshown that
the local amplitude and geometric phase of lattice fringes
can be determined in thisway by filtering in Fourier space.
A direct relationship isthen established between the phase
and the displacement of lattice fringes, and between the
gradient of the phase and thelocal reciprocal lattice vector.
Examplesare givenillustrating the use of the phaseimages
for analysing variations in structure from high resolution
images. Theerrorsinthe amplitude and phase measurement
induced by noise are estimated and the circumstances under
whichthelatticefringe positions correspond to atomic plane
positions are outlined.
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Introduction

A high resolution electron microscope image of a
crystal can be considered as a sum of several setsof lattice
fringes. The Fourier transform of the image shows which
periodicities are present and each Fourier component has
an amplitude and phase giving the strength and position of
the lattice fringes. For a perfect crystal these will limit
themselves to areduced set of periodicities corresponding
to the Bragg reflections.

A high resolution image is never perfect, however,
whether this be due to changes in the imaging conditions
across the field of view or because the specimen is not
perfectly uniform. Indeed, it isthese variations which are
usually of interest and not the perfect crystal structure,
whichisoften known. If wenow takeaFourier transform of
theimage, then the Bragg spotswill still be present but with
associated diffuseintensity corresponding to the variations
inthestructure. Such diffuseintensity inadiffraction pattern
canbeinterpreted intermsof grain size, strainfields, defects
etc. However, we havelost thereal-space information. For
example, where are the defects, how are they distributed,
what shape do the grains have? To answer these questions
we have devised a way of showing the deviations from a
perfect lattice fringeimagein real-space.

We shall be showing, in particular, how thevariation
inthe positions of latticefringescan beimaged. Thereis, in
fact, a renewed interest in using this information in high
resolution electron microscopy. It was shown some time
ago that rigid body displacements across grain boundaries
can bemeasured to very high accuracy simply by measuring
the relative displacements of fringes in an image [25], a
methodol ogy which has been devel oped and expanded more
recently [3]. Lattice fringe images of strained multilayers
have also been analysed to determine compositional
variations [1, 2, 16]. Moiré images, produced either by a
crystal superimposed on the specimen [18] or by a grid
inserted at the level of the projector lenses [7], have been
shown to be useful in obtaining long range information
about crystal distortions. Finally, it has recently proposed
that the phase information in electron holograms can be
used to determine displacement fieldsin the specimen [22].
The method of geometric phase analysis described here
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has been previously used to study images of nanocrystals
[12], strained multilayers[10] and antiphase boundariesin
[13].

I mage Decomposition

We shall begin with a perfect crystal and assume
that theimageismade up of areduced set of image periodici-
ties, corresponding to the Bragg spots in the Fourier
transform. If I(r) istheintensity in theimage at positionr
then:

IF)-Y H,exp {2mige ¥ } @

where H, isthe Fourier component for the Bragg periodicity
g. Since H, isingeneral complex wecan defineitsamplitude
and phase as being A, and P, Variations in the crystal
structure can now be introduced by allowing these Bragg
periodicitiesto vary acrosstheimagein real-space, bothin
amplitude and phase[9].

The expression for the image intensity, I(r), now
becomes:
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In reciprocal space the equivalent expression isthe
following:
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Each Bragg spot inthe Fourier transform cantherefore
be considered as being convoluted with a function ﬁg(}}).
For any particular image the choice of ﬁg(k) is not unique
so we will define ﬁgQ}) to be zero for reciprocal vectorsk
beyond the first Brillouin zone. In thisway we divide the
information in reciprocal spaceinto each Brillouin zone and
are sure that no information is excluded from the
transformation. Theimage can now be studied in terms of
the set of images 1, (k)-

Bragg filtering

In order to explain the usefulness of representing
theimagein termsof the set of images Hg(f) weshall relate
the above derivationto ordinary Bragg filtering. Animage
can befiltered by placing amask around the spots+ g inthe
Fourier transform and back-Fourier transforming. From
Equation (2) the resulting image will have an intensity
distribution Bg(?) given by:

By(F )= H (7 )exp{2nig o7 }+ H ,(7 ) exp {-2mg+ ]
©)

Itiseasy to show that for areal image, I(r):
Ho(F)=H. () ©

and therefore Equation (5) becomes:

Bo(F )~ 2R H (7 Jexp{2mig o7 )]

where e denotes the real part. Writing Hg(f) in terms of
amplitude and phase, using Equation (3), we obtain the
following result:

Be(F ) =2 4g(F Jcos{2ng o7 + P, (7))} ©

Thisequation wasthe starting point for the descrip-
tion of the method of geometric phase analysis described
elsewherefor the study of images of nanocrystals[12]. By
calculating Hg(f) we can therefore obtain an image of the
amplitude and an image of the phase of the set of lattice
fringes asafunction of position. Amplitudeimages show
how the strength of aset of fringesg variesacrossanimage
and can berelated to variationsin, for example, thethickness
of acrystal, the composition or local orientation. They are
theHREM (high resol ution el ectron microscopy) analogue
to dark-field images in conventional TEM (transmission
€electron microscopy) and much the same effects need to be
considered in order to interpret them. There areimportant
differencestoo, for examplethefact that eveninthe case of
linear interference the fringes in an image result from the
000, g and g- beams whereas in conventional dark-field a
single beam isimaged. In this paper however we shall be
mostly concerned with the geometric phase images which
are more directly interpretable in terms of the specimen
structure.

Geometric Phase

The phaseimages show how regular a set of fringes
is across a given image, that is, how even the spacing is
between fringes and how the fringes vary from their ideal
positions. For an ideal set of fringes, the amplitude and
phase will no longer be a function of position and we can
writethat:

B.(F)=2A,cos{2nger +p,} ©)
Inthe presence of adisplacement field g, the Bragg
fringes of Equation (9) can berewritten as:

@)

Bo(F )=2 A cos{2ng o7 -2ng ®ii } (10

from which, by comparison with Equation (8), we obtain
that:

P,(T ) =-2ng eii (1)

In thisway the phase directly measures the compo-
nent of the displacement field, u, for each set of lattice
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Figure 1. Antiphase domains in long-range ordered Cu,Au: (a) HREM image in [001] projection with objective aperture
excluding the{ 200} spots(courtesy of Laurence Potez); (b) diffractogram of HREM image showing the{ 100} order spotsand

mask used for 100filtering.

planes, g. Combining theresultsfor each lattice planewill
givethevectoria displacement field. Therepresentation of
displacements in terms of a phase change is analogous to
that appearing in the kinematical scattering theory of defects
[g].

On the other hand, if the reciprocal vector, g, for a
set of lattice fringes changes by a small amount Ag then
Equation (9) for thelattice fringes becomes:

Bgﬁ)zzAgCOS{2@07+27[AgoF}

Comparing this equation with Equation (8) wefind

(12

that:

PoF )= 2a0g oF 13

In a region where the lattice spacing is slightly
different, duefor exampleto achangeinthelattice parameter,
the phase will have a uniform slope corresponding to the
difference. The greater the differencein thelattice spacing,
the steeper the dlope. Mathematically, we can see that the
gradient, VP, isgiven by:

VP, =2nAg (14
This equation allows us to measure local departures from
the averagereciprocal lattice vector directly from the phase.
Therelation is vectorial, so arotation of the lattice would
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also be revealed in a phase image and Ag would be
perpendicular tog. Equation (14) could have been derived
directly from Equation (11) as the gradient of the
displacement field givesthelocal lattice parameter.

Holographicreconstruction

Theimages Hg(f) can be obtained from the original
image in exactly the same way as a single side-band
hol ographic reconstruction except that the reference beam
istheg periodicity (and with no correction of the objective
lensaberrations, seefor example[17]). Thereasonthat the
phaseimages are called geometricisto distinguish between
the positions of fringes in the image (determined by this
method) and the actual phase of the beams emerging from
the crystal (determined by holography).

The coordinates of g arefound from the power spec-
trum of theimage, the centre of mass of theintensity inthe
peak is generally a good method for obtaining sub-pixel
accuracy. A mask is placed around the position g in the
Fourier transform of theimage and the back-Fourier transform
performed. If necessary, in order to reducethe noiseinthe
final image, themask can be smaller than the Brioullin zone
though the resolution will bereduced. Theresultingimage

H' (7) will be:

Hg'(F )= Hy(r Jexp{2mger } (1

where
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2Re[H ' (r )]= Bg(r ) (16)
Mod[H o '(F )= dg(F ) 17)
Phase[H ' (F )= P, (F )+ 2ngeF (19

The phase image Pg(f) is obtained by simple
subtraction of the phase ramp 2ng.r (followed by a
renormalisation of the phase between +m) which avoids
problemsassociated with g lying between pixelsinthedigital
transform[24].

Examplesof Phaselmages
Antiphaseboundaries

The first example of the use of the method of
geometric phase analysisistaken from astudy of antiphase
boundariesin Cu,Au[13]. Theoriginal imageisshownin
Figure l1a taken in [001] projection on a JEOL 4000FX
operating at 400kV. An objective aperture was used to
excludethe{ 200} reflectionsthus making the visualisation
of the antiphase boundarieseasier [20]. Thedigitisation of
the negativeswas carried out using aCCD (charge-coupled
device) video cameramounted abovealight box and al the
image processing presented in this paper was carried out
using routines within the software package SEMPER
(Synoptics, Cambridge, UK) [21].

Theatomsin Cu,Auformaface centred cubic lattice
and in the long-range ordered form (as we have here) the
atoms of Au are positioned at the corners of the unit cell.
Lookingin[001] projectionthe{100} planesaredternatively
of pure Cu or richin Au. Forming an image with only the
{100} and {110} spots therefore reveas the positions of
the Au rich planes (or the Cu planes depending on the
thicknessand defocus). Given the symmetry of the unit cell
there are four equivalent positions for the origin of the Au
sublattice and so translation domains are formed where the
Au rich planes are all translated with respect to a
neighbouring domain.

This can be seenintheimage (Fig. 1a) where across
an antiphase boundary the 100 and/or 010 fringes are shifted
by half a fringe spacing. By Bragg filtering the origina
image using the mask shown in Figure 1b the antiphase
boundaries for the 100 planes can be seen (Fig. 2a) and
similarly for the010fringes(Fig. 2b). Theamplitudeimages
aresimilar to dark-field images using the corresponding spot
inthediffraction pattern: black linesare seen at the antiphase
boundaries (see Figs. 2c and 2d). Itis, however, the phase
images (Figs. 2e and 2f) which reveal thetrand ation domain
structure directly. Because the fringes are translated by
half alattice planefrom domain to domain the phase changes
by Tt In one domain the phase will have acertain constant
value and in the neighbouring domain the phase will be
shifted by T Inthisway the domains show up light or dark
inthe phaseimage. The 100 phase givesthe component of
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Figure 2 (on facing page). Bragg filtered, amplitude and
phase images of antiphase domains: (a) 100 Bragg filtered
image, B, (r); (b) 010 Bragg filtered image, B, (r); (c) 100
amplitudeimage, A, (1); (d) 010 amplitudeimage, A , (1),
(€) 100 phase image, P, (r); (f) 010 phase image, P, (),
black=—T1t white=tt. The difference in grey levels
corresponds to a change of Ttin the phase.

thetranglation vector in the 100 direction and the 010 phase
inthe 010 direction. Theresultscan therefore be combined
to give amap of the translation domain structure (Fig. 3).
Such an image with four grey levels corresponding to the
four tranglation domains was obtained by adding half the
010 phase to the 100 phase image.

Displacement fieldsar ound dislocationsin silicon

The previous example showed how changing the
absolute value of the phase movesthefringesintheimage.
The next example shows how a displacement field can
produce a continuous variation in the phase. Figure 4a
shows a high resolution image of a3 boundary in silicon
taken at 200 kV on a JEOL 200CX along [01] (courtesy of
Jean-Luc Putaux). Itisnot the boundary itself whichis of
interest here but the edge dislocation located at the step in
the centre of theimage. The Bragg filtered image using the
mask shown intheinset showsthe presence of the additional
plane (Fig. 4b) but the displacement field is not directly
measurable. For thisweneed the 111 phaseimage (Fig. 4c).

According to simple elastic theory the component,
u, of the displacement field parallel to the Burgers vector
for thelattice planes, g, around an edge dislocationisgiven

by:
sin24
4(1-v)

2
ug:*”(g+
dy

where dg isthe spacing of the planes, 0 the anglewith respect
to the dislocation corein cylindrical coordinates, and v the
Poisson constant for the material [6]. In thisprojection the
111 fringes are perpendicular to b and therefore using
Equation (11) we can seethat:

J (19)

Pi(r )=-27 g, %u (20)
2z
T Ul (21
111
since g,,,=1/d,,,. Inthe example shown, b,,,=d ., and by

substituting u,,, from Equation (19) into Equation (21) the
following result can be obtained:
sin 26
P r)=-0- 2
111 F ) 4 (] _ V)
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Figure3. Trandation domain structure. Thefour grey levels
correspond to a particular translation domain. |mage was
calculated using theformulaP, , (r)+1/2P, (7).

The phase image therefore has a discontinuity at
the dislocation core and elsewhere varies linearly with the
angle 6, to afirst approximation, given that the second term
is much smaller than the first. This point discontinuity,
seen in the phase image (Fig. 4c) should not be confused
with the discontinuous line where the phase changes
abruptly from—rt(black) to rt(white). Thelatter istheresult
of normalising the phase between these two values and
should not beinterpreted as adiscontinuity in the structure.
For example, adding a constant phase to the image would
change the location of the transition. To reveal the second
termin Equation (22) thefirst term has been removed from
the phase image by adding 6 to P, (r) as shown in Figure
4d. Mesasuring v from thisimage gives avalue of 0.3+0.1
which is not surprising but nevertheless gives an inde-
pendent indication of the validity of the interpretation of
the phasein terms of displacement fields.

The appearance of a discontinuity in the phase at a
dislocation core can be understood in another way. The
component of the Burgers vector, b, for a set of planes g
obeysthefollowing relation:

ILAug'c_il =bg

where dl is a segment on the loop L containing the
dislocation [6]. Using Equation (11) wefind that:

ILKPg.C_l;l =2nr

23)

24
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wherenisthe number of extraplanesand bg = ndg. Theleft
hand side of the equation can only be non-zero in the
presence of discontinuities and hence a discontinuity must
be present at the dislocation core. In this case integrating
the 111 phase gradient around the discontinuity gives 21t
and hence a single addition plane is present. The next
example shows that fractional Burgers vectors can also be
detected and measured using the phase.

Figure 5a shows the high resolution image of a
dissociated dislocation in silicon. Taking the same set of
111 planes as before, the phase image can be produced
(Fig. 5b). Herewe seethat the global Burgers vector isthe
same because integrating around a closed loop described
in Equation (24) gives 21t We can remove the associated
displacement field by subtracting 6 (the angle with respect
to dislocation core) from the phase image (Fig. 6a). The
dissociated dislocation is now represented by a line
discontinuity in the phase. Thisisshown more clearly by
extracting a section across the dislocation (Fig. 6b) and
then taking the average line profile (Fig. 6¢). The
discontinuity is measured from the height of the step inthe
phase at the mid-point according to Equation (21) and gives
arelativedisplacement of thefringes of 0.64+0.04 111 planes
(equivalent to 0.20+0.01 nm). The error is due to the
uncertainty with which the phase can be extrapolated in the
vicinity of the discontinuity. This result isin accordance
with the expected value of n of 2/3, or —1/3. In exactly the
same way rigid body displacements across grain bound-
aries can be measured using this technique [11].

Carbon nanotubes

An illustration of the use of the phase images to
mesasure changesin thereciprocal | attice vector can befound
in the next example taken from a study of carbon nano-
tubes. Figure 7ashows ahigh resolution image of amulti-
shell carbon nanotubetaken onaTOPCON 002B microscope
(TOPCON, Paramus, NJ) operating at 200kV (courtesy of
Pulickel Ajayan). Theimage correspondsclosely toaslice
through the structure, the horizontal fringes marking the
outer edges of the individual cylinders of graphene [15].
The phaseimage shown in Figure 7b was formed using the
mask marked in the inset. At first sight the 0002 fringes
seem quite regular with the phase remaining constant the
full length of thetube. Indeed, the phase doesremain almost
constant across the tube but along the tube there is a
significant variation, as shown by the averaged phase profile
also marked on Figure 8b. The phaseformsan approximate-
ly v-shape pattern with a constant slope on the | eft and the
right, abruptly changing from one value to the other at the
middle. The gradient of the phase is perpendicular to the
lattice vector g ., which meansthat the changes are due to
arotation of thelattice. Using Equation (14) we can measure

Ag,,,, ad hencetherotationwhichin this caseis 1.4+0.1°.
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Figure4. Displacement field around an edge dislocation in silicon: (2) HREM imagein [01] projection of a3 boundary with
associated dislocation (courtesy of Jean-L uc Putaux) diffractogram and 111 mask shownininset; (b) 111 Bragg filtered image,
B,,,(r); (c) 111 phaseimage, P, (r), black=—rtwhite=Tt, (d) modified 111 phaseimage, P, +6, thusreveding thesin 26 termin
Equation (22), black=—174 white=Tv4.

The advantage of the phaseimages over the use of selected

area diffractograms is that the accuracy of the measure is Accuracy, Noiseand SystematicErrors

easy to calculate and comes directly from the measurement

of thegradient of aline. Theother advantageisthat we can The question of accuracy istwo-fold. Thereisthe
seethat thetubeisrigidly bentinthe middle; thetubeisnot accuracy with which lattice fringe positions are measured
bend continuously as might have been the case. from an image using the geometric phaseimages and there
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Figureb. Dissociated didocationinslicon: (a) HREM image
in [01] projection (courtesy of Jean-Luc Putaux)
diffractogram and 111 mask shown ininset; (b) 111 phase
image, P, (), black=—mtwhite=Tt

is the accuracy with which the lattice fringe positions
correspond to the atomic plane positions in the specimen.

M easur ement of fringepositions

The effect of noise on lattice fringe positions can be
estimated using a simple argument (see Figure 8a for a
schematic representation). The complex number H (r) is
the signal we are trying to measure in the presence of a
noisen(r). Ingeneral the noise vector will bepointingina
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Figure6. Displacement field due to stacking fault: (a) 111
phaseimage after removal of displacement field dueto global
Burgers vector; (b) section of 111 phase across stacking
fault, black=—21v/3 white=2173; (c) line profile of 111 phase
across stacking fault. Discontinuity in the phase of
approximately 41v3 indicatesaval ue of n of 2/3.

random direction and can be added to the vector H (r) to
produce the measured value. We can seefrom the diagram
that the error in the amplitude AA (r) and the phase AP (r)
will both be given approximately by thesignal to noiseratio.
The error in the lattice plane position Au, is more
meaningfully expressed as a fraction of the lattice spacing
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Figure 7. Bending of carbon nanotubes: (a) HREM image
of multi-shell carbon nanotube (courtesy of Pulickel Ajayan)
diffractogram and 0002 mask shownininset; (b) 0002 phase
image, P,,.(t), and average phase profile shown as line
trace. Change in gradient of the phase gives the rigid
rotationto be 1.4+0.1°.

d, so summarizing theresults givesthe following estimates:

noise

A, (F)=] (25

signal

noise
AP \r )y ——
g (r) | signal |

(26)
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Figure8. Schematic diagramillustrating the effect of noise
which produces an error AP, in the phase P, The“signal”
is the complex vector H_ with length A and phase P, and
the “noise” is measured %y the length of the vector n_and
has random phase: (a) conditions of high signal to noise;
(b) conditions of low signal to noise.

Au 1 | noise
£—| | @)

d, 2m signal

where the degree of noise is the modulus of n (r) and the
signal ismeasured astheamplitudeA (r). It has been shown
using simulationsthat the error in measuring atomic column
positions from high resolution images of crystalsincreases
with the square root of the thickness of an amorphouslayer
covering the specimen [19]. We are now in the position to
offer an explanation. The contrast of an image of an
amorphous material, measured by the standard deviation of
the image intensities, increases approximately with the
sguare root of the thickness following simple arguments
from random statistics. For a constant thickness of crystal
the signal to noise ratio will aso follow this progression
and hencethe error, given by Equation (27).

A schematic representation of thelimiting casewhere
the noiseisamost as great asthe signal isgiven in Figure
8b. Herewe can seethat theamplitudeismuch moreaffected
by the presence of noise than the phase. We can estimate
from the geometry of thefigure that the maximum errorswill
be:

A4, (F)=100% 29
- 1

APg(r): izn (29

Au, Ziédg (30)
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Toillustrate these points, Figure 9 showstwo experi-
mental images, one where the level of noiseisfairly weak
and the other where the noise is strong. The first image
(Fig. 99) isof auniform crystal of auminum (courtesy of Uli
Dahmen). The noise to signal ratio was estimated as 0.3
which corresponds well to the standard deviation of 0.26
measured from the amplitude image, Figure 9c, and of 0.33
measured from the phase image, Figure 9e. The second
example is a Bragg filtered image of a nanocrystal of
CdS Se,  inanamorphous matrix (Fig. 9b). Thecrystal is
barely visible in the amplitude image (Fig. 9d) but clearly
visibleasan areaof uniform phasein the phaseimage (Fig.
9f) thus illustrating the robustness of the phase to the
presence of noise.

The other aspect which affects the measurement of
the position of lattice fringes is the mask used in Fourier
space to produce the phase images. The size of the mask
determines the lateral resolution, or rather, the averaging
carried out in real space. For a mask of the size of one
Brillouin zone the averaging is effectively carried out over
one unit cell. Interpreting the phase on a finer scale is
therefore without sense.

M easur ement of atomic planepositions

How closely lattice fringe positions correspond to
atomic plane positions is a more complicated question to
answer and the problems involved are specific to high
resolution electron microscopy. To begin with we shall
consider slowly varying displacement fields (slow with
respect to the size of the unit cell). If the crystal isexactly
on a zone axis and the microscope is perfectly aligned the
position of thelatticefringeswill follow exactly the atomic
plane positions. All that might change is that the phases
will al shift by exactly mwherethe contrast invertsdueto a
variation in thethickness or defocus. These circumstances
allow usto interpret the phase images directly in terms of
displacement fields in the specimen. The degree to which
these conditions apply determines the accuracy of the
measurements. In this paper, the examples given satisfy
these conditions to a good approximation, or at least suffi-
ciently for the purposes to which the phase images were
used. A more detailed analysis requires the consideration
of the following aspects:

* projector lens distortions;

® varying microscope misalignments,

* defocus variations linked with misalignements;

¢ thickness or composition variations linked with
misalignments;

e thicknessvariations linked with crystal tilt.

Theimage on the screenisamagnified but distorted
version of the image formed by the objective lens.
Fortunately, the distortions introduced by the projector
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Figure9 (onfacing page). Examplesof amplitudeand phase
images in the presence of noise: (a) HREM image of
aluminum (courtesy of Uli Dahmen) with high signal to noise;
(b) 012 Bragg filtered HREM image of a nanocrystal of
CdS, Se, , in an amorphous matrix (courtesy of Madeleine
Gandais) with low signal to noise; (c) amplitude image of
111 fringesinauminum, A, (r); (d) amplitudeimage of 012
fringesin CdS Se, ,, A,,(t); (e) 111 phase image, P, (7),
standard deviation noiseto signd ratio; (f) 012 phaseimage,
P,,,(T), area of constant phase reveals nanocrystal.

lensesarerelatively small =1% changein the magnification
acrossthe negative) and arestable[5]. Thelatter alowsthe
taking of calibrationimagesof, for example, aperfect crystal
and subseguent correction of the phase images. Lattice
parameters can be measured to an accuracy of £0.4% with
careful calibration [4].

Beam tilt or astigmatism moves | attice fringes with
respect to the atomic planes by the introduction of phase
shifts [23]. If the thickness, defocus and composition do
not change across the image, these phase shifts will be
constant and will not affect the measurement of the
displacement fields. Beam tilt can, however, vary across
theimage and is very difficult to calibrate and detect. Itis
therefore very important to try and limit its effect by, for
example, spreading out the beam aslarge as possible when
taking theimages. Experimentsneed to be carried out using
aperfect crystal to study the limitsin accuracy.

For large beam tilts the phase shifts vary with
defocus, soif theexit surfaceistilted, the positionsof fringes
will move even for a perfect crystal. Variations in the
thickness and composition will not automatically cause a
problem. For linear interference involving only one set of
equally strong +g beams, the phase shift introduced by the
misalignments should be independent of the thickness or
composition. Variationsareintroduced when lattice fringes
are produced by multiple interference, whether non-linear
or linear. The phaseshiftswill be different for the different
beams and therefore as the relative strengths vary the
resultant phase shift will be different.

The most common occurrenceis probably acombi-
nation of thicknessvariationsand crystal tilt. The positions
of latticefringeswill vary simply from geometrical consid-
erationsand this can even be used to measure the thickness
of the specimen for a known constant crystal tilt. This
effect is problematic because, as with the variations in the
misalignments, itisdifficult to detect.

A rapidly changing displacement field will not be
faithfully reproduced in the image and lattice fringes will
shift due to rapid changes in thickness and composition.
Thisis primarily because the point spread function of the
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objective lens has a certain width (for both amplitude and
phase) but also because of dynamical diffraction and
dispersion of the electron wave within the specimen. Itis
these effectswhich limit thelateral resolution of the method
morethan the size of the mask used in reciprocal space. To
be more precise, it is the lateral resolution of the simple
interpretation of the phase images which is affected.
However, there is no reason why simulations cannot be
carried out and compared with the experimental results.
Indeed, the phase images are much more suitable for
comparisons than the original image with its complex
intensity distribution. The phase images are also much
more closely related to the desired quantity — the
displacement field — and therefore the estimations of
accuracy aremuch easier to estimate. Consider, for example,
the comparison of high resolution imageswith simulations
by the use of cross-correlation coefficients and then trying
to relate the results to structure [15].

Conclusions

It has been shown how variations from an ideal
structure can be analysed using geometric phase images.
The phase images determine directly the displacement of
the lattice fringes and can be used to measure the local
reciprocal lattice vector. Under certain circumstances the
positions of the lattice fringes are a good approximation to
the positions of the atomic planes. The greatest
inaccuracies occur for either short-range structural
variations, dueto dynamical scattering and lens aberrations,
or for long-range variations, due notably to combinations
of misalignments and thickness variations. The examples
shown wereinterpreted at a medium resolution, on ascale
greater than afew lattice planes but much smaller than the
area covered by the negative. The important point is that
the use of the phase images is not restricted to the regime
where the interpretation is simplest. Simulations of phase
images can be carried out to determine the accuracy of the
measurement of the displacement fields and if necessary
compared directly with theexperimental phaseimages. Such
comparisons are much more straight forward than
comparisons of the original image with smulations. The
value of the phase images lie in the fact that they can be
used both qualitatively, to reveal important details of the
image such as dislocations, |attice rotations, or translation
domains, and quantitatively, to make measurements of
variationsin the structure such as transformation matrices,
Burgers vectors, or rigid body displacements.
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Discussion with Reviewers

K. Scheerschmidt: Will you pleasebriefly characterizethe
difference between your method and Bragg filtering widely
applied. Isthedifference characterized by theinterpretation
of the phase as geometrical phase and the resulting
conclusions?

Author: There are two aspects which are important both
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from aqualitative and aquantitative point of view. Tobegin
with, thereisadifference between Bragg filtering by placing
masks around all of the significant spots, and looking at
each of the lattice fringes in turn (the images which | call
B,(r)). MultipleBragg filtering isjust amethod of cleaning
up theimage by removing some of the noise, and isalmost
cosmetic. Looking at theindividual latticefringes, however,
reveals such things as dislocations with the undisturbed
B,(F) images showing the condition g.b = 0. It may also be
possible to see rotations more clearly. Thus qualitatively
much of the features seen in phaseimages can beread from
individual Braggfiltering (Bg(?)). However, measurement is
best carried out with the phase images -rotations via Ag,
Burgersvectorsviag.b = n/3, etc.

K. Scheer schmidt: Thereisasignificant difference between
the object wave phase and the “ geometrical phase”, which,
in principle, characterizes solely the lattice fringe shift
because of the always simultaneous recording of +g and -g
reflectionsin HREM images. Therefore the displacement
field and the change of lattice spacing can directly be
interpreted as displacements and bending of the object on
only very restricting assumptions, e.g. avoiding multiple
scattering and assuming very thin objects. In this
simplification, however, the argument of the Burgerscircuit
holds good for both the displacement and the geometric
phase. But can thisbedemonstrated in general as proposed
by your Equations (23) and (24).

Author: The conditionsfor the simpleinterpretation of the
phase images is not as restrictive as you suggest. For the
cases studies here, the underlying assumption is that all
the atoms in a particular column are displaced
simultaneously (i.e., there is no variation of the displace-
ment field over the foil thickness). Under such circum-
stances, there are strong reasons to suppose that the
wavefunction emerging from the crystal will be peaked at
thereal atomic column positions. (Seefor example, thework
on electron channeling (see e.g., [26]), or thejustifications
for the interpretation of high angle dark field images).
Dynamical scattering will greatly affect the intensities but
ismuch less likely to shift the apparent column positions.
For rapid lateral variations (<1 nm) this approximation will
break down, but simulationswould haveto becarried outin
any case given the effect of the objective lens at this
resolution. Nevertheless, more work hasto be carried out
to define the lateral resolution to which the phase images
can be reliably interpreted. For the point concerning the
Burgers circuit, | think it could be shown generally. The
integration around aclosed loop must be zero in the absence
of point discontinuities. Only under very special
circumstances would the thickness of the specimen have a
point discontinuity (a ledge or thickness contour would
give aline discontinuity). The same would apply to bend
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contours.

K. Scheer schmidt: Duetothedasticfar field theinformation
of extended defectsislocated closely around thereflections.
May this be the reason that Bragg filtering yields much
better resultsthan expected by considering non-overlapping
Brillouin zones?

Author: Information at medium resolution (between 1 and
20 nm) is, asyou say, located around the Bragg reflections
andisthereforedirectly availablein theamplitude and phase
images. The information has always been present in the
HREM images but has been largely unexploited (because
of problemswith extracting theinformation). Therearemany
problems for which the important variations in structure
occur over theselength scales. For certain cases, all of the
information iscontained in one Brillioun zone, no matter the
resolution limit. Compositional variations occurring on a
fixed lattice is an example. This is not strictly true for
distortions of a lattice but it is reasonable to assume that
themajority of theinformation residesin one Brillouin zone.

N. Bonnet: | appreciate very much thiswork and consider
that the way the Fourier phase is exploited for obtaining
information (lattice distortion, ...) in the real spaceisvery
innovative. It was recognized for a long time that the
amplitude spectrum contained only a part of the total
information, but few attemptswere made for exploiting the
phase spectrum. Do you think thisoriginal approach could
be extended (with necessary variations) to non-periodic
objects?

Author: The phase method works especially well when
analysing variations which can be described as a modu-
lation of aset of fringes, i.e., wherethelocal reciprocal lattice
vector doesnot differ greatly from the average |l attice vector
g. Analysing non-periodic objects such asgrain boundaries
isthereforepossibleif there are common Bragg reflections.
| am currently working onwaysof analysinginterfaceswhere
the Bragg reflections are not continuous. Another type of
non-periodic object which hasbeen treated isananocrystal
(see[12]). However, if by non-periodic objects you mean
“ordinary” images with no obvious lattice fringes, thereis
no immediate way that | can see of extending the method
though it may, as you suggest, give interesting results.

N. Bonnet: | would like to address some questions of
terminology. Firgt, | think it should be stated that the method
you use (and which you call “ single side-band holographic
reconstruction”) can be related to what is called “ Gabor
filtering” in the image processing community. The aim of
Gabor filters (Gaussians modul ated by sinesand cosinesin
the real space) is precisely to obtain the local amplitudes
and phases (at the given central frequency of a band-pass
filter). Inthiscontext, youwrite (in*Measurementsof fringe
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positions”) that the size of the mask determines the
resolution. What about the shape of the mask? Did youtry
to see if any difference occurs when replacing the disc-
shaped mask by a Gaussian mask (Gabor filter)?

Author: Themethod can, indeed, berelated to Gabor filtering
where the creation of local images of Hg'(f) are a special
case. Following your suggestion | have included a short
section in alater paper on the phase method [9]. Alsoin
that paper, Gaussian shaped maskswere experimented with
having astandard deviation of g/4. Qualitatively, thenoise
is reduced by using Gaussian filters and there are less
spurious fringes. The lateral resolution of the images has,
however, been reduced. The important point is that for
quantitative results at lateral resolutions of lessthan 1 nm
theresultsmust, inany case, be compared with smulations.
The shape of the mask does not then matter if an identical
mask isused for both the experimental and simulated images.

Additional Reference
[26] Van Dyck D, Op de Beeck, M (1992) Direct
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