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Abstract

Phase and amplitude images have been
reconstructed from data collected in a scanning
transmission x-ray microscope by applying the method of
Wigner-distribution deconvolution. Thisrequired collecting
coherent microdiffraction patterns at each point of a two-
dimensional scan of an object and then deconvolving the
four-dimensional Wigner-distribution function of the lens
from the data set. The process essentialy analyses the
interference which occursin the microdiffraction plane and
which modulates as the object is scanned. The image-
processing steps required to deconvolve experimental data
are described. These steps result in the reconstructions of
diffraction-limited phased images, to aspatia-frequency cut-
off of 1/45 nm™. The estimated accuracy of theimagesis
0.05rad in phase and 10% inamplitude. Datawere collected
at an x-ray wavelength of 3.1 nm.
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Introduction

Wigner-deconvolution phase-retrieval microscopy
isanew techniquefor retrieving the phase and amplitude of
transmission microscope images (Rodenburg and Bates,
1992; Bates and Rodenburg, 1989). Thistechnique can be
employed in a microscope of either the scanning or
conventional geometry and allows the formation of
superresolved images (Rodenburg and Bates, 1992; Nellist
and Rodenburg, 1994). The phase-retrieval and
superresolution characteristics of the technique have been
demonstrated in scanning transmission microscopes that
utilise visible light (McCallum and Rodenburg, 1992),
electrons (Rodenburg et al., 1993; Nellist et al., 1995), and
soft x-rays (Chapman, 1996). Inascanning microscopethe
method requires collecting a two-dimensional micro-
diffraction pattern (acoherent convergent beam diffraction
pattern) at each point in atwo-dimensional scan. Theability
to retrieve the phase can be interpreted as a self-interfero-
metric process, wheretwo beamstravellingin different direc-
tionsfrom the objective lens are combined at the specimen
and diffracted into a single element of a CCD (charge-
coupled device) detector. Theintensity modulation resulting
from scanning the specimen gives the rel ative phase of the
two diffracted orders. The deconvolution process separates
the contributions of all possible pairs of interfering beams.

X-ray microscopesarein use or under devel opment
inanumber of laboratoriesfor imaging wet, approximately
micrometre-thick biological specimens, and materials
characterisation, at ~50 nm resolution (Kirz et al., 1995).
Both transmission x-ray microscope (TXMs) and scanning
transmission x-ray microscopes (STXMs) exist; these are
analogous to conventional transmission (CTEM) and
scanning transmission (STEM) electron microscopes,
respectively. Scanning transmission x-ray microscopes
require ahighly coherent incident beam, which necessitates
the use of a high-brightness x-ray source such as an
undulator at a synchrotron facility. All current high-
resolution x-ray microscopes use zone platesfor the probe-
or image-forming objective. These are diffractive optical
elements made up of concentric circular zones, and the
numerical aperture, and hence the resolution, islimited by
the smallest zone width that can be fabricated. Currently,
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Figure 1. Schematic diagram of an STXM used for collecting microdiffraction data. The annular pupil of the zone plate
ensuresthat at the plane of thefirst order focus other diffracted ordersare annuli (zero and second order are shown as dashed
lines). Thus, a small aperture (the OSA) can be used to select only the first order. The position-sensitive detector was a
thinned, back-illuminated CCD. Thediagramisnot to scale: the source (the exit slit of the monochromator) islocated about
three metresfrom the zone plate, which hasafocal length of about one millimetre.

with electron-beam lithography, zone-plates below 25-nm
zone-width havebeenreported (Thiemeet al., 1994). Usually,
the mode of operation of STXMsisincoherent bright-field
imaging, wheretheimageisamap of the x-ray absorption of
the specimen. For wet biological samples, the x-ray
wavelengthisusually chosenin or near the“water window”
between the carbon and oxygen K-shell absorption edges
(that is, 4.4 to 2.3 nm) so that the contrast between carbon
and water is maximised and so that the x-rays penetrate
many micrometres of water. Other modes of imaging inthe
STXM, achieved by varying the detector type or geometry,
includedark field (Morrison and Browne, 1992; Chapman et
al., 1996), where maps of the el astic scattering are produced;
differential phase-contrast (Palmer and Morrison, 1992); and
scanning luminescence x-ray microscopy (Jacobsen et al.,
1993; von Brenndorff et al., 1995), wheretheimageisformed
from x-ray-stimulated visibleemission of adye.

Wigner deconvolution of the data set collected in
an x-ray microscopeyieldsacomplex-valued, sub-visible-
light-resolutionimage of the specimen’stransmission, which
in turn depends on the real and imaginary parts of the
refractive index of the specimen. This quantitative high-
resol ution information would be very useful in order to find
unambiguous information about the ultrastructure of a
specimen, and could offer supplemental informationto near-
absorption-edge images, where both the amplitude and
phase of the transmitted beam vary rapidly with the
wavelength and chemical environment. Accurately knowing
the complex refractiveindex of materialsin microstructures,
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such as integrated circuits or diffractive optics, would be
extremely beneficial to help diagnose or improve their
manufacture or design.

Theemphasisof thisreport ison theimage process-
ing required to extract phase maps of specimensfrom x-ray
microdiffraction datacollected in the Stony Brook STXM.
The instrumentation of the microscope is described in the
next section. In the section on “Wigner-Distribution
Deconvolution” the theory of Wigner deconvolution, as
was first put forward by Rodenburg and Bates (1992), is
briefly reviewed. The steps required to carry out the
deconvolution on thex-ray dataare explained in the section
entitled “ Deconvolving Sampled Data’, using experimental
datafromtheimaging of atransmission grating asan example.
Experimental results of non-periodic test objectsare given
in the section of “ Phase-Retrieved Image of aNon-Periodic
Object”. The phasesand amplitudesof theretrieved images
were found to be in excellent quantitative agreement with
calculated images.

TheStony Brook Scanning Transmission X-Ray
Microscope

The Stony Brook STXM operates on the Soft X-ray
Undulator beamline at the National Synchrotron Light
Source at Brookhaven National Laboratory in the USA; a
schematic diagramisshownin Figure 1. Thebeamlineand
microscope have been described elsewhere (Jacobsen et
al., 1991, 1995). Thex-ray sourceisasoft-x-ray undulator
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Figure2. (a) Measured microdiffraction pattern with no object in place. Thisisameasurement of the square of the zone-plate
pupil amplitude, JA(r") 2. The scalebar shows 10 umrt. (b) Measured pattern with agroup of 0.5 um-diameter |latex spheres

in focus.

whichis spatially and temporally filtered by aperturesand
a grating monochromator (Rarback et al., 1990). The
objective lens of the microscope is a Fresnel zone plate.
This binary diffractive optical element diffracts the beam
into many focal orders. To alow only thefirst order focus,
whichisused asthe probe, to illuminate theimage plane, a
zone plate with an annular pupil is used. The far-field
diffraction pattern of each order in this case will be an
annulus, and at the plane of thefirst-order focus other orders
will beannuli. Placing asmall aperture (the order-selecting
aperture, or OSA) slightly upstream of thefirst-order focus
will block all ordersexcept for thefirst.

The zone plate used in al investigations reported
herewasfabricated using el ectron-beam lithography by Erik
Anderson, now of Lawrence Berkeley National Laboratory
Andersonand Kern, 1992). 1t was90 umindiameter, witha
40-um-diameter central stop, and had an outer zone width
of 45 nm (giving amaximum image spatial frequency of 22.2
pm? for incoherent bright-field imaging at all soft-x-ray
wavelengths). The zone plate is designed to have zero
spherical aberration when used in the present beamline
configuration.

The specimen is scanned acrossthe zone plate focus
by a scanning stage that consists of aflexure stage, moved
by piezoelectric actuators, which itself is mounted on
stepper motor driven stages. Thesampleand zoneplateare
located inan air or helium environment.

69

Microdiffraction patterns are measured with a
thinned, back-illuminated CCD which directly detectsx rays,
as has been documented (Chapman et al., 1995). The CCD
used isa Sl Te chip with 512X512 pixels, spaced at 24-um
intervals. For al datacollected here the specimen planeto
CCD distancewas 75 mm. At awavelength of 3.2 nm the
pixels samplethemicrodiffraction patternat 0.10 um'.

Microdiffraction data sets are typically collected at
arate of 0.5to 1.0 s per diffraction pattern (limited by the
readout rate of the CCD), so an entire set of 64x64 patterns
may take over an hour to collect. When a new sample is
placed on the scanning stage, the sample invariably drifts
as its temperature equilibrates with its surroundings. It
may take an hour before the sample stabilises, but after this
time data sets can be collected without the need for drift
compensation.

For the method of Wigner distribution deconvolu-
tion, the phase and amplitude of the microdiffraction pattern
of thezone plate (i.e., the zone-plate pupil function) must be
accurately known, asis explained in the next section. The
square of the pupil amplitude can easily be measured, and it
isfound that there are high-spatial-frequency radial errors
of high contrast acrossthe pupil (see Figure 2). Thesehave
been attributed to errors in the placement of the zones of
the zoneplate (Chapman et al., 1995; Tejnil et al., 1996). In
this case there would be a corresponding pupil phase error.
For thiswork it was assumed that the pupil phase was zero.
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Figure 3. (a) One microdiffraction pattern from a data set of a transmission grating object, shown on linear (top) and
logarithmic (bottom) greyscales. Each diffracted order of the grating givesriseto apupil function, and interference between
the pupil functions can be seen. The data were recorded at an x-ray wavelength of 3.1 nm. The grating is actually part of
another zone plate, although it isexamined in only asmall field in which the zones appear straight The data set consisted of
aone-dimensional scan of 128 samplesin real space, spaced by 22.0 nm. Each microdiffraction pattern consisted of 128x128
sampleswith Ar’ = 0.4 umrt. (b) Coherent bright-field images extracted from the dataset: (i) fromasingle CCD pixel receiving
Oand +1 orders; (ii) fromapixel receiving only 0 and +2 orders; and (iii) from aregion inthe O order that doesnot interferewith
higher orders. Theimages have been displaced by oneintensity unit for clarity. The pixel positionsfrom which the coherent

imageswereextracted arelabelledin ().

Alternatively, Wigner distribution deconvolution can be
used to retrieve the pupil phase, as has been demonstrated
(Chapman, 1996).

Wigner-Distribution Deconvolution

TheMicrodiffraction Data Set

Inthefollowing description the notation isused that
primed coordinates are defined in reciprocal space and non-
primed coordinates are defined in real space. Two-
dimensional vectors are written asr = (r,, r,). A two-
dimensional Fourier transform will imply forward
propagation and an inverse transform will imply backward
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propagation.

Consider afocussed probeformed by thefirst-order
diffractionfrom an annular zone plate. The probe function
will be given by the Fourier transform of the pupil function,
and thefar-field diffraction pattern of the probewill be given
by the Fourier transform of the probe. We define the pupil
function of thelenssuch that itsfar-field diffraction pattern,
measured in the microdiffraction plane, is given by A(r").
The maximum spatial frequency for which A(r") isnon-zero

isgiven by r'ZP =NA/A, whereNA isthe numerical aperture
of the zone plate and A isthe x-ray wavelength. The focal
distribution of the zone plate is then given by the inverse
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Figure4. Schematic of diffraction by an objectinthe STXM. Inthisdiagramitisassumed that acomplex sinusoidal grating
diffractslight only into zero and +1 orders. If the period islarge enough so that the orders are separated by nomorethan 2r',,
then the diffracted pupil functions will overlap in the microdiffraction plane. A detector element in the region of overlap
receives light that has travelled along two paths. Thisis actually a phase-shifting interferometer, where the phase shift is
introduced by scanning the grating. The two paths are shown as the thick solid and thick dashed lines.

Fourier transform of A,

ar) =3, {A(r")} =[Ar )exp(erir'l)dr’ (1)
A specimen with complex transmission Y(r) is situated in
thefocal plane and scanned in that plane. At agiven point
in the scan the sampleis displaced from the optical axisby
a two-dimensional vector -x. The x-ray wave-field
immediately behind the specimen will then be given by
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a(r)y(r+x), and theintensity at thefar-field microdiffraction
plane, whichisthemodulus squared of the Fourier transform
of thiswavefield, can then be expressed as

m(r' x) =01 A(r'-s) W(s) exprisyds[? (2

where W isthe Fourier transform of Y, and the convolution
integral iscarried out over the entire microdiffraction plane;

s isthevariable of integration.
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Figure5. Theamplitude of threer'-planes of thedistribution M (r’ x"), for (a) Lk'[1=0, (b) [X'[J=6.85um™*, and (c) [(X'[]=
10.3 unrt, showing the interference which occurs at these particular spatial frequencies asthe grating is scanned, (b) shows
the strong interference which occurs between the 0 and +1 orders, and the 0 and —1 orders, whereas. The results of

deconvolving with the distribution A(r")A* (r'+x") are shown in (d), (e), and (f). All images are displayed on alinear grey

scale, but each has been individually scaled.

Scanning micr oscopy asphase-shifting interferometry

The intensity m(r',x) for constant x is a single
microdiffraction pattern, recorded as a single frame of the
CCD. Equation (2) shows that the convergent beam is
diffracted by the object so that apupil function A(r") islaid
down at the microdiffraction plane, centred at each
diffraction order of the specimen, and is multiplied by the
complex amplitude of that diffraction order, W(s'). Each
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pupil function will also bemultiplied by the* scanning phase
factor”, exp(2ms[®), which is the phase shift induced in
the diffracted beam due to the displacement of the object
by x. It is this scanning factor which provides the link
between the real and reciprocal spacesand which provides
the strong symmetry that exists in the data set between
thesetwo spaces (Chapman, 1996). Inreal space, the object
Y(s) can be decomposed into complex sinusoidal gratings.
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Thegrating of period 1/s hasacomplex amplitude W(s)ds'
and diffractsradiationintotheorder at s’ in reciprocal space.
If the grating is shifted then the diffracted order will change
phase accordingly. A shift by one period will change the
phase of the order by 21t Hence, a shift of the object by a
vector —x will change the phasesin al orders by different
amounts, and the phase imposed on the order at s' will be
exp(2ris[¥).

The phase changes of the diffracted orders would
have no effect on the measured intensity unless the orders
may interfere with one another. The convergent beam
illumination allowsthisto happen: two pupil functionslaid
down at two diffraction orders separated by Ar’ will overlap

if UAr'[I<2r'_, asisthecasein Figure3a. Astheobjectis
scanned (i.e., as x is changed) the phases of the two orders
will change, as described by the “scanning phase factor”,
and an intensity modulation will occur. The spatial
frequency, x', of this modulation will be the difference of
thefrequencies of the two scanning phase factors, whichis
exactly Ar', the difference of the reciprocal vectors of the
two orders. For the example of the transmission grating
given above, the interference between the first order and
zero order will modulate at thefirst-order frequency, aswill
the interference between the first and second orders. A
coherent image formed by plotting the intensity recorded
by a detector pixel in the overlap region between the zero
andfirst orders, asafunction of x, will beacosinefunction
of exactly thefirst-order frequency. Such acoherentimage
from the experimental datasetisshownin Figure3b(i). The
imageisin fact the output of aphase-shifting interferometer
drawn schematically in Figure4. The phaseof theintensity
modul ation depends on the phase of the object’sfirst order
diffracted wavefield relativeto thezero order. It also depends
on the relative phase of the two points in the pupil which
the two beams passed through. Thus, if there is no phase
variation acrossthe pupil, or the pupil phaseisknown, then
the phase of the object’sfirst order can befound relative to
itszero order.

Theseparability of thelensand aobject functions

Inthe examplegivenin Figure 3it wasclear exactly
which two diffraction orders caused the observed
interference. For ageneral non-periodic object, theintensity
a agiven pixel inthemicrodiffraction detector will beusualy
caused by theinterference of many diffraction frequencies
(the coherent image formed from this detector pixel will be
complicated and contain many frequencies). In this case
each frequency, X', of the observed interference may be due
to many different pairs of diffraction orders. However, as
was seen above, each frequency of interferenceat any given
detector pixel canonly bedueto pairsof object frequencies
whichdiffer by Ar’ =x'. Theinterference dueto any given
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pair of these frequencies will be distributed across the
detector inavery specific area, namely theregion of overlap
of the two interfering pupils. Therefore, if we decompose
the intensity recorded at each detector pixel into its spatial
frequencies{x'}, wewill observeinr’-space, for aconstant
x" only the areas of overlap of pupil functions which are
separated by x'. The pupil overlap function will be exactly
the same shapefor all these pairsof frequencies. However,
the position of an overlap function in the r'-plane depends
on which pair of object frequencies gaverisetoit. Thus,
the distribution formed by taking the Fourier transform of
the data set with respect to the scanning coordinate,
M@ X) =5, {m(r' x)} ®
will be, for each x', given by the convolution of a specific
pupil overlap function with all pairs of object frequencies
whichdiffer by x'. Thisfactisstrikingly illustrated in Figure
5, whereplanesof M(r’ x") for constant x" are shown for the
transmission grating dataset. The value of X' in Figure5h
is the first-order frequency of the grating, and it can be
seen that specific frequencies of the scanned image are
confined to particular regions of the microdiffraction plane.
Specificaly, it can be shown (Rodenburg and Bates,

1992; Chapman, 1996) that the distribution M isgiven by

M(rl'xl) — [A(rI)A*(rI_'_XI)] Drr[w(rl)w*(rr_xl)] (4)

where [ " represents 2-d convolution with respect to ther’
coordinate. The distribution A(r")A'(r'+x') is the pupil

overlap function which isnon-zero only in the intersection
between two pupil functions separated by x'.
Deconvolvingthedata set

If Aiswell known then the pupil overlap function of
Equation (4) can be computed and deconvolved from each
r'-plane of M(r',x"). Deconvolution involves Fourier

transforming the convolution to form a product, so the
processing of the data requires the step

M (r x) =g Y{M(r' x')}
=5 HACA( =D} W)W X))} B
which followsfrom Equation (4) by the convolution theorem.
The terms in Equation (5) are in fact Wigner distribution
functions (WDFs) or, more precisely, ambiguity functions
(Cohen, 1989). Thedefinition and some propertiesof WDFs
aregivenin Table 1, from which it can be seen that

M (r X') = W(r,-X)W,(r X') ©
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Figure6. Theamplitude of a2-d planeof thelocal autocorrelation distribution of the grating object’s spectrum, W(r,")W* (r,'-
x,"), found by Wigner deconvolution. Each row of thisimage isther,'=0 row of the deconvolution for each value of x,'".
Columnsof the array give displaced estimates of the complex angular spectrum of the grating. No interference can occur for
LAr'[> 22.2 um™. Theamplitudeisdisplayed hereat low contrast (gammaof 0.2).

where W, isthe WDF of functionf.

Since the WDF W, contains zeroes and regions of
low signal to noise, the deconvolution is best performed
using aWiener filter (Batesand McDonnel, 1986). That is,
an estimate, Y of the WDF of the specimen is given by

LT X)=M @I X)T(rx) @

where
T(r X)) = [Wx (r, X T/ [OW(r ) P+ @) ®

and @, isasmall constant. Fourier transforming with
1)
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respect tor will yield estimates of the relative amplitudes
and phases of pairs of object frequencies differing by x',
W)W (r'-x"), referred to as the local autocorrelation
distribution of W.

The deconvolution of the example grating data has
been carried out for eachr’-planeof M(r' x'). Theresult at
['[] is shown in Figure 5e. The two most noticeable
features of the deconvolution aretwo deltafunctions. One
islocated at r' = 0, and isthusdueto theinterference between
the zero-order and the —1 order. The other is located at
approximately [T'[1=6.85 um* andisdueto theinterference
between the +1 and zero orders. Note that since the
microdiffraction data set isreal, the transformed planes at
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Figure7. Theretrieved amplitude (a) and phase (b) of the
transmission grating, formed by phasing the interference
within the zero-order pupil.

+x" will beidentical. However, the procedure deconvolves
these planeswith pupil overlap functionswhich differ from
each other by a shift (see Eqgn. 4), so the delta function
located at r' = 0 in the deconvolution at [ X'[] = 6.85 pm*
will give the phase and amplitude of the interference
between the +1 and 0 orders.

A two-dimensional slice of the deconvolved distribu-
tion W(r')W*(r'-x") is shown in Figure 6. This plane is
formed by taking theline of each deconvolutionatr',. Itis
seen that there arethree main orders (-1, 0, and +1) and the
relative phase and amplitude of each of seven combinations
of pairs of these orders can be seen in the distribution.
(Theinterference of —1 with +1 cannot easily be observed.)
Since the grating is not perfect and does contain a
continuous set of spatial frequencies, lines can be observed
in Figure 6 where interference occurs between these
frequencies and the stronger diffraction orders. These are
the faint vertical and diagonal lines. The horizontal lines
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Table 1. Properties of the Wigner-distribution function
(WDF), W,. As defined here the distribution is formally
known as an ambiguity function, and differsfrom aWigner-
Ville distribution (Classen and Mecklenbriiker, 1980) by a
coordinate transformation and a phase term. Aswith most
space - spatial frequency distributions, the WDF isformed
by Fourier transforming a self-overlap distribution of a
function, called alocal autocorrelation distribution. For a
more compl ete description see Cohen (1989). Notethat in
the last equation, the 4D transform 3 '3, rotates the
distribution in 4-space.

W, (r ') = [ f(x) f(x+r) exp (-2rix3)dx @
=[F(r)F (r'-x') exp (2rir @')dr’
w(r x) = g W X)) = FOf(x+r) (b)
W (r-x) = §, {W(r X} = f(-x)f (-x+r) ©
W(r'x) = F AW(rx)} = F(r)F (r'-x) @

W Cr' ) = F WX} =F(OFCEX) (@)

T AE AW X =[F(r)F (r'-x') exp (2rix B )dx =W (x,r") (f)

aredueto errorsin the deconvolution (for example, duetoa
phase error on the zone-plate pupil) and occur in planes of
constant X' where there is high power.

The complex spatial-frequency spectrum of the
object is extracted frequency by frequency from each
deconvolved planeatr’ =0, for valuesof LIAr'LI<2r',(a
resolution of 22.2 um, or 45.0nm). Thiscan beimmediately
transformed to give the complex image as shown in Figure
7.

Deconvolving Sampled Data

Ashasbeen seenin previous sections, the measured
data set is a continuous distribution that has been sampled
in al four dimensions. The implications of this fact on
deconvolving the data set are discussed here, as well as
suggestions of what sampling intervals should be used to
record the data set. It will be assumed for this discussion
that every x- or r'-plane is sampled on a square grid with
squarepixels. Itistrivia to generaliseto gridswith different
spacings and numbers of samplesin each dimension. The
sample stage is raster-scanned and stepped by increments
Ax in the orthogonal x; and x, directions between CCD
readouts. Each microdiffraction plane is recorded by the
pixellated CCD detector. Itisassumed that each pixel detects
photonsin asquare areawith awidth the same as the pixel
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spacing. That is, thereisno dead areabetween pixels. (This
is a reasonable assumption for back illumination with x-
rays.) In some casesthe CCD pixelsare binned into square
or rectangular regions, each region giving the summation
of intensity in severa pixels. Therecorded microdiffraction
pattern isthe actual pattern integrated over square “areas”
of reciprocal space of width Ar', spaced by the same width.
The recorded pattern is therefore the convolution of the
diffraction pattern and the pixel shape, P, as

mP(r' x)=m(r' x) P (r") @)

sampled on the grid defined by

r'=Aarj; X=AX], (10)
Here,j and]j, arethetwo-dimensional indices, withN X N,
and N, X N_samples respectively. We define the index-
arrays to have integer values from —N/2 +1 to N/2 in each
dimension, where N is the number of samples in that
dimension. Thus, thereal-space origin and the zero spatial
frequency are located in the centre of the arrays.

The data sets are processed numerically using fast
Fourier transforms (FFTs) to compute the complex, discrete
Fourier transform. By the Shannon sampling theorem
(Bracewell, 1986) the set of transforms of the coherent

images, M(r' x"), is sampled in the x'-planes on the grid
X' =X}, with AX'= 1/(N AX) (11
and the maximum frequencies that can be sampled in each
dimension of the x-planesis given by
X =OXN /2= 1/(20x) (2
A similar relationship holdsfor r'max, the maximum spatial
frequency recorded in each microdiffraction plane.
Thesamplinginterval Ax can bevaried by changing
the step size of the scanning actuators, whereas Ax' can be
chosen by selecting the x-ray wavelength, the CCD-sample
distance, or the binning of detector elements on the CCD.
Inthe STXM thebest choice of thesampling intervals
depends on the desired resolution and field size of thefinal
reconstructed image, and the resolution of the zone-plate.
Given azone plate of numerical aperture)\r'zp, themaximum
frequency of modulation in the microdiffraction plane, as
the sampleis scanned, will be the maximum separation of
two intersecting pupil functions, which is 2r'ZP. The
maximum frequency, x'max, required for the scanning stage

need not be greater than 2r'ZP, sincetherewill beno datafor
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higher valuesof x'. Therefore, by Equation (12), thesmallest
scanning-stage step size would be Ax = ]J(4r'zp). By the
“stepping out” method of Rodenburg and Bates (1992),
images can be reconstructed at resolutions higher than 2r' .
by phasing interference at positionsin the microdiffraction
planeat r' > 2r',. Thechoiceof I' _ will depend on the
extent of diffracted intensity that can berecorded, whichin
turn will depend on the dynamic range of the detector and
the x-ray dose that can be tolerated by the sample. For
weakly-scattering objects, the interference will
predominantly occur within the zero-frequency pupil, so
there would not be much point in recording beyond r' =
2r'ZP. However, to achieve superresolved reconstructions
from more strongly scattering samples, considerably larger
values of r'__ should be chosen.

The number of samplesin al four dimensions will
depend on what image field is desired in a single
reconstruction. The field width of the scanning stage is
N Ax. The field width also determines the conjugate
sampling interval, since Ax' = L/(N,Ax). The number of
samplesin the CCD should be chosen so that the sampling
interval Ar' isapproximately equal to Ax'. If Ar' > Ax' then
the interval Ax" will be too small to give any appreciable
change between consecutive r'-planes. With the typical
large amplitude variations across the pupil of zone plates,
there may be arisk of aliasing if Ax" is chosen to be too
small. If, on the other hand, Ar" < Ax' then each
microdiffraction plane will be over-sampled. This may
improve the accuracy of the deconvolution, but at the
expense of collecting amuch greater amount of data.

The deconvol ution proceeds by applying the Wiener
filter of Equation (8). Thefilter isafunction of the Wigner
Distribution of the zone-plate pupil, cal culated from the pupil
overlap functions for each value of x'. Due to the large
non-uniformitiesin the amplitude of the zone-plate pupil a
direct measurement of the pupil is used rather than a
modelled function. The pupil amplitude is taken as the
squareroot of the measured microdiffraction intensity when
no objectisplaced in the beam (Fig. 2), and the pupil phase
isusually assumed to be zero. Sinceit hasnot been possible
in practiceto acquire datawith Ar" exactly equal to Ax', the
pupil intensity ismeasured on the entire CCD array without
any pixel binning (i.e., with 512X512 pixels). The actual
microdiffraction dataset isusually collected with muchless
samples per diffraction plane and the detector elements
binned into 4X4 or 8X8 groups. Therefore the pupil
measurement is over-sampled relative to the data set,
allowing pupil overlap functionsto be cal cul ated for pupil
shiftsthat are not integer multiplesof Ar'. The pupil overlap
functions are computed from the over-sampled array, with
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Figure 8. Images obtained from amicrodiffraction dataset recorded at an x-ray wavelength of 3.1 nm, for an object consisting
of agroup of latex particles. (a) Theincoherent bright-field image (white=1.0intensity transmission, black =0.3). (b) The
coherent bright-fieldimageformed at r' = (4.53, 5.44) um'%, displayed with agreyscaleranging from 0.15t0 1.3. Theamplitude
(c) and phase (d) of the retrieved complex transmission of the specimen, taken from the deconvolved WDF at r' = 0. In(c),
white=0andblack = 1.0, andin (d), white= 0.5 rad and black =—1.5 rad. The scalebar represents0.5 um.

the shift, x', for each r'-plane rounded off to the nearest
pixel value of the over-sampled array. Each product isthen
sampled onto the same grids as the experimenta data by
nearest-neighbour averaging. The calibration between the
sampling intervals of the scan and microdiffraction
coordinates is made by optimising the deconvolution of a

7

single r'-plane of M(r’,x") with a pupil overlap function
calculated for various values of x'. Generally the

optimisation procedure involves checking that the
deconvolution yields numerical results in agreement with
the summation over regions of the microdiffraction plane
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(such asover the zero-order pupil), and that the noisein the
deconvolutionisat aminimum.

For large amounts of over-sampling of the pupil
measurement relative to the data set, this nearest-neigh-
bour averaging is approximately equivalent to the
convolution of unsampled datawith the pixel shapefunction
P, of Equation (9). Therefore there is no need to make
additional corrections for the pixel shape in the
microdiffraction data set.

TheWiener filter of Equation (8) requiresavaluefor
the parameter @,. The noisier the data, the larger ¢, should
be, in order to limit theamplification of noise. Thechoiceof
the parameter is made by first optimising the deconvolution
of several r'-planesof M(r’ x').

The actual algorithm used to retrieve the phase of
images of specimens has be implemented in the IDL
programming language, which is an interpreted language
that has built-in low-level routinesfor operating on arrays.
Running onan IBM RS/6000, with 64 Mbytesof RAM, a4D
(four-dimensional) Fourier transform of a 32X32X64X64

complex array [asisneeded to calculate M(r ,x") for example]
takesapproximately 15 minutes. Transformsof larger arrays
cannot be achieved within the 64 M byte memory, so blocks
of datamust be transferred between RAM and afixed disk.
A 64* 4D transform therefore takes about 2.5 hours, instead
of 1.4 hoursaswould be expected from N log N scaling.

Phase-Retrieved |mageof aNon-Periodic Object

An example of a phase-retrieved image of a non-
periodic object is presented here to demonstrate the use of
the algorithm and itsimplementation on x-ray datacollected
inthe STXM. Theretrieved phase and amplitudeimages of
agroup of 0.5-um-diameter latex spheresisshownin Figure
8. Theimageswere generated from amicrodiffraction data
set consisting of 64X64 real-space samples at 45-nm

intervals, and 64%64 reciprocal-space samples at 0.8-pum?
intervals. Thex-ray wavelengthwas 3.1 nm, and theexit dlit
of the beamline monochromator was set to give
approximately 70% spatial coherence across the diameter
of the zone plate. The incoherent bright-field image,
Jm(r' x)dr’, is shown in Figure 8a, and one particular
coherent bright-field image is shown in Figure 8b. The
coherent image formed at each CCD detector pixel was
Fourier transformed, to form the distributionM(r',x"). Each
r'-plane of M(r',x") was deconvolved with the appropriate
pupil-overlap function, and an estimate of the transform of
the object local autocorrelation was built up plane by plane.
Theobject’scomplex angular spectrum was extracted from
the orthogonal plane at r’ = 0 (this was the only region of

high-signal data since the object’s transform is dominated
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by the zero order), and then transformed to give the complex
image shown in Figure 8c (amplitude), and 8d (phase).

Itisinteresting to note that the phaseimage displays
very little noise, whereastheretrieved amplitude image has
about the same level of noise as the coherent bright-field
image. Given that there were 454 detector samples made
within the zero-order pupil, the signal to noiseratio (SNR)
of theincoherent bright-field should be 21 timesthe SNR of
any one of the coherent bright-field images the image.
Assuming that the retrieved image does have the same noise
level as acoherent image, then the dose required to obtain
phase-retrieved imagesisal so about 21 timesthat to obtain
incoherent bright-field images at the same SNR.

A quantitative characterisation of phase-retrieval x-
ray microscopy has been carried out (Chapman, 1996) by
imaging anisolated singlelatex sphere. Inthat study it was
found that the retrieved phase was in excellent agreement
with theoretical calculations (within 5%). However,
estimates of the object’s amplitude, acquired from two
orthogonal planesof the4D deconvolved distribution, were
not in agreement. That is, the deconvolved distribution
could not self-consistently be described as a Wigner
distribution, and it was found that the reason for this was
that the estimate of the pupil phase used in thedeconvolution
was incorrect. Since the complex transmission of the
isolated sphere could be very accurately modelled, the
complex pupil function could beretrieved by deconvolving
theWigner distribution function of themodelled object from
themicrodiffraction dataset. Inthiscasethedeconvolution
gave rise to self-consistent object and pupil distributions.
In addition, a comparison of the retrieved pupil amplitude
with the measured amplitude gave information about the
mutual coherence of the beam incident on the zone plate.
Theretrieved pupil phase (i.e., the zone-plate aberrations),
the measured pupil amplitude, and the beam coherence,
completely characterised the x-ray microscope. Subsequent
deconvolutions of microdiffraction datasets collected from
test objects were found to be in good agreement with
theoretical calculations.

Summary and Discussion

The phase-retrieval method of Wigner Distribution
deconvolution, which has before been carried out using
visible light and electrons, has been successfully demon-
strated with soft x-rays. The method finds the relative
amplitude and phase of all pairs of interfering diffraction
ordersof theobject. For typical specimensexaminedinthe
X-ray microscope, zero-order diffraction dominates, and the
phase-retrieved image is obtained from the interference
occurring within the zero-order beam at the microdiffraction
plane(i.e., to aresolution of 45 nm with the zone plates used
here). The method was used to find the amplitude and
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phase of periodic and non-periodic specimens alike. The
phases of the images are retrieved at an accuracy of about
0.05 rad, and the amplitudes are found to less than 10%
from the incoherent bright-field images. (The incoherent
bright-fieldimageisextracted from the samemicrodiffraction
data set as the phase information.)

The deconvolution process is extremely robust due
to the overdetermined nature of thedataset. Intheexamples
presented here it was not necessary to accurately know the
phase of the zone plate pupil to acquire accurate phase
maps. Other instrument properties which could have
affected the ability of the reconstruction algorithm, such as
specimen drift, non-object scatter, detector inhomogeneities,
and noisein the scanning stage, were either at alow enough
level not to be important, or could be accounted for in the
mesasurements. The coherence of thex-ray beam illuminating
the zone plate was high enough (70% for light at the edge of
the zone plate interfering with light at the centre) so that
this did not have to be accounted for.

Phase-retrieval x-ray microscopy by Wigner distri-
bution deconvol ution should find much utility in accurately
determining the ultrastructure of biological and materials
science specimens. The phase information may visualise
structures that could not be seen before, or help identify
imagefeatures. Near x-ray absorption edges, wherethereal
and imaginary parts of the refractive index can vary very
strongly depending on the chemical environment, the
additional phase information will be very useful. Wigner
deconvolution microscopy aso providesaway of accurately
measuring the soft-x-ray optical constants of materials,
which are not well knowninthe 100-700 €V range, duetoa
lack of interferometersthat operate at these energies. Phase-
retrieval microscopy should aso be useful at hard x-ray
energies. At present, hard-x-ray STXMs are under
development at the new high-brightness, high-energy
synchrotrons, and Wigner-deconvolution would be a very
useful technique for the study of crystallites in such
instruments. Even though the numerical apertureof 10 keV
zone plates is extremely small, the relative phases of
diffraction peaksthat are closely separated could easily be
measured. Thismay aidintheidentification of microcrystals
in asample, or even help in the structure determination of
crystals. At the harder x-ray wavelengths, the phase shift
dominates, making the availability of an accurate phase
imaging method very important.
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