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Abstract

Phase and amplitude images have been
reconstructed from data collected in a scanning
transmission x-ray microscope by applying the method of
Wigner-distribution deconvolution.  This required collecting
coherent microdiffraction patterns at each point of a two-
dimensional scan of an object and then deconvolving the
four-dimensional Wigner-distribution function of the lens
from the data set.  The process essentially analyses the
interference which occurs in the microdiffraction plane and
which modulates as the object is scanned.  The image-
processing steps required to deconvolve experimental data
are described.  These steps result in the reconstructions of
diffraction-limited phased images, to a spatial-frequency cut-
off of 1/45 nm-1.  The estimated accuracy of the images is
0.05 rad in phase and 10% in amplitude.  Data were collected
at an x-ray wavelength of 3.1 nm.
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Introduction

Wigner-deconvolution phase-retrieval microscopy
is a new technique for retrieving the phase and amplitude of
transmission microscope images (Rodenburg and Bates,
1992; Bates and Rodenburg, 1989).  This technique can be
employed in a microscope of either the scanning or
conventional geometry and allows the formation of
superresolved images (Rodenburg and Bates, 1992; Nellist
and Rodenburg, 1994).  The phase-retrieval and
superresolution characteristics of the technique have been
demonstrated in scanning transmission microscopes that
utilise visible light (McCallum and Rodenburg, 1992),
electrons (Rodenburg et al., 1993; Nellist et al., 1995), and
soft x-rays (Chapman, 1996).  In a scanning microscope the
method requires collecting a two-dimensional micro-
diffraction pattern (a coherent convergent beam diffraction
pattern) at each point in a two-dimensional scan.  The ability
to retrieve the phase can be interpreted as a self-interfero-
metric process, where two beams travelling in different direc-
tions from the objective lens are combined at the specimen
and diffracted into a single element of a CCD (charge-
coupled device) detector.  The intensity modulation resulting
from scanning the specimen gives the relative phase of the
two diffracted orders.  The deconvolution process separates
the contributions of all possible pairs of interfering beams.

X-ray microscopes are in use or under development
in a number of laboratories for imaging wet, approximately
micrometre-thick biological specimens, and materials
characterisation, at ~50 nm resolution (Kirz et al., 1995).
Both transmission x-ray microscope (TXMs) and scanning
transmission x-ray microscopes (STXMs) exist; these are
analogous to conventional transmission (CTEM) and
scanning transmission (STEM) electron microscopes,
respectively.  Scanning transmission x-ray microscopes
require a highly coherent incident beam, which necessitates
the use of a high-brightness x-ray source such as an
undulator at a synchrotron facility. All current high-
resolution x-ray microscopes use zone plates for the probe-
or image-forming objective. These are diffractive optical
elements made up of concentric circular zones, and the
numerical aperture, and hence the resolution, is limited by
the smallest zone width that can be fabricated.  Currently,
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with electron-beam lithography, zone-plates below 25-nm
zone-width have been reported (Thieme et al., 1994). Usually,
the mode of operation of STXMs is incoherent bright-field
imaging, where the image is a map of the x-ray absorption of
the specimen. For wet biological samples, the x-ray
wavelength is usually chosen in or near the “water window”
between the carbon and oxygen K-shell absorption edges
(that is, 4.4 to 2.3 nm) so that the contrast between carbon
and water is maximised and so that the x-rays penetrate
many micrometres of water. Other modes of imaging in the
STXM, achieved by varying the detector type or geometry,
include dark field (Morrison and Browne, 1992; Chapman et
al., 1996), where maps of the elastic scattering are produced;
differential phase-contrast (Palmer and Morrison, 1992); and
scanning luminescence x-ray microscopy (Jacobsen et al.,
1993; von Brenndorff et al., 1995), where the image is formed
from x-ray-stimulated visible emission of a dye.

Wigner deconvolution of the data set collected in
an x-ray microscope yields a complex-valued, sub-visible-
light-resolution image of the specimen’s transmission, which
in turn depends on the real and imaginary parts of the
refractive index of the specimen.  This quantitative high-
resolution information would be very useful in order to find
unambiguous information about the ultrastructure of a
specimen, and could offer supplemental information to near-
absorption-edge images, where both the amplitude and
phase of the transmitted beam vary rapidly with the
wavelength and chemical environment.  Accurately knowing
the complex refractive index of materials in microstructures,

such as integrated circuits or diffractive optics, would be
extremely beneficial to help diagnose or improve their
manufacture or design.

The emphasis of this report is on the image process-
ing required to extract phase maps of specimens from x-ray
microdiffraction data collected in the Stony Brook STXM.
The instrumentation of the microscope is described in the
next section.  In the section on “Wigner-Distribution
Deconvolution” the theory of Wigner deconvolution, as
was first put forward by Rodenburg and Bates (1992), is
briefly reviewed.  The steps required to carry out the
deconvolution on the x-ray data are explained in the section
entitled “Deconvolving Sampled Data”, using experimental
data from the imaging of a transmission grating as an example.
Experimental results of non-periodic test objects are given
in the section of “Phase-Retrieved Image of a Non-Periodic
Object”.  The phases and amplitudes of the retrieved images
were found to be in excellent quantitative agreement with
calculated images.

The Stony Brook Scanning Transmission X-Ray
Microscope

The Stony Brook STXM operates on the Soft X-ray
Undulator beamline at the National Synchrotron Light
Source at Brookhaven National Laboratory in the USA; a
schematic diagram is shown in Figure 1.  The beamline and
microscope have been described elsewhere (Jacobsen et
al., 1991, 1995).  The x-ray source is a soft-x-ray  undulator

Figure 1. Schematic diagram of an STXM used for collecting microdiffraction data.  The annular pupil of the zone plate
ensures that at the plane of the first order focus other diffracted orders are annuli (zero and second order are shown as dashed
lines).  Thus, a small aperture (the OSA) can be used to select only the first order.  The position-sensitive detector was a
thinned, back-illuminated CCD.  The diagram is not to scale: the source (the exit slit of the monochromator) is located about
three metres from the zone plate, which has a focal length of about one millimetre.
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which is  spatially and  temporally filtered by apertures and
a grating monochromator (Rarback et al., 1990).  The
objective lens of the microscope is a Fresnel zone plate.
This binary diffractive optical element diffracts the beam
into many focal orders.  To allow only the first order focus,
which is used as the probe, to illuminate the image plane, a
zone plate with an annular pupil is used.  The far-field
diffraction pattern of each order in this case will be an
annulus, and at the plane of the first-order focus other orders
will be annuli.  Placing a small aperture (the order-selecting
aperture, or OSA) slightly upstream of the first-order focus
will block all orders except for the first.

The zone plate used in all investigations reported
here was fabricated using electron-beam lithography by Erik
Anderson, now of Lawrence Berkeley National Laboratory
Anderson and Kern, 1992).  It was 90 µm in diameter, with a
40-µm-diameter central stop, and had an outer zone width
of 45 nm (giving a maximum image spatial frequency of 22.2
µm-1 for incoherent bright-field imaging at all soft-x-ray
wavelengths).  The zone plate is designed to have zero
spherical aberration when used in the present beamline
configuration.

The specimen is scanned across the zone plate focus
by a scanning stage that consists of a flexure stage, moved
by piezoelectric actuators, which itself is mounted on
stepper motor driven stages.  The sample and zone plate are
located in an air or helium environment.

Microdiffraction patterns are measured with a
thinned, back-illuminated CCD which directly detects x rays,
as has been documented (Chapman et al., 1995).  The CCD
used is a SITe chip with 512×512 pixels, spaced at 24-µm
intervals.  For all data collected here the specimen plane to
CCD distance was 75 mm.  At a wavelength of 3.2 nm the
pixels sample the microdiffraction pattern at 0.10 µm-1.

Microdiffraction data sets are typically collected at
a rate of 0.5 to 1.0 s per diffraction pattern (limited by the
readout rate of the CCD), so an entire set of 64x64 patterns
may take over an hour to collect.  When a new sample is
placed on the scanning stage, the sample invariably drifts
as its temperature equilibrates with its surroundings.  It
may take an hour before the sample stabilises, but after this
time data sets can be collected without the need for drift
compensation.

For the method of Wigner distribution deconvolu-
tion, the phase and amplitude of the microdiffraction pattern
of the zone plate (i.e., the zone-plate pupil function) must be
accurately known, as is explained in the next section.  The
square of the pupil amplitude can easily be measured, and it
is found that there are high-spatial-frequency radial errors
of high contrast across the pupil (see Figure 2).  These have
been attributed to errors in the placement of the zones of
the zone plate (Chapman et al., 1995; Tejnil et al., 1996).  In
this case there would be a corresponding pupil phase error.
For this work it was assumed that the pupil phase was zero.

Figure 2. (a) Measured microdiffraction pattern with no object in place.  This is a measurement of the square of the zone-plate
pupil amplitude, A(r′) 2.  The scalebar shows 10 µm-1. (b) Measured pattern with a group of 0.5 µm-diameter latex spheres
in focus.
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Alternatively, Wigner distribution deconvolution can be
used to retrieve the pupil phase, as has been demonstrated
(Chapman, 1996).

Wigner-Distribution Deconvolution

The Microdiffraction Data Set

In the following description the notation is used that
primed coordinates are defined in reciprocal space and non-
primed coordinates are defined in real space.  Two-
dimensional vectors are written as r ≡ (r

1
, r

2
).  A two-

dimensional Fourier transform will imply forward
propagation and an inverse transform will imply backward

propagation.
Consider a focussed probe formed by the first-order

diffraction from an annular zone plate.  The probe function
will be given by the Fourier transform of the pupil function,
and the far-field diffraction pattern of the probe will be given
by the Fourier transform of the probe.  We define the pupil
function of the lens such that its far-field diffraction pattern,
measured in the microdiffraction plane, is given by A(r′).
The maximum spatial frequency for which A(r′) is non-zero

is given by r′
ZP

 = NA/λ, where NA is the numerical aperture
of the zone plate and λ is the x-ray wavelength.  The focal
distribution of the zone plate is then given by the inverse

Figure 3. (a) One microdiffraction pattern from a data set of a transmission grating object, shown on linear (top) and
logarithmic (bottom) greyscales.  Each diffracted order of the grating gives rise to a pupil function, and interference between
the pupil functions can be seen.  The data were recorded at an x-ray wavelength of 3.1 nm.  The grating is actually part of
another zone plate, although it is examined in only a small field in which the zones appear straight  The data set consisted of
a one-dimensional scan of 128 samples in real space, spaced by 22.0 nm. Each microdiffraction pattern consisted of 128x128
samples with ∆r′ = 0.4 µm-1.  (b) Coherent bright-field images extracted from the data set: (i) from a single CCD pixel receiving
0 and +1 orders; (ii) from a pixel receiving only 0 and +2 orders; and (iii) from a region in the 0 order that does not interfere with
higher orders.  The images have been displaced by one intensity unit for clarity.  The pixel positions from which the coherent
images were extracted are labelled in (a).
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Fourier transform of A,

a(r) = 
r
-1 {A(r′)} ≡ ∫ A(r′)exp(2πir′⋅r)dr′

A specimen with complex transmission ψ(r) is situated in
the focal plane and scanned in that plane.  At a given point
in the scan the sample is displaced from the optical axis by
a two-dimensional vector -x. The x-ray wave-field
immediately behind the specimen will then be given by

a(r)ψ(r+x), and the intensity at the far-field microdiffraction
plane, which is the modulus squared of the Fourier transform
of this wavefield, can then be expressed as

m(r′,x) = ∫  A(r′-s′) Ψ(s′) exp(2πis′⋅x)ds′ 2

where Ψ is the Fourier transform of ψ, and the convolution
integral is carried out over the entire microdiffraction plane;
s′ is the variable of integration.

Figure 4. Schematic of diffraction by an object in the STXM.  In this diagram it is assumed that a complex sinusoidal grating
diffracts light only into zero and +1 orders.  If the period is large enough so that the orders are separated by no more than 2r′

ZP

then the diffracted pupil functions will overlap in the microdiffraction plane.  A detector element in the region of overlap
receives light that has travelled along two paths.  This is actually a phase-shifting interferometer, where the phase shift is
introduced by scanning the grating.  The two paths are shown as the thick solid and thick dashed lines.

(1)

(2)
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Scanning microscopy as phase-shifting interferometry

The intensity m(r′ ,x) for constant x is a single
microdiffraction pattern, recorded as a single frame of the
CCD.  Equation (2) shows that the convergent beam is
diffracted by the object so that a pupil function A(r′) is laid
down at the microdiffraction plane, centred at each
diffraction order of the specimen, and is multiplied by the
complex amplitude of that diffraction order, Ψ(s′).  Each

pupil function will also be multiplied by the “scanning  phase
factor”,   exp(2πs′⋅x), which is the phase shift induced in
the diffracted beam due to the displacement of the object
by x.  It is this scanning factor which provides the link
between the real and reciprocal spaces and which provides
the strong symmetry that exists in the data set between
these two spaces (Chapman, 1996).  In real space, the object
ψ(s) can be decomposed into complex sinusoidal gratings.

Figure 5. The amplitude of three r′-planes of the distribution M(r′,x′), for (a)  x′  = 0, (b)  x′  = 6.85 µm-1, and (c)  x′  =
10.3 µm-1, showing the interference which occurs at these particular spatial frequencies as the grating is scanned,  (b) shows
the strong interference which occurs between the 0 and +1 orders, and the 0 and –1 orders, whereas.  The results of
deconvolving with the distribution A(r′)A*(r′+x′) are shown in (d), (e), and (f).  All images are displayed on a linear grey
scale, but each has been individually scaled.
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The grating of period 1/s′ has a complex amplitude Ψ(s′)ds′
and diffracts radiation into the order at s′ in reciprocal space.
If the grating is shifted then the diffracted order will change
phase accordingly.  A shift by one period will change the
phase of the order by 2π.  Hence, a shift of the object by a
vector –x will change the phases in all orders by different
amounts, and the phase imposed on the order at s′ will be

exp(2πis′⋅x).
The phase changes of the diffracted orders would

have no effect on the measured intensity unless the orders
may interfere with one another.  The convergent beam
illumination  allows this to happen: two pupil functions laid
down at two diffraction orders separated by ∆r′ will overlap

if  ∆r′  ≤ 2r′
ZP

, as is the case in Figure 3a.  As the object is
scanned (i.e., as x is changed) the phases of the two orders
will change, as described by the “scanning phase factor”,
and an intensity modulation will occur.  The spatial
frequency, x′, of this modulation will be the difference of
the frequencies of the two scanning phase factors, which is
exactly ∆r′, the difference of the reciprocal vectors of the
two orders.  For the example of the transmission grating
given above, the interference between the first order and
zero order will modulate at the first-order frequency, as will
the interference between the first and second orders.  A
coherent image formed by plotting the intensity recorded
by a detector pixel in the overlap region between the zero
and first orders, as a function of x, will be a cosine function
of exactly the first-order frequency.  Such a coherent image
from the experimental data set is shown in Figure 3b(i). The
image is in fact the output of a phase-shifting interferometer
drawn schematically in Figure 4.  The phase of the intensity
modulation depends on the phase of the object’s first order
diffracted wavefield relative to the zero order.  It also depends
on the relative phase of the two points in the pupil which
the two beams passed through.  Thus, if there is no phase
variation across the pupil, or the pupil phase is known, then
the phase of the object’s first order can be found relative to
its zero order.

The separability of the lens and object functions

In the example given in Figure 3 it was clear exactly
which two diffraction orders caused the observed
interference.  For a general non-periodic object, the intensity
at a given pixel in the microdiffraction detector will be usually
caused by the interference of many diffraction frequencies
(the coherent image formed from this detector pixel will be
complicated and contain many frequencies).  In this case
each frequency, x′, of the observed interference may be due
to many different pairs of diffraction orders.  However, as
was seen above, each frequency of interference at any given
detector pixel can only be due to pairs of object frequencies
which differ by ∆r′ = x′.  The interference due to any given

pair of these frequencies will be distributed across the
detector in a very specific area, namely the region of overlap
of the two interfering pupils.  Therefore, if we decompose
the intensity recorded at each detector pixel into its spatial
frequencies {x′}, we will observe in r′-space, for a constant

x′ only the areas of overlap of pupil functions which are

separated by x′.  The pupil overlap function will be exactly
the same shape for all these pairs of frequencies.  However,
the position of an overlap function in the r′-plane depends
on which pair of object frequencies gave rise to it.  Thus,
the distribution formed by taking the Fourier transform of
the data set with respect to the scanning coordinate,

M(r′,x′) = 
x
 {m(r′,x)}

will be, for each x′, given by the convolution of a specific
pupil overlap function with all pairs of object frequencies
which differ by x′.  This fact is strikingly illustrated in Figure

5, where planes of M(r′,x′) for constant x′ are shown for the

transmission grating data set.  The  value  of x′  in  Figure 5b
is  the  first-order frequency of the grating, and it can be
seen that specific frequencies of the scanned image are
confined to particular regions of the microdiffraction plane.

Specifically, it can be shown (Rodenburg and Bates,
1992; Chapman, 1996) that the distribution M is given by

M(r′,x′) = [A(r′)A*(r′+x′)]⊗
r
′[Ψ(r′)Ψ*(r′-x′)]

where ⊗
r
′ represents 2-d convolution with respect to the r′

coordinate. The distribution A(r′)A*(r′+x′) is the pupil
overlap function which is non-zero only in the intersection
between two pupil functions separated by x′.
Deconvolving the data set

If A is well known then the pupil overlap function of
Equation (4) can be computed and deconvolved from each
r′-plane of M(r′ ,x′).  Deconvolution involves Fourier
transforming the convolution to form a product, so the
processing of the data requires the step

M (r,x′) ≡ 
r
-1{M(r′,x′)}

= 
r
-1{A(r′)A*(r′+x′)} 

r
-1 {Ψ(r′)Ψ*(r′-x′)}

which follows from Equation (4) by the convolution theorem.
The terms in Equation (5) are in fact Wigner distribution
functions (WDFs) or, more precisely, ambiguity functions
(Cohen, 1989). The definition and some properties of WDFs
are given in Table 1, from which it can be seen that

M (r,x′) = W
a
(r,-x′)WΨ(r,x′)

(3)

(4)

(5)

(6)
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where W
f
 is the WDF of function f.

Since the WDF W
a
 contains zeroes and regions of

low signal to noise, the deconvolution is best performed
using a Wiener filter (Bates and McDonnel, 1986). That is,
an estimate, 

Ψ
, of the WDF of the specimen is given by

Ψ (r,x′) = M (r,x′) T (r,x′)

where

T(r,x′) = [W
a
*(r,-x′] / [ W

a
(r,-x′) 2 + φ

a
]

and φ
a
 is a small constant.  Fourier transforming 

Ψ
 with

respect to r will yield estimates of  the relative amplitudes
and phases of pairs of object frequencies differing by x′,
Ψ(r′)Ψ*(r′-x′), referred to as the local autocorrelation
distribution of Ψ.

The deconvolution of the example grating data has
been carried out for each r′-plane of M(r′,x′).  The result at

 x′  is shown in Figure 5e.  The two most noticeable
features of the deconvolution are two delta functions.  One
is located at r′ = 0, and is thus due to the interference between
the zero-order and the –1 order.  The other is located at
approximately  r′  = 6.85 µm-1 and is due to the interference
between the +1 and zero orders.  Note that since the
microdiffraction data set is real, the transformed planes at

Figure 6. The amplitude of a 2-d plane of the local autocorrelation distribution of the grating object’s spectrum, Ψ(r
1
′)Ψ*(r

1
′-

x
1
′), found by Wigner deconvolution.  Each row of this image is the r

2
′=0 row of the deconvolution for each value of x

1
′.

Columns of the array give displaced estimates of the complex angular spectrum of the grating.  No interference can occur for
 ∆r′  > 22.2 µm-1.  The amplitude is displayed here at low contrast (gamma of 0.2).

(7)

(8)
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±x′ will be identical.  However, the procedure deconvolves
these planes with pupil overlap functions which differ from
each other by a shift (see Eqn. 4), so the delta function
located at r′ = 0 in the deconvolution at  x′  = 6.85 µm-1

will give the phase and amplitude of the interference
between the +1 and 0 orders.

A two-dimensional slice of the deconvolved distribu-
tion Ψ(r′)Ψ*(r′-x′) is shown in Figure 6.  This plane is

formed by taking the line of each deconvolution at r′
2
.  It is

seen that there are three main orders (–1, 0, and +1) and the
relative phase and amplitude of each of seven combinations
of pairs of these orders can be seen in the distribution.
(The interference of –1 with +1 cannot easily be observed.)
Since the grating is not perfect and does contain a
continuous set of spatial frequencies, lines can be observed
in Figure 6 where interference occurs between these
frequencies and the stronger diffraction orders.  These are
the faint vertical and diagonal lines.  The horizontal lines

are due to errors in the deconvolution (for example, due to a
phase error on the zone-plate pupil) and occur in planes of
constant x′ where there is high power.

The complex spatial-frequency spectrum of the
object is extracted frequency by frequency from each
deconvolved plane at r′ = 0, for values of  ∆r′  ≤ 2r′

ZP
 (a

resolution of 22.2 µm-1, or 45.0 nm).  This can be immediately
transformed to give the complex image as shown in Figure
7.

Deconvolving Sampled Data

As has been seen in previous sections, the measured
data set is a continuous distribution that has been sampled
in all four dimensions.  The implications of this fact on
deconvolving the data set are discussed here, as well as
suggestions of what sampling intervals should be used to
record the data set.  It will be assumed for this discussion
that every x- or r′-plane is sampled on a square grid with
square pixels.  It is trivial to generalise to grids with different
spacings and numbers of samples in each dimension.  The
sample stage is raster-scanned and stepped by increments
∆x in the orthogonal x

1
 and x

2
 directions between CCD

readouts.  Each microdiffraction plane is recorded by the
pixellated CCD detector.  It is assumed that each pixel detects
photons in a square area with a width the same as the pixel

Figure 7. The retrieved amplitude (a) and phase (b) of the
transmission grating, formed by phasing the interference
within the zero-order pupil.

Table 1. Properties of the Wigner-distribution function
(WDF), W

f
.  As defined here the distribution is formally

known as an ambiguity function, and differs from a Wigner-
Ville distribution (Classen and Mecklenbrüker, 1980) by a
coordinate transformation and a phase term.  As with most
space - spatial frequency distributions, the WDF is formed
by Fourier transforming a self-overlap distribution of a
function, called a local autocorrelation distribution.  For a
more complete description see Cohen (1989).  Note that in
the last equation, the 4D transform 

x
-1

r
 rotates the

distribution in 4-space.

W
f
 (r,x′) ≡ ∫ f*(x) f(x+r) exp (-2πix⋅x′)dx

= ∫F(r′)F*(r′-x′) exp (2πir⋅r′)dr′

w
f
(r,x) ≡ 

x
-1{W

f
(r,x′)} = f*(x)f(x+r)

w
f
*(r,-x) = 

x
 {W

f
(r,x′)} = f(-x)f*(-x+r)

W
f
(r′,x′) ≡ 

r
 {W

f
(r,x′)} = F(r′)F*(r′-x′)

W
f
*(-r′,x′) = 

r
-1 {W

f
(r,x′)} = F*(-r′)F(-r′-x′)

x
-1

r
{W

f
(r,x′)}=∫F(r′)F*(r′-x′) exp (2πix⋅x′)dx′=W

f
(x,r′)

(a)

(b)

(c)

(d)

(e)

(f)
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spacing.  That is, there is no dead area between pixels.  (This
is a reasonable assumption for back illumination with x-
rays.) In some cases the CCD pixels are binned into square
or rectangular regions, each region giving the summation
of intensity in several pixels.  The recorded microdiffraction
pattern is the actual pattern integrated over square “areas”
of reciprocal space of width ∆r′, spaced by the same width.
The recorded pattern is therefore the convolution of the
diffraction pattern and the pixel shape, P, as

mp(r′,x) = m(r′,x) ⊗  P (r′)

sampled on the grid defined by

r′ = ∆r′j
r
;            x = ∆xj

x

Here, j
r
 and j

x
 are the two-dimensional indices, with N

r
 × N

r

and N
x
 × N

x
 samples respectively. We define the index-

arrays to have integer values from –N/2 +1 to N/2 in each
dimension, where N is the number of samples in that
dimension.  Thus, the real-space origin and the zero spatial
frequency are located in the centre of the arrays.

The data sets are processed numerically using fast
Fourier transforms (FFTs) to compute the complex, discrete
Fourier transform.  By the Shannon sampling theorem
(Bracewell, 1986) the set of transforms of the coherent
images, M(r′,x′), is sampled in the x′-planes on the grid

x′ = ∆x′j
x
, with ∆x′= 1/(N

x
∆x)

and the maximum frequencies that can be sampled in each
dimension of the x-planes is given by

x′
max

 = ∆x′N
x
/2 = 1/(2∆x)

A similar relationship holds for r′
max

, the maximum spatial
frequency recorded in each microdiffraction plane.

The sampling interval ∆x can be varied by changing
the step size of the scanning actuators, whereas ∆x′ can be
chosen by selecting the x-ray wavelength, the CCD-sample
distance, or the binning of detector elements on the CCD.

In the STXM the best choice of the sampling intervals
depends on the desired resolution and field size of the final
reconstructed image, and the resolution of the zone-plate.
Given a zone plate of numerical aperture λr′

ZP
, the maximum

frequency of modulation in the microdiffraction plane, as
the sample is scanned, will be the maximum separation of
two intersecting pupil functions, which is 2r′

ZP
.  The

maximum frequency, x′
max

, required for the scanning stage

need not be greater than 2r′
ZP

, since there will be no data for

higher values of x′.  Therefore, by Equation (12), the smallest

scanning-stage step size would be ∆x = 1/(4r′
ZP

). By the
“stepping out” method of Rodenburg and Bates (1992),
images can be reconstructed at resolutions higher than 2r′

ZP

by phasing interference at positions in the microdiffraction
plane at r′ > 2r′

ZP
.  The choice of r′

max
 will depend on the

extent of diffracted intensity that can be recorded, which in
turn will depend on the dynamic range of the detector and
the x-ray dose that can be tolerated by the sample.  For
weakly-scattering objects, the interference will
predominantly occur within the zero-frequency pupil, so
there would not be much point in recording beyond r′ =
2r′

ZP
.  However, to achieve superresolved reconstructions

from more strongly scattering samples, considerably larger
values of r′

max
 should be chosen.

The number of samples in all four dimensions will
depend on what image field is desired in a single
reconstruction.  The field width of the scanning stage is
N

x
∆x.  The field width also determines the conjugate

sampling interval, since ∆x′ = 1/(N
x
∆x).  The number of

samples in the CCD should be chosen so that the sampling
interval ∆r′ is approximately equal to ∆x′.  If ∆r′  ∆x′ then

the interval ∆x′ will be too small to give any appreciable

change between consecutive r′-planes.  With the typical
large amplitude variations across the pupil of zone plates,
there may be a risk of aliasing if ∆x′ is chosen to be too

small.  If, on the other hand, ∆r′   ∆x′  then each
microdiffraction plane will be over-sampled.  This may
improve the accuracy of the deconvolution, but at the
expense of collecting a much greater amount of data.

The deconvolution proceeds by applying the Wiener
filter of Equation (8).  The filter is a function of the Wigner
Distribution of the zone-plate pupil, calculated from the pupil
overlap functions for each value of x′.  Due to the large
non-uniformities in the amplitude of the zone-plate pupil a
direct measurement of the pupil is used rather than a
modelled function.  The pupil amplitude is taken as the
square root of the measured microdiffraction intensity when
no object is placed in the beam (Fig. 2), and the pupil phase
is usually assumed to be zero.  Since it has not been possible
in practice to acquire data with ∆r′ exactly equal to ∆x′, the
pupil intensity is measured on the entire CCD array without
any pixel binning (i.e., with 512×512 pixels).  The actual
microdiffraction data set is usually collected with much less
samples per diffraction plane and the detector elements
binned into 4×4 or 8×8 groups.  Therefore the pupil
measurement is over-sampled relative to the data set,
allowing pupil overlap functions to be calculated for pupil
shifts that are not integer multiples of ∆r′.  The pupil overlap
functions are computed from the over-sampled array, with

(11)

(12)

(9)

(10)



Wigner deconvolution x-ray microscopy

77

the shift, x′, for each r′-plane rounded off to the nearest
pixel value of the over-sampled array.  Each product is then
sampled onto the same grids as the experimental data by
nearest-neighbour averaging.  The calibration between the
sampling intervals of the scan and microdiffraction
coordinates is made by optimising the deconvolution of a

single r′-plane of M(r′,x′) with a pupil overlap function

calculated for various values of x′ .  Generally the
optimisation procedure involves checking that the
deconvolution yields numerical results in agreement with
the summation over regions of the microdiffraction plane

Figure 8. Images obtained from a microdiffraction data set recorded at an  x-ray wavelength of 3.1 nm, for an object consisting
of a group of latex particles.  (a) The incoherent bright-field image (white = 1.0 intensity  transmission, black = 0.3).  (b) The
coherent bright-field image formed at r′ = (4.53, 5.44) µm-1, displayed with a greyscale ranging from 0.15 to 1.3.  The amplitude

(c) and phase (d) of the retrieved complex transmission of the specimen, taken from the deconvolved WDF at r′ = 0.  In (c),
white = 0 and black = 1.0, and in (d), white = 0.5 rad and black = –1.5 rad.  The scalebar represents 0.5 µm.
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(such as over the zero-order pupil), and that the noise in the
deconvolution is at a minimum.

For large amounts of over-sampling of the pupil
measurement relative to the data set, this nearest-neigh-
bour averaging is approximately equivalent to the
convolution of unsampled data with the pixel shape function
P, of Equation (9).  Therefore there is no need to make
additional corrections for the pixel shape in the
microdiffraction data set.

The Wiener filter of Equation (8) requires a value for
the parameter φ

a
. The noisier the data, the larger φ

a
 should

be, in order to limit the amplification of noise.  The choice of
the parameter is made by first optimising the deconvolution
of several r′-planes of M(r′,x′).

The actual algorithm used to retrieve the phase of
images of specimens has be implemented in the IDL
programming language, which is an interpreted language
that has built-in low-level routines for operating on arrays.
Running on an IBM RS/6000, with 64 Mbytes of RAM, a 4D
(four-dimensional) Fourier transform of a 32×32×64×64

complex array [as is needed to calculate M(r,x′) for example]
takes approximately 15 minutes.  Transforms of larger arrays
cannot be achieved within the 64 Mbyte memory, so blocks
of data must be transferred between RAM and a fixed disk.
A 644 4D transform therefore takes about 2.5 hours, instead
of 1.4 hours as would be expected from N log N scaling.

Phase-Retrieved Image of a Non-Periodic Object

An example of a phase-retrieved image of a non-
periodic object is presented here to demonstrate the use of
the algorithm and its implementation on x-ray data collected
in the STXM.  The retrieved phase and amplitude images of
a group of 0.5-µm-diameter latex spheres is shown in Figure
8.  The images were generated from a microdiffraction data
set consisting of 64×64 real-space samples at 45-nm

intervals, and 64×64 reciprocal-space samples at 0.8-µm-1

intervals.  The x-ray wavelength was 3.1 nm, and the exit slit
of the beamline monochromator was set to give
approximately 70% spatial coherence across the diameter
of the zone plate.  The incoherent bright-field image,
∫m(r′ ,x)dr′ , is shown in Figure 8a, and one particular
coherent bright-field image is shown in Figure 8b.  The
coherent image formed at each CCD detector pixel was
Fourier transformed, to form the distribution M(r′,x′).  Each

r′-plane of M(r′,x′) was deconvolved with the appropriate
pupil-overlap function, and an estimate of the transform of
the object local autocorrelation was built up plane by plane.
The object’s complex angular spectrum was extracted from
the orthogonal plane at r′ = 0 (this was the only region of

high-signal data since the object′s transform is dominated

by the zero order), and then transformed to give the complex
image shown in Figure 8c (amplitude), and 8d (phase).

It is interesting to note that the phase image displays
very little noise, whereas the retrieved amplitude image has
about the same level of noise as the coherent bright-field
image.  Given that there were 454 detector samples made
within the zero-order pupil, the signal to noise ratio (SNR)
of the incoherent bright-field should be 21 times the SNR of
any one of the coherent bright-field images the image.
Assuming that the retrieved image does have the same noise
level as a coherent image, then the dose required to obtain
phase-retrieved images is also about 21 times that to obtain
incoherent bright-field images at the same SNR.

A quantitative characterisation of phase-retrieval x-
ray microscopy has been carried out (Chapman, 1996) by
imaging an isolated single latex sphere.  In that study it was
found that the retrieved phase was in excellent agreement
with theoretical calculations (within 5%).  However,
estimates of the object’s amplitude, acquired from two
orthogonal planes of the 4D deconvolved distribution, were
not in agreement.  That is, the deconvolved distribution
could not self-consistently be described as a Wigner
distribution, and it was found that the reason for this was
that the estimate of the pupil phase used in the deconvolution
was incorrect.  Since the complex transmission of the
isolated sphere could be very accurately modelled, the
complex pupil function could be retrieved by deconvolving
the Wigner distribution function of the modelled object from
the microdiffraction data set.  In this case the deconvolution
gave rise to self-consistent object and pupil distributions.
In addition, a comparison of the retrieved pupil amplitude
with the measured amplitude gave information about the
mutual coherence of the beam incident on the zone plate.
The retrieved pupil phase (i.e., the zone-plate aberrations),
the measured pupil amplitude, and the beam coherence,
completely characterised the x-ray microscope.  Subsequent
deconvolutions of microdiffraction data sets collected from
test objects were found to be in good agreement with
theoretical calculations.

Summary and Discussion

The phase-retrieval method of Wigner Distribution
deconvolution, which has before been carried out using
visible light and electrons, has been successfully demon-
strated with soft x-rays.  The method finds the relative
amplitude and phase of all pairs of interfering diffraction
orders of the object.  For typical specimens examined in the
x-ray microscope, zero-order diffraction dominates, and the
phase-retrieved image is obtained from the interference
occurring within the zero-order beam at the microdiffraction
plane (i.e., to a resolution of 45 nm with the zone plates used
here).  The method was used to find the amplitude and
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phase of periodic and non-periodic specimens alike.  The
phases of the images are retrieved at an accuracy of about
0.05 rad, and the amplitudes are found to less than 10%
from the incoherent bright-field images.  (The incoherent
bright-field image is extracted from the same microdiffraction
data set as the phase information.)

The deconvolution process is extremely robust due
to the overdetermined nature of the data set.  In the examples
presented here it was not necessary to accurately know the
phase of the zone plate pupil to acquire accurate phase
maps.  Other instrument properties which could have
affected the ability of the reconstruction algorithm, such as
specimen drift, non-object scatter, detector inhomogeneities,
and noise in the scanning stage, were either at a low enough
level not to be important, or could be accounted for in the
measurements.  The coherence of the x-ray beam illuminating
the zone plate was high enough (70% for light at the edge of
the zone plate interfering with light at the centre) so that
this did not have to be accounted for.

Phase-retrieval x-ray microscopy by Wigner distri-
bution deconvolution should find much utility in accurately
determining the ultrastructure of biological and materials
science specimens.  The phase information may visualise
structures that could not be seen before, or help identify
image features.  Near x-ray absorption edges, where the real
and imaginary parts of the refractive index can vary very
strongly depending on the chemical environment, the
additional phase information will be very useful.  Wigner
deconvolution microscopy also provides a way of accurately
measuring the soft-x-ray optical constants of materials,
which are not well known in the 100–700 eV range, due to a
lack of interferometers that operate at these energies.  Phase-
retrieval microscopy should also be useful at hard x-ray
energies.  At present, hard-x-ray STXMs are under
development at the new high-brightness, high-energy
synchrotrons, and Wigner-deconvolution would be a very
useful technique for the study of crystallites in such
instruments.  Even though the numerical aperture of 10 keV
zone plates is extremely small, the relative phases of
diffraction peaks that are closely separated could easily be
measured.  This may aid in the identification of microcrystals
in a sample, or even help in the structure determination of
crystals.  At the harder x-ray wavelengths, the phase shift
dominates, making the availability of an accurate phase
imaging method very important.
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