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PROBE AND OBJECT FUNCTION RECONSTRUCTION IN INCOHERENT SCANNING
TRANSMISSION ELECTRON MICROSCOPE IMAGING

Abstract

Using the phase-object approximation it is shown
how an annular dark-field (ADF) detector in a scanning
transmission electron microscope (STEM) leads to an image
which can be described by an incoherent model.  The point
spread function is found to be simply the illuminating probe
intensity.  An important consequence of this is that there is
no phase problem in the imaging process, which allows
various image processing methods to be applied directly to
the image intensity data.  Using an image of a GaAs <110>,
the probe intensity profile is reconstructed, confirming the
existence of a 1.3 Å probe in a 300 kV STEM.  It is shown
that simply deconvolving this reconstructed probe from
the image data does not improve its interpretability because
the dominant effects of the imaging process arise simply
from the restricted resolution of the microscope.  However,
use of the reconstructed probe in a maximum entropy
reconstruction is demonstrated, which allows information
beyond the resolution limit to be restored, and does allow
improved image interpretation.
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Introduction

One of the useful attributes of incoherent imaging is
that there is no phase problem.  Unlike coherent imaging, in
which information is lost at the detection stage by the
inability to measure the phase of the image-plane
wavefunction, an incoherent image is a convolution between
real and positive quantities and therefore there is no phase
information to be lost.  Lord Rayleigh (1896) has discussed
how illuminating a specimen by a large incoherent source
renders the specimen effectively self-luminous, and thus
the image intensity becomes a convolution between the
object function and a point-spread function.  By reciprocity
(Cowley, 1969; Zeitler and Thomson, 1970) a large detector
in a STEM can have a similar effect.  Here we use the phase-
object approximation to show how an ADF detector leads
to incoherent imaging.

  It is often the case in transmission electron micros-
copy (TEM) that an image will consist of a region of interest,
such as a crystal defect, surrounded by bulk material of a
known structure.  The opportunity then arises of using the
bulk material to determine the point-spread function
applicable to that image, which may then be fed back in to
extract more detailed information about the object in the
region of interest.  Below we discuss how such a
reconstruction may be performed experimentally, and then
go on to use it for a Wiener deconvolution and a maximum
entropy reconstruction as examples of image processing
applications.

Incoherent Imaging from Coherent Interference

It has already been shown using the weak phase-
object approximation how coherence can be destroyed by
an ADF detector (Jesson and Pennycook, 1993).  Here we
show an alternative approach which demonstrates how the
sum in intensity over Bragg scattered beams from a
crystalline phase-object leads to incoherent image formation.
We start by determining the detector plane intensity.
Consider a plane-wave component, with wavevector k

i
,

within the probe-forming convergent electron beam (Fig. 1).
This plane-wave will have a complex amplitude given by
the aperture function, A(k

i
).
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The magnitude of A(k
i
) will be unity for beams within

the objective aperture, and zero for those outside; the phase
of A(k

i
) is the phase shift produced by the objective lens

aberrations, χ(k
i
), which is given by

χ(k
i
) = πλz|k

i
|2 + 0.5πC

s
λ3|k

i
|4

Figure 1. A schematic of the scattering geometry for
incoherent image formation from coherently scattered
beams.  In a STEM, a convergent beam diffraction pattern is
formed at the detector plane.  Where the diffracted discs
overlap, interference can occur resulting in image
information.  In the case shown above, the bright-field (BF)
detector will not be able to resolve the crystal spacing,
whereas the annular dark-field (ADF) detector will.

(1)

where λ is the electron wavelength, z is the defocus, and C
S

is the coefficient of spherical aberration.  The amplitude of
the electron probe illuminating the specimen, P(r), is then
the Fourier transform of the aperture function, A(k

i
), and

thus the exit-surface wavefunction is

P(r-R) ψ(r)

where ψ(r) is the complex specimen transmission function
and R is the location of the center of the probe.  In the
phase-object approximation, the specimen transmission
function is purely the phase function

ψ(r) = exp [iσV(r)]

where V(r) is the projected crystal potential, and σ is the
interaction constant [see Cowley (1992) for details].  For a

perfectly periodic, crystalline specimen, the Fourier
transform of Equation (3), denoted Ψ(k), consists of
discrete ä-functions whose magnitudes and phases
represent those of the corresponding Bragg beams that
would be scattered under conditions of plane-wave
illumination.

The propagation of the exit-surface wavefunction
to the detector plane can be computed by taking the Fourier
transform of Equation (2), so the intensity in the detector
plane as a function of scattered wavevector k

f
 is

M(k
f
,R) = |[A(k

f
)exp(i2πk

f
⋅R)]⊗

kf
Ψ(k

f
)|2

where ⊗ kf
 denotes a convolution with respect to k

f
.  The

product in real-space, Equation (2), forms a convolution in
reciprocal space, Equation (4), and the shift in the probe
position, R, leads to the aperture function being multiplied
by a linear phase function across reciprocal-space.  The
observed intensity in the detector plane is therefore a series
of discs, each centered on the position of where the Bragg
spot would be observed in the case of axial plane-wave
illumination.  Since the probe-position, defocus, and
aberration information is carried by the phase in each disc,
image contrast can only be observed if the discs overlap
(Spence and Cowley, 1978), as illustrated in Figure 1.

To understand the properties of the disc-overlap
region, consider the overlap between discs from the
diffracted Bragg beams g and h (Fig. 1), with the complex
amplitude, Ψ(k), of  the Bragg beams at g and h denoted by
Ψ

g
 and Ψ

h
 respectively.  Within this overlap, the detector

plane intensity, M(k
f
, R), can be written

M(k
f
,R) = Ψ

g
 2+Ψ

h
 2

          +2Ψ
g
Ψ

h
 cos[2πR⋅(h-g)+(χ(k

f
-g)-χ(k

f
-h))

               +(∠Ψ
g
-∠Ψ

h
)]

with the phase of Ψ
g
 written as ∠ Ψ

g
, and re-writing  A(k) as

the pure phase exp(iχ(k)).  The imaging information is all
carried by the cosine interference term, the argument of
which itself contains three distinct terms.  The first term of
the cosine argument shows that the intensity in all points in
the overlap region oscillates with respect to the probe
movement, at a spatial frequency given by the reciprocal
lattice vector joining the Bragg spots, (h-g).  This implies
that for many Bragg beams being detected, the contribution
to the image at a spatial frequency, ρρρρρ, is only from the disc
overlap regions between Bragg beams separated by the
two-dimensional vector, ρρρρρ.  The second term in the cosine
argument of Equation (5) contains the effects of defocus
and the lens aberrations.  The phase of the intensity
oscillation just mentioned is modified by the difference in
the phase of the two overlapping aperture functions.  What
is observed is therefore a series of fringes in the overlap

(2)

(3)

(4)

(5)
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region [see for example, Nellist et al. (1995)], whose form is
determined by defocus and the lens aberrations, and which
appear to travel as the probe is scanned.  The final phase
term in the cosine argument of Equation (5) is the phase
difference between the diffracted beams in question, and it
is this term that carries the structural information regarding
the specimen to the detector plane. In general, Rodenburg
and Bates (1992) have shown that the Fourier transform of
M(k

f
,R) with respect to R is given by a convolution between

two overlapping aperture functions and the interference
term between parts of the scattering function separated by
ρ, thus

G(k
f
,ρρρρρ) =

[A(k
f 
-ρρρρρ/2)A*(k

f
+ρρρρρ/2)]⊗ kf

[ΨΨΨΨΨ(k
f
+ρρρρρ/2)ΨΨΨΨΨ*(k

f
-ρρρρρ/2)]

We are now in a position to compare the coherent
and incoherent imaging modes. We simply integrate
Equation (6) over the relevant detector function D(k

f
), which

results in the Fourier transform of the detected image
intensity,

i(ρρρρρ) =
               ∫D(k

f 
) ∫ A(k

i 
 ρρρρρ/2)A*(k

i 
+ρρρρρ/2)Ψ(k

f 
 k

i 
+ρρρρρ/2)

 Ψ*(k
f 
 k

i 
 ρρρρρ/2)dk

i 
dk

f

where we have now written out the convolution in Equation
(6) in full, using k

i
 as the dummy variable since the

convolution arises physically from the cone of incident
wavevectors forming the probe, and the scattering is done
by the specimen from k

i
 to k

f
.

Coherent imaging requires the use of a detector
which is significantly smaller than the objective aperture
radius, such as a small axial detector for bright-field (BF)
imaging (Fig. 1), which is equivalent to nearly plane-wave
illumination in a conventional transmission electron
microscope (CTEM) by reciprocity. The detector will typically
be smaller than the fringe features in the disc overlaps, and
therefore the image intensity will be strongly dependent on
both the position of the detector and the phase of the aperture
function, as is well known in phase-contrast microscopy. In
general, the image contrast is not likely to be a direct
structure image of the object.

In contrast, incoherent imaging uses a detector
which is significantly larger than the objective aperture
radius, such as the annular dark-field (ADF) detector in
Figure 1, which is equivalent to using a large incoherent
source in conventional imaging as suggested for the light-
optical analogue situation by Lord Rayleigh (1896).  The
Fourier component of an ADF image at the spatial frequency
ρρρρρ can now be seen to be arising from the interference
between the many pairs of Bragg discs that are separated
by ρρρρρ. Mathematically we note that if the geometry of D(k

f
)

is large compared to the aperture function, we can neglect
overlaps that are intersected by the edges of the detector
allowing the integrals in Equation (7) to be separated to
form

i(ρρρρρ) =
∫A(k

i 
 ρρρρρ/2)A*(k

i 
+ρρρρρ/2)dk

i 
∫D(k

f 
)Ψ(k

f 
+ρρρρρ/2)

Ψ*-(k
f 
-ρρρρρ/2)dk

f

The ρρρρρ Fourier component is therefore the product
between a transfer function, T(ρρρρρ), which is given by the
integral in intensity over the fringes in one disc overlap,
and an object spectrum, W(ρρρρρ), which is given by the sum of
the scattering interference terms that give rise to the
interference observed by the annular detector.  The transfer
function, T(ρρρρρ), is thus the integral over the phase difference
between two overlapping aperture functions separated by
ρρρρρ,

T(ρρρρρ) = ∫A(k
f 
)A*(k

f 
+ρρρρρ)dk

f

which is identical to the autocorrelation function of A(k).
The Fourier transform of the autocorrelation of A(k) is |P(r)|2,
the probe intensity function, thus the ADF image intensity
in real-space becomes

I(R) = |P(R)|2⊗
R
O(R)

a convolution between the probe intensity and an object
function, and is the definition of an incoherent image. A
coherent image cannot be written in this form because the
range of the integral over k

f
 in Equation (7) is restricted so

that the Ψ terms are also dependent on k
i
.

An important advantage of incoherent imaging over
coherent imaging is that the resolution is doubled.  Since
the transfer, T(ρρρρρ), is the autocorrelation of A(k), it has twice
the width in reciprocal space than A(k), which can be
expressed in real-space by stating that the intensity of the
probe is narrower than the magnitude of P(r).  It can also be
seen in Figure 1 that the spacing leading to the diffracted
discs shown will not be resolvable in the BF image, because
the detector is not in an overlap region, whereas the ADF
detector will be receiving an interference signal and thus
the spacing will be resolved.

The object spectrum, O(r), is the Fourier transform
of W(ρρρρρ), which itself can be written

W(ρρρρρ) = ∫ D
ADF

(k
f
)Ψ(k

f
 + ρρρρρ/2)Ψ*(k

f
 - ρρρρρ/2)dk

f

where D
ADF

(k
f
) is the detector function and has a value of

unity for final wavevectors detected, zero otherwise.  Taking
the Fourier transform of Equation (11) can be shown to give

(6)

(7)

(8)

(9)

(10)

(11)
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O(R) = ∫ Ψ(R+c/2)ψ*(R-c/2)s(c)dc

the ADF object function.  Equation (12) is a real-space
integral over a coherence envelope, s(c), which is the Fourier
transform of the detector function; c is the dummy variable
of integration.  In the case of an infinite detector s(c) is a δ-
function, and O(r) becomes simply |ψ(R)|2, which is perfect
incoherence.  For a phase object, however, this condition
also implies no contrast since |ψ(R)|2 is unity everywhere,
which is expected since we are detecting all transmitted
electrons and the phase-object has no absorption.  In order
to see some phase-contrast we require a finite coherence
envelope, which physically means that we require some
interference within the scattered wave.  Substituting
Equation (3) into Equation (12), and assuming an ADF
detector, but neglecting the outer radius which
experimentally is usually much larger than any significant
electron scattering, gives

O(R) = 1 - ∫ h(c) cos {σ[V(R+c/2)-V(R-c/2)]} dc

where h(c) is the Fourier transform of the function describing

the hole in the detector, and using the centrosymmetry of
h(c).  Thus it can now be seen that the object function is
related to the slope of the object potential within the
coherence envelope.  As long as the width of the coherence
envelope is smaller than the projected interatomic spacing,
which can be achieved by making the inner radius
sufficiently large, then each atomic column will act as an
independent scatterer, and O(R) will be a map of atomic
columns.  Since the strength of O(R) is dependent on the
slope of the potential, the image will show a sensitivity to
atomic number, hence the name Z-contrast.

Of course Equation (13) will become more difficult
to interpret as the coherence envelope becomes compara-
ble to interatomic spacings, or as the phase argument of the
cosine function starts to become large.  Although the phase-
object is useful for illustrating how an incoherent image can
be formed, we should perhaps not worry too greatly about
its quantitative behavior because it does not take account
of the propagation through the thickness of the specimen.
However, the approach taken above can be extended to
give a coherence envelope in dynamical scattering (Nellist
and Pennycook, 1999), but the algebra is somewhat more
complicated.  It is found that the geometry of the ADF
detector is not so efficient at destroying coherence along
each atom column, so although the transverse incoherent
model of Equation (10) still holds, the object function may

Figure 2. (a) Raw image of GaAs <110>.  The intensity
profile along the area indicated, with intensities summed
across the width, is shown in (b).  The 1.4 Å “dumbbell”
spacing is resolved, and the polarity of the lattice is obvious
with the As columns forming the right-hand side of each
dumbbell.

Figure 3. The magnitude of the Fourier transform of the
image shown in Figure 2a.  The spots out as far as (004),
which is the dumbbell spacing, can be clearly seen.  There
is some evidence of the {331} spots, but these are very
close to the noise level.

(13)

(12)
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show a non-linear thickness dependence (see for example
Jesson and Pennycook, 1993).  However, the phase-object
approach taken above demonstrates the principles of how
incoherent phase-contrast can be achieved, and we now
proceed to examine how image processing methods may be
applied to incoherent TEM imaging.

Experimental Probe Function Reconstruction

In practical applications of TEM, the image often
consists of a localized region of interest, such as a crystal
defect, surrounded by relatively large regions of bulk
crystalline material.  Since the structure of the bulk material
is usually known, it is possible to use these regions of the
image to determine some imaging parameters.  A much more
rigorous interpretation of the detail in the area of interest
then becomes possible.

Since for incoherent imaging the image intensity
itself is the convolution between a real-positive object
function and a real-positive probe function, if we know the
object function for the bulk crystalline material, then it should
be possible to solve for the probe function.  Unfortunately,
there are two main problems with this scheme.  First, a region
of perfect crystal carries relatively little information.  The
image can be expressed by a few discrete Fourier

components, and even if we knew the object function
exactly, we would still only be able to determine the transfer
function at the spatial frequencies represented in the image.
Second, the exact form of the object function may not be
straightforward to compute from the known structure
because this also requires, amongst other things, an exact
knowledge of the degree of partial coherence remaining in
the scattering.  The effects of these concerns are best
illustrated with an example.

A raw image of GaAs viewed along the <110>
direction is shown in Figure 2a.  This image was taken in a
VG Microscopes (East Grinstead, UK) HB603U STEM (300
kV C

S
 = 1 mm) using an ADF detector with an inner radius of

30 mrad.  As expected, the image is a direct or structure
image of this material, with the “dumbbell” structure well
resolved.  The intensity profile in Figure 2b shows how the
polarity of the crystal structure is directly represented in
the image.  The magnitude of the Fourier transform of this
image (Fig. 3) shows spots out as far the {004} spacings
(0.14 nm), and there is weak evidence of the {331} spacings
(0.13 nm).  We proceed by assuming that the object function
is an array of δ-functions weighted by the Z2 of the atomic
species of the column, from which the object function Fourier
component magnitudes can be calculated.  Dividing the
experimental Fourier component magnitudes by those

Figure 4. The transfer function reconstructed from the experimental data compared to the theoretical optimum transfer for the
HB603U microscope (300 kV, CS =1 mm) as function of spatial frequency.  In the experimental case, the data points are
reconstructed from the image data, and a linear interpolation is constructed between them.
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calculated for the object function results in an estimate of
the transfer function at each Fourier component.  Circular
symmetry is assumed, allowing us to deal with a one-
dimensional radial transfer function.  Where we have more
that one spot with the same magnitude of spatial frequency
we have simply taken the mean value, though a more
sophisticated approach could use variations in the transfer
between these spots to determine non circular symmetric
components in the probe, such as astigmatism.  To
reconstruct the probe we need a continuous transfer
function over reciprocal space, which is now achieved by
simply performing a linear interpolation between the points
(see Fig. 4).  This procedure is justified because the transfer
function is typically a slowly varying function, and the
corners introduced by a linear interpolation will lead to some
weak intensity at large distances in real-space, which are
neglected.  The fine structure in the probe, which is the
crucial part for high-resolution detail in the image, is
controlled by the slowly varying trends in the transfer
function, which are reasonably well retained using a linear
interpolation.  Finally, the probe is reconstructed by
performing an inverse zero-order Fourier-Bessel transform
(also known as a Hankel transform).  Figure 5 shows the
reconstructed probe compared to the optimum theoretical

probe for the HB603U.  Also shown is a probe reconstructed
using calculated optimum transfer values, but at only the
Fourier components found in GaAs, to test the functioning
of the linear interpolation which has broadened the probe
profile only very slightly.

The probe reconstructed from experimental data has
a full width at half maximum (FWHM) of 1.3 Å, demonstrating
the performance of the microscope, though this can be seen
to be a little larger than the width of the optimum theoretical
probe.  The approximation of the object function to δ-
functions is unlikely to be valid, and the width of the atomic
column object function will broaden the reconstructed
probe.  However, the broadening of the reconstructed probe
is only about 0.3 Å, and thus is very much smaller than the
interatomic spacings involved in this image.  It is more
difficult to judge the effects of partial coherence in the object
function, though the fact that the reconstruction has a
reasonable form is supportive of the incoherent model.
Fourier transforms of images of Si<110> have shown a weak
(002) spot (Hillyard and Silcox, 1995), however, which is
forbidden if the columns are perfectly incoherent.  The
calculated transfer at the (002) frequency would therefore
be infinite, with catastrophic consequences on the probe
reconstruction.  In the GaAs reconstruction presented here,
however, the transfer calculated from the (002) spot was
reasonable, supporting the model of perfect incoherence in
this case.

Object Function Reconstruction

Having determined the probe function for a given
image, we should now consider how it can be used to gain
further object information from that image.  One of the major
advantages of incoherent imaging is that the images can be
directly inverted to the projected atomic structure, because
the peaks in intensity are located over the atomic columns.
Image simulations from trial structures are not required.  A
typical probe, however, has weak subsidiary maxima
adjacent to the primary maximum (Fig. 5), which can lead to
weak artifacts in the image, as shown by the profile in Figure 2.
These artifacts are extremely weak compared to the main
peaks, and are usually not a source of confusion.  In principle,
though, we should now be able to account for them, and be
able to sharpen the image somewhat, using the reconstructed
probe profile.

First, we note that the transfer function falls to zero
at about 1.1 Å, thus imposing an information limit.  Any
magnitude in the Fourier transform of the image intensity
beyond this information limit has been introduced by the
image forming process, such as because of quantum noise.
A low-pass filter is thus extremely useful for removing this
unwanted, high-spatial frequency information from the
image.  The first-order Butterworth filter has the form

Figure 5. The probe intensity reconstructed from the
experimental data compared to the theoretical optimum probe
for the HB603U, plotted as a function of radius.  To check
the validity of using a linear interpolation between data
points in reciprocal space, a reconstructed probe is also
shown by using the theoretical optimum transfer values,
but only at the spatial frequencies used for the experimental
reconstruction.  The only effect is a very slight broadening
of the probe profile.
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(14)
)/(+1

1
 = )F(

0
2ρρ

ρ

as a function of spatial frequency ρ, where ρ
0
 is a constant

controlling the width of the filter.  It does not lead to the
addition of further artifacts (Fig. 6a), and the simple
smoothing action performed by this filter has removed much
of the quantum noise.

Since we know the probe profile, the next thing to
try is a deconvolution.  The effect  of multiplying the image
Fourier transform by the Wiener filter

(15)

Figure 6. (a) The raw data from Figure 2, having been
passed through a Butterworth low-pass filter, (b) after having
been passed through a Wiener deconvolution using the
transfer reconstructed from the data itself, (c) A convolution
between the deconvolved image (b) and a Gaussian function
to remove the subsidiary maxima, (d) A maximum entropy
reconstructed object function using the raw data (Figure 2)
and the reconstructed probe profile (Figure 5). (e)  A
convolution between (d) and a Gaussian to allow the
columns to be more readily seen.

ερ
ρ

ρ
 + )T(

)(T=)F(
2

*

||

results in Figure 6b [see Bates and McDonnell (1986) for
details of the application of Wiener filters].  Although the
effects of the noise have been suppressed and the atoms in
the dumbbells are now well resolved, the tail artifacts in the
image have been enhanced.  The explanation of this effect
also explains the origin of the tails.  The probe tails arise
because the Fourier transform of the probe is truncated in
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reciprocal space.  A function that is localized in reciprocal
space must be somewhat delocalised in real space.  A tail-
less point spread function, such as a Gaussian, has a longer,
asymptotically decaying tail extending over all reciprocal
space.  A Wiener filter acts by dividing out the transfer
function resulting in a constant transfer.  However, a
constant, ε, is required to decay the resulting transfer to
zero where T(ρ) becomes small at the information limit.  The
resulting transfer (Fig. 7) is even more strongly truncated in
reciprocal space, leading to the enhanced tail artifacts which
make the image even harder to directly interpret.  The only
way to remove the tails is to have a slowly decaying transfer
that becomes negligible at the information limit, such as the
gaussian shown in Figure 7, but this is in effect simply
reversing the effects of the original deconvolution.  Using a
gaussian re-convolution to remove the tails results in
Figure 6c, in which the high spatial frequencies have now
been suppressed to such an extent that the dumbbells are
now hardly resolved.  This example illustrates how the probe
tails are a result of the resolution limit of the microscope,
which imposes the Fourier space truncation, and
demonstrates how imaging near the resolution limit of an
optical instrument can cause complications.  The solution

is to retrieve information from beyond the information limit,
which either requires a higher resolution microscope, or
using a constraint to enable a mathematical reconstruction
of the object function.

Iterative deconvolution methods allow the inclusion
of constraints.  Here we show the use of the maximum
entropy image reconstruction technique developed by Gull
and Skilling (1984).  The algorithm used here takes the
experimental image and a point spread function as inputs,
and thus assumes incoherent imaging.  The point spread
function is simply the probe intensity function.  As an
example we have reconstructed the GaAs image in Figure 2a,
with the probe profile reconstructed from it (Fig. 5).  The
resulting reconstructed object function (Fig. 6d) shows
major peaks in intensity at the atom sites, with most of the
dumbbell spacings within 0.1 Å of the correct value .  The
narrow width of the peaks shows that the object function
has now been reconstructed beyond the information limit.
The variation of the width, and splitting, of some of the
peaks can be attributed to microscope instabilities blurring
some parts of the image, and these widths can therefore be
used as a measure of the uncertainty in the atom column
locations.  The reconstructed object also shows some

Figure 7. The resulting transfer functions after Wiener filtering, then subsequent reconvolution with a gaussian, compared
to the optimum theoretical transfer.  Note how the Wiener filter leads to a more strongly truncated transfer function.
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weaker structure that has been introduced by the noise in
the experimental data.  It is at this point that the microsco-
pist applies their skill and experience to interpret the data,
for instance deciding whether a split feature is actually
separate atoms that were unresolved in the original image,
or whether the feature is due to noise or instabilities and the
splitting just represents an uncertainty in the actual column
position.  To help make this distinction, the reconstructed
object function from the known bulk crystalline region of
the image can be used to determine the expected uncertainty
for a single column.  Having done this, for visualization
purposes it is useful to re-convolve the object function
with a gaussian so that the split peaks that are assigned to
a single column become a single, slightly elongated feature
(Fig. 6e).  This reconstructed image has achieved a
sharpening of the column features, with the dumbbells more
strongly resolved, without the accompanying strengthening
of the inter-column artifacts.

Conclusions

Using the phase-object approximation, we have
demonstrated that using an annular dark-field detector in a
STEM, with a sufficiently large inner radius, leads to
incoherent imaging.  The phase-object approximation
assumes perfectly coherent scattering, and therefore it is
purely the large geometry of the detector that breaks the
coherence.  Intrinsically incoherent scattering processes
within the specimen act to supplement this coherence
breaking action (Jesson and Pennycook, 1996), but are not
necessary for incoherent imaging.  For instance, the
incoherent integration over transverse phonon modes for
phonon scattering has the same effect as the integration
over final wavevectors for the large detector.  However, it
was shown that phonon modes with wavevectors parallel
to the beam direction can destroy coherence along a column
of atoms much more efficiently than an annular detector.

One of the useful attributes of incoherent imaging is
that there is no phase problem since the image intensity is
simply a convolution between a real-positive object function
and a real-positive point-spread function.  Thus image
processing techniques can be applied directly to such
images.  Where the image is of a known material, it can be
used to determine the probe function acting on the image.
Although it should be noted that an image of a perfect
crystal does not contain complete information on the probe
profile, a good estimate of it can be made.  A direct
deconvolution of the probe function does not add to the
interpretability of the image data because artifacts in the
image from the probe profile are due to the resolution limit,
beyond which there is no information passed by the
microscope.

Image processing techniques can play a role if they

can reconstruct the object function beyond the information
limit.  Some kind of constraint is required to do this, and we
have demonstrated the use of maximum entropy which allows
more detailed information to be retrieved from the image.
The maximum entropy constraint is that of maximum object
function likelihood in the absence of any further experimental
evidence.  A more sophisticated reconstruction scheme
might use further constraints such as atomicity or minimum
inter-column spacings.  We should stress in conclusion,
though, that the majority of ADF images can be directly
interpreted from the raw image data, perhaps with a simple
low-pass filter applied to remove some of the noise.
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