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Abstract

The theory for the absorption potential (or optical
potential) in electron diffraction was established many years
ago by Yoshioka. However, few studies have been devoted to
examining the approximations originally introduced when the
potential was derived. In this paper, the absorption potential
first proposed by Yoshioka is revised for dynamic electron
diffraction with consideration of the effects arising from thermal
diffuse scattering and point defect scattering. A rigorous
theoretical proof is given to show that the inclusion of this
“potential” in the dynamical calculation automatically recovers
the contributions made by the high order diffuse scatter-ing,
although the calculation is done using the equation derived
for single diffuse scattering. If Yoshioka’s approximation is
made, i.e., the Green’s function is replaced by its form in free-
space, then the inclusion of the optical potential in dynamical
calculations still recovers the multiple diffuse scattering terms
except the dynamic Bragg reflection after each diffuse
scattering event. This conclusion establishes the basis for
expanding the conventional diffraction theories developed
under the first order diffuse scattering approximation to cases
where the specimen thickness is large and the degree of
disorder is high. It has been shown that the “optical potential”
depends also on the structure of the crystal. The Fourier
coefficients of this function are given in the Bloch wave
representation for transmission electron diffraction.
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Introduction

Refining crystal structures by quantitative electron
diffraction (Spence and Zuo, 1992; Midgley et al., 1995) is
experiencing a rapid development owing to the advances in
electron energy-filtering and digital data recording systems
(see many articles in the book edited by Reimer, 1995).
Quantitative analysis of structure information provided by
transmission electron diffraction and imaging strongly relies
on computer simulations. An important quantity in dynamical
calculation is the “absorption” potential (or the optical
potential, Dederichs, 1972), given based on model calculations.
The absorption here actually means that the electron is not
absorbed by the specimen rather it is scattered out of the
elastic state (or Bragg peaks) due to energy-loss and
momentum transfer, resulting in a decrease in the intensity of
the elastic wave. This is the effect of inelastic scattering (or
diffuse scattering) on the Bragg reflected waves (Yoshioka,
1957), which is equivalent to introducing an absorption
potential in dynamical calculation (Heidenreich, 1962). This
work has been the basis of almost all of the later theoretical
calculations on electron diffraction and imaging. The
theoretical modeling of the absorption potential has been a
focus of research for many years and substantial progress
has been made in including the contributions made by single
electron excitation (Gjønnes, 1962; Howie and Stern, 1972;
Whelan, 1965a; Radi, 1970; Humphreys and Whelan, 1969;
Allen and Rossouw, 1990; Wang, 1990), thermal diffuse
scattering (Whelan, 1965b; Radi, 1970; Humphreys and Hirsch,
1968; Rossouw et al., 1990) and disorder point defect scattering
(Howie and Stern, 1972; Dudarev et al., 1992). The absorption
potential has been published in forms of parametric fitting
and FORTRAN programs for the access of public users (Coene
and Van Dyck, 1990; Dudarev et al., 1995; Bird and King,
1990).

Almost all of the model calculations for the absorption
potential have been based on the approximation originally
introduced by Yoshioka (1957), in which the Green’s function
is approximated by its form in free-space. Thus, the absorption
potential is a non-local function that depends only on the
nature of the inelastic scattering and the crystallographic
structure but has no relation with the diffracting condition of
the incident beam. All of the calculations later were performed
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List of symbols

V(r,t) Instantaneous crystal potential
V

0
(r) Time and spatially averaged crystal poten-tial

∆V(r,t) Deviation potential from the average struc-ture
< >

ts
Statistical time and structure average

Ψ Electron wave function
U

0
Accelerating voltage of the electron micro-scope

m
0

Electron mass
γ Relativistic factor
v Electron velocity
Ψ

0
Elastic wave initiated by an inci-dent plane wave
of wave vector K

0

G Green’s function

Fourier transform of G
K Electron wave vector
V’ Optical potential
Ψ

0
(0) Bragg scattered wave due to the aver-age periodic

lattice V
0
 ex-cluding V′

B
i
(K

0
,r) Bloch wave

C Bloch wave coefficients
S(Q,Q′) Dynamic form factor
G

0
Green’s function in free-space

u, v, τττττ Reciprocal space vectors
g, h Reciprocal space lattice vectors

based on this approximation, but no study has been initiated
to examine the consequence caused by Yoshioka’s
approxi-mation.

On the other hand, calculations of the thermal diffuse
scattering are usually carried out based on the distorted
potential method first proposed by Takagi (1958), in which the
thermal diffuse scattering is considered as a perturbation and
only the first order diffuse scattering is considered. This
approximation may be referred to as the distorted wave Born
approximation (DWBA), which has been applied to calculate
the diffuse scattering produced by rough surfaces in reflection
high-energy electron diffraction (RHEED) (Dudarev et al.,
1993) and short-range order of point defects in transmission
electron diffraction (Wang, 1996a). It appears that, at first sight,
the optical potential is primarily responsible for taking into
account the reduction of intensity due to diffuse scattering,
and it may have no relation with the multiple scattering effects.
In fact, they are correlated with each other, as to be shown in
this paper. Since the contribution made by inelastic scattering
processes with energy-loss larger than 2 eV can be removed
from the images and diffraction patterns using an energy filter
but the diffuse scattering remains, our theory here is about
thermal diffuse scattering (TDS) and short-range order of point
defects.

This paper aims to derive a more precise form of the

“optical potential” with the use of the Green’s function for a
real crystal system instead of its form in free-space. It will be
shown that the inclusion of this potential in the dynamical
calculation automatically recovers the contributions made by
the high order diffuse scattering, although the calculation is
done using the equation derived for single diffuse scattering.
Therefore, the calculated wave function is the full solution of
the Schrödinger equation including all orders of diffuse
scattering. Details are given to show the calculation of the
optical potential using an improved Green’s function.

A General Approach to Diffuse Scattering

Diffuse scattering is produced by structure
modula-tion in a crystalline specimen, and the diffusely
scattered electron intensity is distributed between Bragg
reflected peaks. The Bragg reflections are generated by the
periodically structured lattice of the crystal, while the diffuse
scattering is produced by the non-periodical components
including thermal vibrations of the crystal atoms and short-
rage order (SRO) of point defects. Figure 1 shows an electron
diffraction pattern recorded at 100 kV from Si foil. The TDS
streaks observed in the pattern are determined by phonon
dispersion relations of the acoustic branches (Honjo et
al.,1964; Wang, 1992a). A general feature in the TDS diffraction
pattern is that all of the streaks run along the lines
interconnecting the Bragg peaks. For a monoatomic cubic
structure, a simple rule has been proposed to predict the
directions of the streaks in diffraction patterns from the unit
cell structure of the crystal (Wang and Bentley, 1991).
Dynamical theories for calculation of diffraction patterns and
images of TDS electrons have been extensively developed
based on the multislice approach (Fanidis et al., 1989, 1992,
1993; Coene and Van Dyck, 1990; Wang, 1991, 1992a and b,
1995a; Dinges et al., 1995), the Bloch wave approach (Howie,
1963; Rossouw, 1985; Rossouw and Bursill, 1985; Rez et al.,
1977) and the Green’s function approach (Dudarev et al., 1991;
Wang and Li, 1995). All of these theories (for a review see
Wang, 1995b) are based on the first order diffuse scattering
approximation, as described in following.

To illustrate the focal point of this paper, we first review
the classical approach of Takagi (1958), in which an average
crystal structure  is introduced. The crystal potential V(r,t) is
written into a form of

V(r,t) = V
0
(r) + ∆V(r,t)

where V
0
(r) = < V(r,t) >

ts
 is the crystal potential for the average

lattice, defined to be time independent and periodic, < >
ts

indicates the statistical time and struc-ture average, and ∆V(r)
represents the deviation from the average lattice with < ∆V(r,t)
>

ts
 = 0, and it is non-periodic and time-dependent (for TDS).

The statistical structure average < >
s
 takes into account the

(1)
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SRO of point defects. Figure 2 gives a schematic illustration
of this theoretical approach for a case involving point defects.

Equation (1) clearly indicates that TDS is a time-
dependent process and time-dependent Schrödinger equation
should be used. However, as to be shown below, this time
dependent process can be converted into a series of time-
independent processes. In high energy electron scattering,
the “frozen” lattice model is assumed in describing TDS (Hall
and Hirsch, 1965), which means that, although atom vibration
is a time-dependent process, the crystal lattice appears as if in
a stationary instantaneous configuration for an incident
electron since the interaction time of the electron with the
crystal is much shorter than the vibration period of the crystal
atom, but the crystal lattice can be in another configuration
for the next incoming electron. Thus, for each lattice
configuration, the scattering of the electron can be considered
as a time-independent quasi-elastic scattering process, and
the final observed diffraction pattern contributed by mil-lions
of electrons is equivalent to a time average on the intensities
calculated for the different lattice configurations, and the time
t simply serves as a parameter signifying the spontane-ous
lattice configura-tion in the calculation. In fact, it has been
proved by Wang (1998a) that the result obtained using the
frozen lattice model is identical to the result of quantum phonon

excitation theory if (1) the incoherence between different orders
of thermal diffuse scattering is considered in the frozen lattice
model calculation, and (2) the specimen thickness and the
mean-free-path length for phonon excitation both are smaller
than the distance traveled by the electron within the life-time
of the phonon. For the thin crystal case, the latter is absolutely
satisfied.

The first objective in our theory is to find the scattered
electron wave for a given frozen lattice config-uration, then a
statistical time average is made on the electron diffraction
intensities for a vast number of different thermal vibration
configurations. For simplicity, we start from the time-
independent Schrödinger equation with relativistic correc-tion
(Humphreys, 1979; Spence, 1988),

0=E-Ve-Ve-
m2

- 0
2

0

Ψ







∆γγ∇

�

where

]
cM2

Ue
+[1Ue=E

2
0

0
0

U
0
 is the accelerating voltage of the electron micro-scope, the

relativistic factor γ = (1 - v2/c2)-1/2, and v the electron velocity.
For electron scattering, Equation (2) is converted into an
integral equation with the use of the Green’s function G(r,r

1
)

(Kainuma et al., 1976):

Ψ(r,t)=Ψ
0
(K

0
, r)+∫dr

1
 G(r,r

1
)[eγ∆V(r

1
,t)Ψ(r

1
,t)]

where G is the solution of

)(),()
2

( 110
2

0

2

rrrrGEVe
m

−δ=−γ−∇− �

Figure 1. A [100] electron diffraction pattern recorded from a
thin Si foil showing <110> streaks produced by thermal diffuse
scattering.

Figure 2. One-dimensional representation of a crystal potential
V, the structurally averaged potential V

0
 = <V> and the deviation

potential ∆V = V-V
0
 for a crystal containing point vacancies.

V
0
 is a periodic function but ∆V is not.

(2)

(4)

(3)
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and Ψ
0
(K

0
,r) represents the elastic wave initiated by an

incident plane wave of wave vector K
0
 after being scattered

by the periodic, time-independent average potential V
0
, and it

satisfies

0 =  E)-Ve-
m2

(- 00
2

0

2

Ψγ∇�

Equation (5) can be solved using the Bloch wave or multislice
theory, while the solution of Equation (4) is not straightforward
because a point source is located at r = r

1
. It must be pointed

out that the time variable in Equation (3) represents the
instantaneous lattice configuration of the crystal due to thermal
vibration. Equation (3) is usually solved iteratively so that
each expansion term represents an order of the diffuse
scattering. To illustrate our approach, the diffraction pattern
is calculat-ed under the first order diffuse scattering
approximation: Ψ(r

1
,t) is replaced by Ψ

0
(K

0
,r

1
) in Equation

(3). We first make this assumption, then we will come back to
modify our approach to pick up the high order terms dropped
by this approximation. Thus

Ψ(r,t)≈
Ψ

0
(K

0
,r)+∫ dr

1
 G(r,r

1
)[eγ∆V(r

1
,t)Ψ

0
(K

0
,r

1
)]

where the first term stands for the elastic Bragg reflected waves
and the second term is the first order diffuse scattering
produced by TDS and/or SRO. This approximation holds if
the specimen is thin. A consequence of this approximation is
that the total number of incident electrons is not conserved
because of the drop of higher order diffuse scattering terms.
The diffraction pattern is calculated by

I(u
b
)=|Φ0(K0

,u
0
,z=∞|2

+(eγ)2∫ dr
1
 ∫ dr

2
(u

b
,z=∞,r

1
)  *(u

b
,z=∞,r

1
)

×[<∆V (r
1
,t)∆V(r

2
,t)>

ts
]Ψ

0
(K

0
,r

1
)Ψ

0
*(K

0
,r

2
)

where Φ
0
 and are the 2D Fourier transforms (FTs) of Ψ

0
 and

G(r,r
1
) at z = ∞, respectively. The time and structure average

of <∆V(r
1
,t) ∆V(r

2
,t)>

ts
 can be performed analytically before

numerical calculation (Dudarev et al., 1991; Wang, 1995a,
1996a). From the reciprocity theorem, G(x, y, z=∞, r

1
) = G(r

1
, x,

y, z=∞), provided there is no absorption. This relation means
that the wave observed at z = ∞ when a point source is placed
at r

1
 within the specimen is the same as the wave observed at

r
1
 (in the specimen) when a point source is placed at z = ∞ (the

image plane). In practice, when a point source is placed at z =
∞, the spherical wave emitted from the source is a plane wave
when falls on the crystal surface, thus, G(r

1
,x,y,z=∞) is

equivalent to the solution of the Schrödinger equation for an
incident plane wave. This relation can be proven
mathematically (Dudarev et al., 1993) as

(u
b
,r

i
)=A

z
Ψ

0
(-K-u

b
,r

i
)

where Ψ
0
(-K, r

1
) is the solution of the Schrödinger equation

(Eqn. 5) for an incident plane wave of wave vector (- K) (K =
K

0
 + u

b
) and

A
z
 = - [im

0
 exp(2πiK

z
z)](π 2K

0z
)-1

The negative sign of the wave vector means that the electron
strikes the crystal along the negative z-axis direction. The
elastic scattering wave Ψ

0
(-K, r

1
) can be obtained using the

conventional dynamical approaches, such as Bethe’s theory.
Thus, Equation (6b) is the basis of dynamical calculations
under the first order diffuse scattering approximation, and it
has been the fundamental equation for diffuse scattering.

To compensate for the loss of high order diffuse
scattering terms in Equation (6a), an optical potential V′ is
added in the Schrödinger equation (Eqn. 5) to modify the
solution of Ψ

0
 so that Equation (6a) may approach the exact

solution of Equation (2)

0 =  V’-E)e-Ve-
m2

(- 00
2

0

2

Ψγγ∇�

This technique works if a unique solution of V′ can be found.
The optical potential V′ is chosen in such a form that both
Equations (6a) and (7) exactly satisfy Equation (2), the
substitution requires

[V′Ψ
0
]=eγ ∫ dr

1
 [G(r,r

1
)∆V(r,t)∆V(r

1
,t)Ψ

0
(K

0
,r

1
)]

The function V′ defined in Equation (8) has two impor-tant
characteristics. V′ is a non-local function since V′ cannot be
separated from wave function Ψ

0
. Strictly speaking, it is

inadequate to call V′ a potential because of its dependence on
the Green’s function G, the solu-tion of which is determined
by the crystal structure. To match the terminology that has
been used in the literature, V′ is still referred as a “potential”
function in the following discussion.

The “Optical Potential” and
Multiple Diffuse Scat-tering

The first objective is to prove that the optical potential
V′ given by Equation (8) can be applied to recover the high
order diffuse scattering terms droped when Ψ(r

1
,t) is replaced

by Ψ
0
(K

0
,r

1
) in deriving Equation (6a) under the first order

diffuse scattering approximation. Starting from the integral
form of Equation (7) with the use of Green’s function and
iterative calculation, the elastic wave is expanded as

Ψ
0
(K

0
,r)=
Ψ

0
(0)(K

0
,r)+eγ ∫ dr

1
G(r,r

1
)[V′(r

1
)Ψ

0
(K

0
,r

1
)]

= Ψ
0
(0)(K

0
,r)+(eγ)2 ∫ dr

1
G(r,r

1
) ∫ dr

2
 [G(r

1
,r

2
)

× ∆V(r
1
,t)∆V(r

2
,t)Ψ

0
(K

0
,r

2
)]

(5)

(6a)

(6b)

(6c)

(6d)

(7)

(8)
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= Ψ
0
(0)(K

0
,r)+(eγ)2 ∫ dr

1
 ∫ dr

2
 [G(r,r

1
) G(r

1
,r

2
)

× ∆V(r
1
,t) ∆V(r

2
,t) Ψ

0
(0)(K

0
,r

2
)]

+ (eγ)4 ∫ dr
1
 ∫ dr

2
 ∫ dr

3
 ∫ dr

4
 [G(r,r

1
) G(r

1
,r

2
)

× G(r
2
,r

3
) G(r

3
,r

4
) ∆V(r

1
,t) ∆V(r

2
,t)

× ∆V(r
3
,t) ∆V(r

4
,t) Ψ

0
(0)(K

0
,r

4
)] + ...

where Ψ
0
(0) is the Bragg scattered wave due to the average

periodic lattice at the absence of V′ (e.g., no absorption)

0 = E)-Ve-
m2

(- (0)
00

2

0

2

Ψγ∇�

This equation can be solved using conventional dynamic
electron diffraction theories. Substituting Equation (9) into
Equation (6a), the total scattered wave is

Ψ(r,t) = Ψ
0
(0)(K

0
,r)

+ (eγ) ∫ dr
1
 G(r,r

1
) ∆V(r

1
,t) Ψ

0
(0)(K

0
,r

1
)

+ (eγ)2 ∫ dr
1
 ∫ dr

2
 [G(r,r

1
) G(r

1
,r

2
) ∆V(r

1
,t)

× ∆V(r
2
,t) Ψ

0
(0)(K

0
,r

2
)]

+ (eγ)3 ∫ dr
1
 ∫ dr

2
 ∫ dr

3
 [G(r,r

1
) G(r

1
,r

2
)

× G(r
2
,r

3
)∆V(r

1
,t)∆V(r

2
,t)∆V(r

3
,t)Ψ

0
(0)(K

0
,r

3
)]

+ (eγ)4 ∫ dr
1
 ∫ dr

2
 ∫ dr

3
 ∫ dr

4
 [G(r,r

1
) G(r

1
,r

2
)

× G(r
2
,r

3
) G(r

3
,r

4
) ∆V(r

1
,t) ∆V(r

2
,t)

× ∆V(r
3
,t) ∆V(r

4
,t) Ψ

0
(0) (K

0
,r

4
)] ...

where all of the higher order terms have been recovered. The
third term in Equation (11) is taken as an example to show its
physical meaning, as schematically shown in Figure 3a. The
Bragg scattered wave is diffusely scattered at r

2
 by ∆V(r

2
,t).

The diffusely scattered wave is elastically scattered by the
crystal lattice while propagating from r

2
 to r

1
 [G(r

1
,r

2
)], then,

the second order diffuse scattering occurs at r
1
 [∆V(r

1
,t)].

Finally, the double diffusely scattered wave exits the crystal
at r after elastic scattering when propagating from r

1
 to r [G(r,

r
1
)]. The integrals over r

1
 and r

2
 are to sum over the

contributions made by all of the possible scattering sources
in the crystal.

It can be proven directly from Equation (11) with the
use of Equations (10) and (4)

t)(r, t)V(r,e = t)r, Ψ∆γΨγ∇ ( E)-Ve-
m2

(- 0
2

0

2
�

which is exactly the form of Equation (2), the equation we
started with. Therefore, the multiple diffusely scattered waves
are comprehensively included in the calculation of Equation
(6a) if the optical potential V′ given by Equation (8) is
introduced in the calculation of Ψ

0
 (Eqn. 6a). This is a key

conclusion which means that, by introducing a proper form of
the optical poten-tial, the multiple diffuse scattering terms are
automatical-ly included in the calculation using Equation (6a),
although it was derived for the first order diffuse scattering.
Thus, introduction of the optical potential V′ in the calculation
of the elastic wave makes the existing theories available for
calculating high order time-depen-dent systems (TDS). This
conclusion is universal for a time-independent system because
no assumption and approximation was made in the proof.
There are two major steps in this calculation: the solution of
Equation (6a) and the optical potential V′. These quantities
are calculated separately in following sections.

The Bloch Wave Solution

For transmission electron diffraction of a thin slab
crystal, as shown in Figure 4, the Bloch wave theory is the
best suited approach for solving the Schrödinger equation if
the average crystal lattice is periodic. The wave function Ψ

0
 is

a linear superposition of the Bloch waves B
i

Figure 3. Schematic diagrams showing multiple diffuse
scattering processes in a crystal (a) with (G) and (b) without
(G

0
) consideration of dynamical diffraction between

consecutive diffuse scattering events. The fan-shape intensity
distribution indicates a diffuse scattering process.

(9)

(10)

(11)

(12)
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r),K(B)K(=r),K 0i0i

i

0 αΨ ∑(0

where

( ) ( )( ) ( )[ ]∑ π+⋅+π=
g

i
i

gi zivrgKiKCrKB 22exp, 000

which is the eigen-solution of Equation (7); α
i
 are the

superposition coefficients determined by the boundary
conditions, and the result is α

i
 = C

I0
(i)*, where C

I0
(i) are the

elements of the first column of the inverse of the matrix whose
elements are C

g
(i)* (row i and column g) (Spence and Zuo,

1992). Since the average crystal potential is a periodic function,
it can be written into a Fourier series,

( ) [ ]∑ ⋅π=
g

g rigVrV 2exp

Thus, the substitution of Equations (13b) and (14) into
Equation (7) gives

( )[ ] ( )[ ]∫

∑

⋅+π−
γ

−=

γ

rKBVrgkidr
Vh

em

(-K[

ii
c

2
0

,'2exp
2

CV
h

em2
 + C]g)+k

02
0

(i)
hh-g

h
2

0(i)
gi

2

where k
i
 = K

0
+v

i
, and V

c
 is the volume of the crystal. We now

use Equation (8) to perform the calcu-lation on the right-hand
side of Equation (15). Since [V(i)Ψ

0
] given in Equation (8) is a

time-dependent (or lattice configura-tion-dependent) function,
it is approxi-mately represented by its time/structure average
in the following calculation

∫ dr exp [-2πi(k
i
+g)⋅r] < [V′ B

i
(K

0
,r)]>

ts

= eγ ∫ dr ∫ dr
1
 exp[- 2πi(k

i
+g)⋅r] [G(r,r

1
)

× <∆V(r,t) ∆V(r
1
,t)>

ts
 B

i
(K

0
,r

1
)]

To proceed with this calculation, a dynamic form factor S(Q,Q′)
(for a review see Kohl and Rose, 1985) is introduced

<∆V(r,t)∆V(r
1
,t)>

ts

= ∫ dQ ∫ dQ′ exp[2πi(r⋅Q - r
1
⋅Q′)] S(Q,Q′)

The dynamic form factor S(Q,Q′) is an important quantity in
dynamical inelastic electron diffraction. For TDS and SRO,
the calculation of S(Q,Q′) is given elsewhere (Wang, 1995a,
1996a), in which the statistical time average over the
instantaneous thermal vibration configurations of the crystal
atoms and the statistical spatial distribution of the point
defects with spatial short-ranged ordering have been evaluated
analytically. Thus,

∫ dr exp [-2πi(k
i
+g)⋅r] < [V′ B

i
(K

0
,r)]>

ts

= eγ ∫ dQ ∫ dQ′S(Q,Q′) ∫ dr ∫ dr
1
 {exp[2πi(k

i
+g)⋅r]

× exp [2πi(r⋅Q - r
1
⋅Q′)] [G(r,r

1
) B

i
(K

0
,r

1
)]}

( )( ) ( )∫ ∫∑γ= ',' QQSdQdQKCe
h

i
h

× ∫ dr ∫ dr
1
 exp[-2πi(k

i
+g-Q)⋅r - 2πi(Q′-k

i
-h)⋅r

1
]

× G(r,r
1
)

( ) ( )( )∑=
h

i
h

i
gh KCV 0'

where

)h-k’-Q,Q-g+k( Ĝ )’Q,QS( ’Qd Q i∫∫
γ

d
V

e
=’V

c

(i)
gh

and  (u,u
1
) denotes the 3-D double Fourier transform of

G(r,r
1
). Substituting Equation (18) into Equation (15), a matrix

equation is obtained (Humphreys, 1979; Spence and Zuo,
1992)

0 = C)’V+V(
h

em2
+C]g)+k (i)

h
(i)
ghh-g

h
2

0(i)
gi

2
∑

γ
(-K[ 2

This is just the eigen-equation of the Bloch wave theory except
V

g-h
 is replaced by [V

g-h
 + V′

gh
(i)] (Note V′ depends also on the

branch i of the Bloch wave). This is an elegant approach which

Figure 4. A coordinate system used to describe trans-mission
electron diffraction by a thin crystal slab of thickness d. The
incident beam is nearly parallel to the z-axis.
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has automatically included the non-local effect of the optical
potential. Equations (19) and (20) are equivalent to that derived
by Radi (1968) for a general inelastic scattering case. The
numerical calculation can be performed using the FORTRAN
program developed by Spence and Zuo (1992).

The second objective here is to prove that Equation
(19) is a generalized form of the optical potential first introduced
by Yoshioka (1957). If the diffraction effect of the crystal is
ignored so that the Green’s function is replaced by its form in
free-space,
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after some calculation, Equation (19) gives
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where the integral τ(u) is over all reciprocal space u except a
spherical shell defined by |u| = K

0
, and the integral σ(u) is over

the Ewald sphere surface defined by |u| = K
0
. This is the form

of the optical potential first obtained by Yoshioka (1957) and
Yoshioka and Kainuma (1962). This function is complex, and
its real part is usually ignored because it is much smaller than
the crystal potential. But in recovering the high order terms,
the real component needs to be included. The imaginary
component is just the absorption potential that has been
frequently used in dynamical calculations. The V′ given by
Equation (22) is independent of the dynamical diffracting
condition because of the substitution of G by G

0
. In this case,

V′ can be called an optical potential, but, in a general case, the
function V′ is not simply a potential function because of the
involvement of Bloch wave coefficients and crystal thickness.

From the discussion above, one might wonder: what
is missing in dynamical calculations if the optical potential
takes the form given by Yoshioka (1957)? If the Green’s
function is replaced by its form in free-space, Equation (11) is
approximated as
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We take the second term as an example to illustrate the physical
meaning of this equation: the elastic wave at Ψ

0
(0)(K

0
,r

1
) is

diffusely scattered at r
1
 by ∆V(r

1
,t), followed by a propagation

in “free-space” from r
1
 to r, where the wave exits the crystal.

This approximation simply ignores the dynamical diffraction
of the electron after the diffuse scattering, and it can be
schematically shown by Figure 3b, where dynamical diffraction
occurs only prior to the diffuse scattering (Høier, 1973).
Equation (23) includes all of the orders of diffuse scattering
but not the dynamical diffraction of the diffusely scattered
waves. This is the consequence arisen from the Yoshioka’s
approximation. On the other hand, the multiple diffuse
scattering is included in the optical potential. Therefore, the
high order diffuse scattering has already been included in the
dynamical calculation although the calculation is performed
using the equation derived under the first order diffuse
scattering approxi-mation. The optical potential has a rich
meaning beyond the conventional interpretation of an
absorption potential.

The Green’s Function Solution and
The Optical Potential

The Green’s function represents the electron wave
distributed in the space due to a point source located at r = r′
in the crystal. The Green’s function can be expressed into an
integral form of the eigen Bloch states (Radi, 1968). In this
section, we use the Green’s function of Dudarev et al. (1994)
to calculate the optical potential for a general case. The Green’s
function for electron scattering has been proven to be in the
form of
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where Ψ
0
(0)(ê,r) is the solution of Equation (10) for an incident

plane wave with wave vector κ, which can be calculated using
conventional dynamical diffraction theories. This is a key
relation which correlates the Green’s function with the solution
of the Schrödinger equation. We now take a double Fourier
transform of G(r,r’)

(u,v)= ∫ dr ∫ dr′ exp(- 2πiu⋅r) exp(-2πiv⋅r′) G(r,r′)

(21)

(22)

(23)

(24)
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where Φ
0
(0)(κ,u) is the Fourier transform of Φ

0
(0)(κ,r), and the

negative sign of the wave vector indicates that the incident
plane wave strikes the crystal from the bottom surface.
Substituting this equation into Equation (19), the optical
potential is
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where the integral τ(κ) is over all reciprocal space except a
spherical shell defined by |κ| = K

0
; the integral σ(κ) is over the

Ewald sphere surface defined by K = K
0
; and k

i
 = K + v

i
. The

integral of u is to sum over the components scattered to the
entire recipro-cal space. Since 1/(κ2 - K

0
2) is an antisymmetric

function when κ → (K
0
-ε) and κ → (K

0
+ε), thus the integral

around the singular point κ = K
0
 is approximately zero, thus,

no abnormal numerical singularity is expected in numerical
calculation (Rez, 1976). Equation (26) is a general solution,
and its meaning can be illustrated by the following two cases,
and a detailed analytical illustration of which will be given
later.

For transmission electron diffraction, the wave
function takes the form of the Bloch waves given by Equations
(13a) and (13b), thus
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(i), the corresponding optical

potential is:
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As pointed out in Equation (8), V′ is a non-local func-tion
depending on the Green’s function sparked by a point source
in the specimen. The finite thickness of the specimen affects
the solution of the Green’s function, resulting in the thickness
dependence of V′. By the same token, V′ also depends on the
Bloch wave coefficients that are responsible for the dynamical
diffraction effect, which, however, was dropped in the theory
of Yoshioka (1957). This is the key difference that distinguishes
our theory from the conventional approach. This is also the
critical point that the potential given by Equation (26) can
automatically include multiple diffuse scattering in dynamical
calculation with the use of the first order diffuse scattering
equation (Eqn. 6a).

Under the zero order approximation, in which the wave
function is the incident plane wave, Φ

0
(0) (κ,u) = δ(κ - u),

Equation (26) gives the exact result of Equation (22).

The Multiple Diffusely Scattered Electron Intensity

The theory for HRTEM image calculation using a
combined Bloch wave-multislice theory has been proposed
(Wang, 1998b). We now use the Bloch wave theory to calculate
the diffractiion pattern. The objective in this theory is to
calculate the angular distribution of the multiple diffusely
scattered electrons. We now consider the main steps in this
calculation. Since V′ is approximated by its average value <V′>

ts

in Equation (16), which means that Ψ
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(r,t) is replaced by
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Therefore, with the use of Equations (6c) and (17), the
diffraction pattern formed by the Bragg reflected and all
diffusely scattered electrons is calculated by
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which is converted into Equation (20) in the Bloch wave theory;
and Ψ

0
(0) is the solution of Equation (10).

An iterative calculation of Equation (30) shows that all of
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the even order terms of ∆V (e.g., ∆V2, ∆V4 etc.) are included,
but the odd order terms (e.g., ∆V3, ∆V5 etc.) are dropped as a
consequence of replacing V′ by its average. This result is
equivalent to treating the electrons diffusely scattered by
different orders of diffuse scattering as incoherent. In fact, it
has been proven that the calculation according to Equations
(30) and (31) recovers the entire multiple diffusely scattered
electrons (Wang, 1996b,c). Therefore, Equation (30) holds even
for highly distorted crystal structures. This is the point that
we have proven in this paper. This result could have important
applications in RHEED of a growing surface, where the surface
roughness could be so high that the single diffuse scattering
theory is insufficient.

What is Missing in Conventional Calculations?

The theory for HRTEM image calculation using a
combined Bloch wave-multislice theory has been pro-posed
by Wang (1998b). Listed below is our calculation for the
electron diffraction, which is more convenient with the use of
Bloch’s wave theory. The purpose of this paper is to illustrate
the rela-tionship between the optical potential and multiple
diffuse scattering. It is possible to cover all the high order
diffuse scattering terms if the optical potential is introduced in
an elegant way as showed earlier. The current dynamical
calculations reported in the literature are usually performed
with including the Debye-Waller factor and an imaginary
absorption potential following an equation

[(- 2/2m
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) ∇ 2 - eγV

0
 - eγV′ - E] Ψ
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 = 0

We would like to know what is missing in this type of traditional
calculation. To illustrate this point one starts from the Born
series solution of Equation (32), which is
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In comparison to Equation (11), the odd power terms of ∆V
are missing. Therefore, in the classical dynamical calculation
using either the Bloch wave or multislice theory, the
contribution made by the second, fourth and all the even
power order diffuse scattering terms are included but the first,
third and all the even order diffuse scattering terms are ignored.
Thus, the calculation includes only a small portion of the
diffuse scattering, and the calculated results should be

considered as pure-elastic Bragg scattering only.
The approximations made in conventional calcula-tions

are summarized in following. First, the Green function G is
replaced by its form in free-space G

0
, which means that the

dynamical elastic diffraction of the electrons is ignored once
they are diffusely scattered. Second, the optical potential V′ is
usually approximated as an imaginary function and the real
part is ignored. This might be a good approximation for TDS,
but it may not hold for SRO of point defects. Third, the first,
third and all odd power terms of the diffuse scattering terms
are dropped. Since the diffuse scattering is mainly distributed
at high scattering angles, in the low scattering angular range
the calculation accounts only the purely Bragg reflections
although the Debye-Waller factor is included; in the high angle
range, the calculation accounts only a small portion of the
diffuse scattering. Finally, it must be pointed out that the
Debye-Waller factor characterizes the weakening of atomic
scattering factor due to the blurring effect of the atom thermal
vibration, but the inclusion of this factor does not mean that
the diffuse scattering is included in the calculation. This has
been misunderstood by many readers. To account for the
contribution of entire diffuse scattering, Equation (6a) (or Eqn.
30) must be used.

Calculation of V’ by the Born Series Method

The calculation of the Green’s function, in principle, can
be carried out following Equation (24), the computa-tion of
this equation, however, could be very large because of the
requirement of the elastic waves with a wide range of wave
vectors and incident beam direc-tions. In the literature, the
Green’s function has been approximated by its form in free-
space (Yoshioka, 1957)
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The consequence of this approximation is that the dynamical
Bragg diffraction between consecutive diffuse scattering is
ignored. We now introduce an approximated method for this
calculation, and the purpose is to improve the original
approximation proposed by Yoshioka (1957). We now use the
Born series technique to give an approximated solution of the
Green’s func-tion (Wang, 1998c). Rewrite Equation (4) into
the following form:
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the Born series solution of this equation is
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where the first term is the Green’s function in free-space and
the second term is the kinematical scattering compo-nent of
the Green’s function. The nth term g

n
(r,r′) in Equation (36) is

related to the (n-1)th term g
n-1

(r,r′) by
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We now take a double Fourier transform of g
n
, with the use of

Equation (34)
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where V
0
(u) is the Fourier transform of V

0
(r). The calculation

of g
n
(u, v) is given in the Appendix.
We now use the first order approximation to illustrate the

consequence of including the crystal potential in the
calculation of the optical potential V′. If only the first two
terms are kept, with the use of Equation (34), then for a
periodically structured crystal (see Appendix) the double
Fourier transform of G under the first order approximation is
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A mathematical identity is used for the following calculation
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where P signifies the principal value (i.e., the function 1/(x-x′)
is given as 1/(x-x′) for all values of x′ except at the point x = x′,
for which 1/(x-x′) is taken to be identically zero). From Equations
(19) and (39)
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where the terms in the first {} are those first derived by
Yoshioka (1957) when the Green’s function is replaced by its
form in free-space. The terms contained in the second {} are
those from the first order kinematical electron diffraction as
included in the Green’s function calculation: the integral τ′(u)
is over all reciprocal space except the spherical shells defined
by |u| = K

0
 and

 
|u-g

1
| = K

0
, the two Ewald spheres (Fig. 5a); the

integral σ′(u) is over the Ewald sphere surface defined by |u| =
K

0
 except the points falling on the other Ewald sphere defined

by |u-g
1
| = K

0
; the integral σ′(u-g

1
) is over the Ewald sphere

surface defined by |u-g
1
| = K

0
 except the points intersecting

the other Ewald sphere defined by 
 
|u| = K

0
; the last integral

σ″(u) covers the intersection lines of the two Ewald spheres

(37)

(38)

(39)

(40)

(36)

(41)
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(i.e., a line integral). The volume and line integrals give a real
component correction to the potential, the surface integrals
give an imaginary component which is usually referred as the
absorption potential. Since the calculation includes the first
order diffrac-tion effect in the Green’s function, the Ewald
sphere |u-g

1
| = K

0
 represents the newly generated scattering

center at g
1
 due to Bragg reflection. The sum over g

1
 is to

consider the contributions from all of the possible Bragg
reflections scaled kinematically by the structure factor V

g1
.

The integrals are over the volumes excluding the shells
of the spheres, the surfaces of the spheres and the intersection
lines of the sphere shells. The number of spheres involved in
each calculation depends on the order of scattering to be
included in the Green’s function calculation. For higher order
scattering, the integral of points characterized by delta
functions (such as the joint points of three spheres) is possible,
as shown in Figure 5b for a second order scattering.

It appears that the calculation of Equation (41) may
encounter some numerical singularities, the separation of the
integrals into volume, surface and line integrals automatically
resolved this problem. It must be pointed out that the function
1/(u2-K

0
2) is an asymmetric function when u → K

0
+0 and u →

K
0
-0, thus the integral is close to zero around u = K

0
 (Fig. 6).

Conclusion

In this paper, the absorption potential first proposed by
Yoshioka (1957) is revised for  dynamic electron diffraction
with consideration of the effects arising from thermal diffuse
scattering and point defect scattering. Using the Green’s
function for a crystal instead of its form in free-space,  a rigorous
theoretical proof is given to show that the inclusion of this
potential in the dynami-cal calculation automatically recovers
the contri-butions made by the high order diffuse scattering
although the calculation is done using the equation derived
for single diffuse scattering.  This conclusion gives the basis
for expanding the conventional diffraction theories devel-oped
under the first order diffuse scattering to cases where the
specimen thickness is large and/or the degree of disorder is
high. Therefore, the calculated wave function is the full
solution of the Schrödinger equation including all of the orders
of diffuse scattering. Strictly speaking, the optical potential
here is no longer a potential function, and it has a much more
rich meaning than the conventional interpretation of an
absorption effect.

Appendix

If V
0
 is a periodic function, then it can be written into a

Fourier series
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where V
g
 are the so called structure factors which are related

to the atom types and atom distribution in the unit cell. From
Equation (37)
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A substitution of Equation (A4) into (A2) gives the second
order term
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The third order term is calculated similarly
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For the higher order terms with n > 1, and with the use of
Equation (40)

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)
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These terms appear to have singularities while perform-ing
the integrals, but as will be shown in Equation (41) that the
use of Equation (40) separates the integrals into volume,
surface, line and point (for higher order scatter-ing) integrals,
thus the singularities are automatically resolved.
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Discussion with Reviewers

P. Rez: Following Yoshioka (1957) the total wave function can
be written as a product of the fast electron wave function and
some generalized wave function representing the crystal in its
ground or excited state. Wouldn’t this affect the terms that are
collected in Equations (9) and (11)?
Author: There are two approaches for calculating the intensity
of diffusely scattered electrons. The first theory considers
the phonon scattering to be an excitation of crystal state and
the transition is described by a matrix element H

n0
′, as described

by Yoshioka’s theory (1957). This approach is the quantum
mechanical theory and it is suitable for both high and low
energy electrons, but the theory can only be reasonably
formulated under the single phonon scattering approximation.
The theory becomes incredibly complex if multi- and multiple-
phonon processes are included, such as the case de-scribed
in this paper.

The other approach is specifically developed for high
energy electrons under the frozen lattice approximation. Most
of the theories in the literature are devel-oped following this
scheme and the results have shown an excellent agreement
with experimental observations (Loane et al., 1991). This quasi-
elastic scattering theory is the approach adopted in this paper,
and I do not think the calculation following Yoshioka’s theory,
if possible, would produce any difference from the terms
collected in Equations (9) and (11).

P. Rez: Is there not a difference in treating diffuse scattering
from disorder and diffuse scattering from crystal excitations
(such as phonons, plasmons, etc.)? Would it not be better to
use a density matrix formalism to explicitly bring out these
differences?
Author: A condition for the quasi-elastic scattering theory in
the frozen lattice model to be hold is that the electron energy-
loss suffered in phonon excitation (< 0.1 eV) is much smaller
than the energy spread of the filament in TEM (~ 0.5 eV). With
consideration of the large difference in time scale, it is very
reasonable to treat TDS as a quasi-elastic scattering process.
For plasmon excitation, however, the electron energy-loss is
usually more than a few eV, much larger than the energy spread
of the filament, thus, the incoherence among the inelastically
scattered electrons must be considered, and the Yoshioka’s
theory needs to be adopted. Therefore, the theoretical
approaches for the phonon and plasmon excitations are quite
different.

The density matrix theory could also give the higher order
terms, but its numerical calculation is usually carried out
iteratively and the accuracy depends on how fast the
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calculation converge. The theory presented here, however,
shows that the calculation under the first order approximation
covers all of the higher order terms if the optical potential is
introduced properly.

P. Rez: The real part in Equation (28) has already been shown
to be vanishingly small.
Author: The numerical calculation of Rez (1978) showed that
the real component of the optical potential for single electron
excitation is very small, but the situation could be very different
for TDS and point defects. A full calculation must be done
before extrapo-lating the conclusion.
P. Rez: Can the author give an estimation on the magnitude of
the contributions representing various orders of scattering to
the optical potential ∆V?
Author: From Figure 2, it can be seen that the shape of ∆V can
be hardly approximated by its first order term which is
proportional to dV/dr. The numerical calcula-tion shown by
Wang (1995b, chapter 6) has demonstrat-ed this result, and
the high order terms are undoubtedly important.

G. Anstis: Does your work have any implications for
determining structure factors by convergent beam electron
diffraction (CBED)?
Author: The dynamical calculations on CBED reported in the
literature have been performed using Equations (20) (or
Equations 7 and 22). Based on the Born series form of Equation
(7), as given in Equation (9), the calculation covers only the
contributions made by even order terms of ∆V (i.e., ∆V2, ∆V4

etc, see the discus-sion given below Equation 33), but those
by all of the odd order terms (i.e., ∆V, ∆V3 etc) are missing.
This means that only the second, fourth and sixth orders TDS
are included in the calculation, but the contributions made by
the first, third and fifth orders TDS are ig-nored. Thus, the
result of this paper will have an important impact on
quantitative CBED since all of the TDS electrons remain
although an energy filter is employed.

G. Anstis: Can you say what implications your results have
for Cowley and Moodie’s multislice method using complex
potentials? In this method we cannot use thickness dependent
scattering functions.
Author: In Cowley and Moodie’s multislice theory, the phase
grating function of each slice is
Q = exp[iσ(V

0
 + ∆V)]. Following Cowley’s (1995) approach,

the absorption potential is introduced by taking a time average
of Q,

< Q > = exp[iσV
0
] < exp[iσ∆V] >
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This approach keeps the even order terms of ∆V, but the odd
terms are dropped. This means that the calcula-tion keeps the
contributions made by the second, fourth and sixth orders of
TDS, but those made by the first, third and fifth orders of TDS
are not included. Thus the multislice theory needs to be
extended to include all these odd terms following the similar
scheme introduced in this paper (see Wang, 1995a for details).

To properly introduce the absorption effect in the
multislice calculation, two approximations are made. First, the
non-local property of the optical potential is ignored, which
means V′ can be separated from Ψ

0
. Thus, Ψ

0
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,r’) is replaced
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0
(r) and Equation (8) is approximated as
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Secondly, the Green’s function is replaced by its form in free
space, thus, the optical potential is approximated as
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This complex potential should be used in image calcula-tions.
The recent theory by Wang (1998b) has implicated this
approach in the image calculation using the multi-slice theory.

G. Anstis: Does the non-local property of the optical potential
can be incorporated into the multislice calculations? what
errors are introduced by making a local approximation?
Author: It is possible to introduce the non-local property of
the optical potential for the atoms distributed within one slice,
but it may be difficult to incorporate the non-local property
along the beam direction (or z-axis) since the fundamental
assumption of the multislice theory is no backscattering. In
other words, the scattering in the nth slice is assumed not
being affected by the behavior of the slices located at deeper
depths.

The error introduced by the approximation of local optical
potential is equivalent to the error introduced by replacing
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the Green’s function with its form in vacuum, which means the
multiple Bragg reflections between successive diffuse
scattering events are ignored. Therefore, the accuracy of the
calculated Kikuchi patterns using the multislice theory might
be affected, particularly at high scattering angle region, but
for high resolution TEM image calculations the error could
vanish.

G. Anstis: Does your method apply only to uncorrelated atomic
displacements?
Author: No. The theory is applicable for a general case with
consideration of phonon dispersion relations. The calculation
of dynamic form factors under the harmonic oscillators
approximation for TDS and SRO of point defects have been
given elsewhere (Wang, 1996a). The theory also works when
TDS and SRO coexist.

D. Van Dyck: The paper claims to extend the Yoshioka theory
for thermal diffuse scattering. However, the original Yoshioka
theory was set up for inelastic scattering whereas the treatment
in this paper only deals with elastic diffuse scattering. Indeed,
in the Yoshioka paper the wave function of the whole system
(electron + crystal) is considered and expanded in eigenstates
of the crystal Hamiltonian so as to include inelastic electron-
crystal interactions that change the state of the crystal (e.g.,
create a phonon). The present paper only describes the
electron wave and leaves the crystal unaffect-ed by the
electrons.
Author: I always claim that the aim of this paper is to expand
the meaning and usefulness of the optical poten-tial, first
introduced by Yoshioka, beyond the conven-tional
interpretation. The paper was not intended to extend the
Yoshioka’s inelastic scattering theory (e.g., the coupled
differential equations). This might be a misunderstanding.

The referee is correct that I did not consider the change
of crystal states as a result of phonon excitations. If the electron
and the crystal is considered as a system, then the heat (or
energy) transfer between the crystal and the environment (i.e.,
the specimen holder in TEM) would also have a small affect
on the form of the absorption potential (Fanidis et al., 1992,
1993), but this effect might be negligibly small in comparison
to other factors.

D. van Dyck: If one uses a time-dependent potential one should
in principle start from the time dependent Schrödinger equation
unless it is proven that the approxi-mation of using t as a
parameter is valid (for instance if the time scales are largely
different).
Author: The frozen lattice model (or quasi-elastic scattering
model) is usually adopted in the calculation of TDS for high
energy electrons. It is this model which converts a time-
dependent process into a sum over the time segments
composed of many instantaneous time-independent processes

because the interaction time between an incident electron with
the crystal in TEM is much much shorter than the vibration
period of the crystal atoms. Thus, the lattice configuration is
seen as if stationary for one incident electron. For the next
incident electron, the crystal atoms are “frozen” at different
positions. Therefore, the observed diffraction pattern
contributed by many electrons is a sum of the intensities
contributed by these electrons, each of which has been
scattered by a slightly distorted lattice, equivalent to taking a
time average over the scattering intensity, while time t is taken
as a parameter in the calculation. The validity of the frozen
lattice model has been discussed by Wang (1995b, sections
2.1 and 7.1) and by Loan et al. (1991).

D. van Dyck: How are the boundary conditions as introduced
at exit and entrance face of the crystal, or is the vacuum
considered as a part of the object for which V = 0?
Author: The boundary condition is introduced at the entrance
face of the crystal z = 0 (see the paragraph following Equation
13b).

D. van Dyck: The diffraction pattern is calculated as the 2D
Fourier transform of Ψ at z = ∞. I believe however that the
diffraction pattern is the Fourier transform of the wave function
at the exit face of the crystal, or in the Fraunhofer approximation
at the wave function Ψ itself at z = ∞.
Author: For diffraction pattern calculation, both ap-proaches
give the same answer, as proven below. If the electron wave
function at the exit face z = d of the crystal is Ψ(b,d), the
diffraction intensity is |FT[Ψ(b,d)]|2, where b = (x, y) and FT
stands for the 2D Fourier transform. We now shift the
observation point to z = L (L → ∞), the propagation of the
wave in free space for a distance of L-d needs to be considered.
Thus, the wave function observed at z = L, under the small
angle scattering approximation, is (Cowley, 1995)

Ψ(b,L) = Ψ(b,d) ⊗   P(b,L-d)

where ⊗  stands for a convolution calculation of b, and P is the
Fresnell propagator

zi

/z)|b|iK(exp
=z),b

2

λ
π

P(

Since FT[P(b,z)] =  exp(- πiu2∆zλ), one simply has

|FT[Ψ(b,L)|2 = |FT[Ψ(b,d)]|2 |FT[P(b,L-d)]|2

          = |FT[Ψ(b,d)]|2

Thus, the diffraction patterns are the same at the crystal exit
face z = d and at z = ∞.
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D. van Dyck: V′ is called a nonlocal function. In the strict
sense it is not a function but rather a functional.
Author: I agree with the reviewer.
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