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Abstract

The theory for the absorption potential (or optical
potential) in electron diffraction was established many years
ago by Yoshioka. However, few studieshave been devoted to
examining the approximationsoriginally introduced whenthe
potential was derived. In this paper, the absorption potential
first proposed by Yoshioka is revised for dynamic electron
diffractionwith consderation of theeffectsarising fromtherma
diffuse scattering and point defect scattering. A rigorous
theoretical proof is given to show that the inclusion of this
“potential” inthedynamical cal culation automatically recovers
the contributions made by the high order diffuse scatter-ing,
although the calculation is done using the equation derived
for single diffuse scattering. If Yoshioka's approximation is
made, i.e., the Green’sfunctionisreplaced by itsforminfree-
space, then theinclusion of the optical potential indynamical
calculationsstill recoversthe multiplediffuse scattering terms
except the dynamic Bragg reflection after each diffuse
scattering event. This conclusion establishes the basis for
expanding the conventional diffraction theories developed
under thefirst order diffuse scattering approximation to cases
where the specimen thickness is large and the degree of
disorder ishigh. It has been shown that the* optical potential”
depends also on the structure of the crystal. The Fourier
coefficients of this function are given in the Bloch wave
representation for transmission electron diffraction.
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Introduction

Refining crystal structures by quantitative electron
diffraction (Spence and Zuo, 1992; Midgley et al., 1995) is
experiencing a rapid devel opment owing to the advancesin
electron energy-filtering and digital data recording systems
(see many articles in the book edited by Reimer, 1995).
Quantitative analysis of structure information provided by
transmission electron diffraction and imaging strongly relies
on computer smulations. Animportant quantity in dynamical
calculation is the “absorption” potential (or the optical
potential, Dederichs, 1972), given based onmodel caculations.
The absorption here actually means that the electron is not
absorbed by the specimen rather it is scattered out of the
elastic state (or Bragg peaks) due to energy-loss and
momentum transfer, resulting in adecreasein theintensity of
the elastic wave. Thisis the effect of inelastic scattering (or
diffuse scattering) on the Bragg reflected waves (Yoshioka,
1957), which is equivalent to introducing an absorption
potential indynamical calculation (Heidenreich, 1962). This
work has been the basis of almost al of the later theoretical
calculations on electron diffraction and imaging. The
theoretical modeling of the absorption potentia has been a
focus of research for many years and substantial progress
has been made in including the contributions made by single
electron excitation (Gjennes, 1962; Howie and Stern, 1972;
Whelan, 1965a; Radi, 1970; Humphreys and Whelan, 1969;
Allen and Rossouw, 1990; Wang, 1990), thermal diffuse
scattering (Whelan, 1965b; Radi, 1970; Humphreysand Hirsch,
1968; Rossouw et al ., 1990) and disorder point defect scattering
(Howieand Stern, 1972; Dudarev et al ., 1992). Theabsorption
potential has been published in forms of parametric fitting
and FORTRAN programsfor theaccessof public users(Coene
and Van Dyck, 1990; Dudarev et al., 1995; Bird and King,
1990).

Almost dl of themodel cal culationsfor the absorption
potential have been based on the approximation originally
introduced by Yoshioka (1957), inwhich the Green’sfunction
isapproximated by itsformin free-space. Thus, the absorption
potentia is a non-local function that depends only on the
nature of the inelastic scattering and the crystallographic
structure but has no relation with the diffracting condition of
theincident beam. All of the cal culations|ater were performed
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List of symbols

Instantaneous crystal potential

V1) Timeand spatialy averaged crystal poten-tial

AV(rit)  Deviation potential from the average struc-ture

<> Statitical time and structure average

W Electron wavefunction

U, Accelerating voltage of the electron micro-scope

m, Electron mass

% Reatividticfactor

% Electronvelocity

W, Elastic wave initiated by an inci-dent plane wave
of wavevector K |

G Green'sfunction

G Fourier transformof G

K Electron wave vector

Vv Optical potential

W Bragg scattered wave dueto the aver-age periodic
latticeV ex-cluding V'

B(K,r) Blochwave

C Bloch wave coefficients

S(Q,Q) Dynamicformfactor

G, Green’sfunctioninfree-space

uVv,T Reciproca space vectors

g, h Reciprocal space lattice vectors

based on this approximation, but no study has been initiated
to examine the consequence caused by Yoshioka's
gpproxi-mation.

On the other hand, cal culations of thethermal diffuse
scattering are usually carried out based on the distorted
potential method first proposed by Tekagi (1958), inwhichthe
thermal diffuse scattering is considered as a perturbation and
only the first order diffuse scattering is considered. This
approximation may bereferred to asthe distorted wave Born
approximation (DWBA), which hasbeen applied to calculate
thediffuse scattering produced by rough surfacesin reflection
high-energy electron diffraction (RHEED) (Dudarev et al.,
1993) and short-range order of point defectsin transmission
eectrondiffraction (Wang, 19964a). It appearsthat, at first Sght,
the optical potentia is primarily responsible for taking into
account the reduction of intensity due to diffuse scattering,
andit may haveno relation with the multiple scattering effects.
Infact, they are correlated with each other, asto be shownin
thispaper. Sincethe contribution made by inel astic scattering
processes with energy-loss larger than 2 eV can be removed
from theimages and diffraction patternsusing an energy filter
but the diffuse scattering remains, our theory here is about
thermal diffuse scattering (TDS) and short-range order of point
defects.

This paper aimsto derive amore precise form of the
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“optical potential” with the use of the Green’sfunction for a
real crystal system instead of itsformin free-space. It will be
shown that the inclusion of this potential in the dynamical
calculation automatically recoversthe contributionsmade by
the high order diffuse scattering, although the calculation is
done using the equation derived for single diffuse scattering.
Therefore, the cal culated wave function isthefull solution of
the Schrodinger equation including all orders of diffuse
scattering. Details are given to show the calculation of the
optical potential using animproved Green’sfunction.

A General Approach to Diffuse Scattering

Diffuse scattering is produced by structure
modula-tion in a crystalline specimen, and the diffusely
scattered electron intensity is distributed between Bragg
reflected peaks. The Bragg reflections are generated by the
periodically structured lattice of the crystal, whilethe diffuse
scattering is produced by the non-periodical components
including thermal vibrations of the crystal atoms and short-
rage order (SRO) of point defects. Figure 1 showsan electron
diffraction pattern recorded at 100 kV from Si foil. The TDS
streaks observed in the pattern are determined by phonon
dispersion relations of the acoustic branches (Honjo et
al.,1964; Wang, 1992a). A generd featureinthe TDSdiffraction
pattern is that all of the streaks run along the lines
interconnecting the Bragg peaks. For a monoatomic cubic
structure, a simple rule has been proposed to predict the
directions of the stresksin diffraction patterns from the unit
cell structure of the crystal (Wang and Bentley, 1991).
Dynamical theoriesfor calculation of diffraction patternsand
images of TDS electrons have been extensively developed
based on the multidice approach (Fanidis et al., 1989, 1992,
1993; Coene and Van Dyck, 1990; Wang, 1991, 1992aand b,
1995g; Dingeset al., 1995), the Bloch wave approach (Howie,
1963; Rossouw, 1985; Rossouw and Bursill, 1985; Rezetal.,
1977) and the Green'sfunction approach (Dudarev et al., 1991;
Wang and Li, 1995). All of these theories (for areview see
Wang, 1995b) are based on the first order diffuse scattering
approximation, asdescribed infollowing.

Toillugratethefocal point of thispaper, wefirst review
the classical approach of Takagi (1958), in which an average
crystal structure isintroduced. Thecrystal potential V(r,t) is
writteninto aform of

V(r)=Vyr)+Av(r.t) (@]
whereV (r)=<V(r,t) > isthecrysta potentia for theaverage
|attice, defined to be time independent and periodic, < >_
indicatesthe statistical timeand struc-tureaverage, and AV(r)
representsthe deviation from the averagelatticewith < AV(r ,t)
>_=0, anditisnon-periodic and time-dependent (for TDS).
The statistical structure average < >_ takes into account the
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Figurel.A[100] eectrondiffraction pattern recorded froma
thin Si foil showing <110> streaksproduced by thermd diffuse
scattering.

SRO of point defects. Figure 2 givesaschematic illustration
of thistheoretical approach for acaseinvolving point defects.

Equation (1) clearly indicates that TDS is a time-
dependent process and time-dependent Schrédinger equation
should be used. However, as to be shown below, this time
dependent process can be converted into a series of time-
independent processes. In high energy electron scattering,
the“frozen” latticemodel isassumed indescribing TDS (Hall
and Hirsch, 1965), which meansthat, although atom vibration
isatime-dependent process, the crystal latticeappearsasifin
a stationary instantaneous configuration for an incident
electron since the interaction time of the electron with the
crystal ismuch shorter than the vibration period of the crystal
atom, but the crystal lattice can be in another configuration
for the next incoming electron. Thus, for each lattice
configuration, the scattering of the electron can be considered
as a time-independent quasi-elastic scattering process, and
thefina observed diffraction pattern contributed by mil-lions
of electronsis equivaent to atime average on theintensities
calculated for thedifferent lattice configurations, and thetime
t simply serves as a parameter signifying the spontane-ous
lattice configura-tion in the calculation. In fact, it has been
proved by Wang (19984) that the result obtained using the
frozenlatticemode isidentical totheresult of quantum phonon
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Figure2. One-dimensiond representation of acrystal potential
V, thestructurally averaged potentid V= <V>andthedeviation
potential AV = V-V for acrystal containing point vacancies.
V, isaperiodic function but AV isnot.

excitationtheory if (1) theincoherence between different orders
of thermd diffuse scattering isconsidered in thefrozen lattice
model calculation, and (2) the specimen thickness and the
mean-free-path length for phonon excitation both aresmaller
than the distance traveled by the electron within thelife-time
of thephonon. For thethin crystal case, thelatter isabsolutely
satisfied.

Thefirst objectivein our theory istofind the scattered
electron wavefor agiven frozen lattice config-uration, thena
statistical time average is made on the electron diffraction
intensities for a vast number of different thermal vibration
configurations. For simplicity, we start from the time-
independent Schrodinger equationwith relativistic correc-tion
(Humphreys, 1979; Spence, 1988),

[-LDZ-eWO-evAV-ij:o @

2 Mo
where

E=¢e 1+ &
Uol 2 Mo ]
U, istheaccel erating voltage of the el ectron micro-scope, the
relativistic factor y= (1 - v?/c?) 2, and v the electron vel ocity.
For electron scattering, Equation (2) is converted into an
integral equation with the use of the Green’sfunction G(r r )
(Kainumaetal., 1976):

W(r =W (K, r)+dr, G(r,r)[eyAV(r ¥, ]
where G isthe solution of
2
e RS UL (A NNC
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and W (K ,r) represents the elastic wave initiated by an
incident plane wave of wave vector K, after being scattered
by the periodic, time-independent average potentia V , andit
satisfies

hZ

('2 0%-eyVo-E) =0

©

Equation (5) can be solved using the Bloch wave or multidice
theory, whilethe solution of Equation (4) isnot sraightforward
because apoint sourceislocated atr =r . It must be pointed
out that the time variable in Equation (3) represents the
instantaneousl| attice configuration of the crystal dueto thermal
vibration. Equation (3) is usudly solved iteratively so that
each expansion term represents an order of the diffuse
scattering. To illustrate our approach, the diffraction pattern
is calculat-ed under the first order diffuse scattering
approximation: W(r ,t) isreplaced by W (K ,r.) in Equation
(3). Wefirst makethisassumption, then wewill comeback to
modify our approach to pick up the high order terms dropped
by thisapproximation. Thus

Mo

Y(r b=

W (Kn)Hdr, G(r,r )[eyAV(r ,HW (K,r)] (6a)
wherethefirgt term standsfor theelastic Bragg reflected waves
and the second term is the first order diffuse scattering
produced by TDS and/or SRO. This approximation holds if
the specimen isthin. A consequence of this approximationis
that the total number of incident electrons is not conserved
because of the drop of higher order diffuse scattering terms.
The diffraction pattern is cal culated by

[(u)=|®P(K,,u,z=o0f

+(ey)J dr, [ dr G(u,,z=00,1 )G *(u,,z=o0,1 )
X[<AV (r ,DAV(r,,t)> JW (K, r )W *(K,r,)  (6b)
where @ and arethe 2D Fourier transforms (FTs) of W and
G(r,r,) at z= oo, respectively. Thetime and structure average
of <AV(r ,t) AV(r,t)>_can be performed analyticaly before
numerical calculation (Dudarev et al., 1991; Wang, 1995a,
19964). Fromthereciprocity theorem, G(X, y, z=, 1) =G(r , X,
Y, z=00), provided thereis no absorption. Thisrelation means
that thewave observed at z = co when apoint sourceisplaced
atr, withinthe specimen isthe same asthe wave observed at
r, (inthe specimen) when apoint sourceisplaced at z= o (the
imageplane). In practice, whenapoint sourceisplaced at z=
oo, the spherical wave emitted from the sourceisaplanewave
when falls on the crystal surface, thus, G(r,,x,y,z=) is
equivalent to the solution of the Schrodinger equation for an
incident plane wave. This relation can be proven
mathematically (Dudarev etal., 1993) as

GA(ub!ri):Aquo(_K_ub’ri) (6C)
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where W (-K, r,) isthe solution of the Schrodinger equation
(Egn. 5) for anincident planewave of wave vector (- K) (K =
K,+u,)and
A =-[im exp(2riK 2)](n?K )* (6d)
The negative sign of the wave vector meansthat the electron
strikes the crystal aong the negative z-axis direction. The
eladtic scattering wave W (-K, r,) can be obtained using the
conventional dynamical approaches, such as Bethe's theory.
Thus, Equation (6b) is the basis of dynamical calculations
under the first order diffuse scattering approximation, and it
has been the fundamental equation for diffuse scattering.
To compensate for the loss of high order diffuse
scattering terms in Equation (6a), an optical potentiad V' is
added in the Schrodinger equation (Egn. 5) to modify the
solution of W, so that Equation (6a) may approach the exact
solution of Equation (2)
hz
(-5 —0%-eyVo-eW'-B)yo=0 @
2mo
Thistechniqueworksif aunique solution of V' can befound.
The optical potential V' is chosen in such a form that both
Equations (6a) and (7) exactly satisfy Equation (2), the
substitution requires
[V'W J=ey[dr [G(r,r )AV(rHAV(r HWP (K r)l ()
The function V' defined in Equation (8) has two impor-tant
characteristics. V' isanon-local function since V' cannot be
separated from wave function W .. Strictly speaking, it is
inadequateto call V' apotential because of itsdependenceon
the Green's function G, the solu-tion of which is determined
by the crystal structure. To match the terminology that has
been used in theliterature, V' istill referred asa* potential”
function in the following discussion.

The" Optical Potential” and
MultipleDiffuse Scat-tering

Thefirst objectiveisto provethat theoptical potential
V' given by Equation (8) can be applied to recover the high
order diffuse scattering termsdroped when W(r .,t) isreplaced
by W (K,r,) in deriving Equation (6a) under the first order
diffuse scattering approximation. Starting from the integral
form of Equation (7) with the use of Green’s function and
iterative calculation, the elastic waveis expanded as

WK r)=
W OK r)+ey [dr G(rr )IV'(r )W, (K, r)l
=W O(K r)+(ey)?fdr G(r,r)[dr,[G(r,r,)
XAV (r HAV(r D)W (K, r,)]



Retrieving multiple diffuse scattering

{a) Multiple-ela stic, multiple-diffuse
scattering

Elastic scattering 1

Diffusa scatteing 1

Elasfic scatiering 2
Difusa :maltunn

lastic scafterng 3
»

—m

(b} Single-lastic, multiple -ditfuse
scattedng

Elastic scattaring 1

—

Ditfuse scattering

Figure 3. Schematic diagrams showing multiple diffuse
scattering processesin acrysta (a) with (G) and (b) without
(G,) consideration of dynamical diffraction between
consecutive diffuse scattering events. Thefan-shapeintensity
distribution indicates a diffuse scattering process.

=W OK r)+(ey)?fdr, fdr,[G(rr)G(r,.r)
XAV (r ;) AV(r,t) W OK 1)l
+(ey)*fdr Jdr,fdr [dr, [G(rr,)G(rr,)
XG(r ) G(r,r,) AV(r ;) AV(r,t)
XAV (r ) AV(r ) W OK r )]+~ ©)
where W @ is the Bragg scattered wave due to the average
periodic lattice at the absence of V' (e.g., no absorption)

n 0)—

(-——D%-eyo-B)yP=0
2mo

This equation can be solved using conventional dynamic
electron diffraction theories. Substituting Equation (9) into
Equation (6a), thetotal scattered waveis

(10)
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W(r ) =W OK,r)
+(ey)fdr G(rr)AV(r,t) W OK,r)
+(ey)?fdr fdr, [G(r,r)G(r,r,) AV(rt)
XAV(r,,t) W OK,r )]
+(ey)*fdr fdr,fdr [G(r,r)G(r,r,)
XG(r,r JAV(r DAV (r DAV (r )W K 1 )]
+(ey)*fdr fdr, fdr fdr, [G(rr)G(r,.r,)
XG(r,r,) G(r,r,) AV(r ) AV(r,t)

XAV(r,t) AV(r,,t) W O (K r )l - (12)
whereall of the higher order termshave been recovered. The
thirdtermin Equation (11) istaken asan exampleto show its
physical meaning, as schematically shown in Figure 3a. The
Bragg scattered waveis diffusely scattered at r, by AV(r,t).
The diffusely scattered wave is elastically scattered by the
crystal latticewhile propagating fromr  tor, [G(r,r,)], then,
the second order diffuse scattering occurs at r, [AV(r,t)].
Finaly, the double diffusely scattered wave exits the crystal
atr after elatic scattering when propagating fromr_ tor [G(r,
r)l. The integrals over r, and r, are to sum over the
contributions made by al of the possible scattering sources
inthecrystal.

It can be proven directly from Equation (11) with the
use of Equations (10) and (4)
2
(—2’1—% I2-eyVo- ) V() =eAV(n) Wiy (12)
which is exactly the form of Equation (2), the equation we
started with. Therefore, the multiplediffusely scattered waves
are comprehensively included in the calculation of Equation
(6a) if the optical potential V' given by Equation (8) is
introduced in the calculation of W, (Eqn. 6a). Thisis akey
conclusion which meansthat, by introducing aproper form of
theoptical poten-tia, themultiple diffuse scattering termsare
automatical-ly included in the cal cul ation using Equation (6a),
although it was derived for the first order diffuse scattering.
Thus, introduction of theoptica potentia V' inthecalculation
of the elastic wave makes the existing theories available for
calculating high order time-depen-dent systems (TDS). This
conclusionisuniversd for atime-independent system because
no assumption and approximation was made in the proof.
There are two mgjor stepsin this cal culation: the solution of
Equation (6a) and the optical potential V'. These quantities
are calculated separately in following sections.

TheBloch Wave Solution

For transmission electron diffraction of a thin dab
crystal, as shown in Figure 4, the Bloch wave theory is the
best suited approach for solving the Schrodinger equation if
theaveragecrystd latticeisperiodic. Thewavefunction W is
alinear superposition of the Bloch waves B,
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WolKo.N =X ai(KoBi(Ko) (139
where
B; (Ko’ r) = ZCS)(KO)exp[ZTIi (Ko + 9)'1 +2my, Z]
g (13b)

which is the eigen-solution of Equation (7); o, are the
superposition coefficients determined by the boundary
conditions, and the result is a, = C, ", where C, © are the
elementsof thefirst column of theinverse of thematrix whose
elements are C " (row i and column g) (Spence and Zuo,
1992). Sincetheaveragecrystd potentid isaperiodic function,
it can bewritteninto aFourier series,

V(r) = ng exp[2T|ig l]] (14
g

Thus, the substitution of Equations(13b) and (14) into
Equation (7) gives

[K3-(ki+9)IC +%ng.hcﬂ>
h

- Zr:’;:Ze or expl-2ri(k, + 0)H V'8, (Ko,r)] (19

wherek, =K +vz, andV isthevolumeof thecrystal. Wenow
use Equation (8) to perform the cal cu-lation on theright-hand
sideof Equation (15). Since[VOW ] givenin Equation (8) isa
time-dependent (or | attice configura-tion-dependent) function,
itisapproxi-mately represented by itstime/structure average
inthefollowing calculation

Jar exp[-2rmi(k +g)ir] <[V' B/(K,F)]>,
=ey[dr [dr exp[-2mi(k+g)] [G(r.r,)
X<AV(r ) AV(r 5> B(K,r )] (16)
To proceed with thiscal culation, adynamicformfactor S(Q,Q")
(for areview seeKohl and Rose, 1985) isintroduced

<AV(r HAV(rb)>,

=[dQJdQ" exp[2ri(r [Q - r,[@)] S(Q.Q) (17
Thedynamicformfactor S(Q,Q’) isanimportant quantity in
dynamical inelastic eectron diffraction. For TDS and SRO,
the calculation of (Q,Q") isgiven elsawhere (Wang, 1995a,
19964), in which the statistical time average over the
instantaneous thermal vibration configurations of the crystal
atoms and the statistical spatial distribution of the point
defectswith spatial short-ranged ordering have been evaluated
analyticaly. Thus,

Jdr exp[-2ri(k +g)I] <[V’ B(K,)]>,
=ey [dQ[dQ'S(Q,Q") Jdr [dr {exp[2ri(k+g)[]
xexp[2ri(r[@-r,[@)] [G(r.r,) B(Kr )]}
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Incident electron

Ko yq - X
£

Figure4. A coordinate system used to describetrans-mission
electron diffraction by athin crystal dab of thicknessd. The
incident beamisnearly paralle tothez-axis.

=eyy cl)(k) [dQ [dQ's(Q.Q)

x[dr [dr, exp[-2ri(k+g-Q) - 2ri(Q'-k -h)(r]

xG(rr)
=Y vHch(ko) &)
h

where

v 0= H1dQ[dQ S(QQ) G (k+g-QQ-ki-h)
and G (u,u,) denotes the 3-D double Fourier transform of
G(rr,). Substituting Equation (18) into Equation (15), amatrix
equation is obtained (Humphreys, 1979; Spence and Zuo,
1992)

N2 e S
[ K2-(ki+0)7Cf +y—n;02(Vg-h+V’g?1)Cﬂ) =0
h™ % (20)
Thisisjust the eigen-equation of the Bloch wavetheory except
V,nis rfapl acedby [V, + V'gh("_] (NoteV' dependsalsoon Fhe
branchi of theBlochwave). Thisisan éegant approach which
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has automatically included the non-local effect of the optical
potentia . Equations (19) and (20) areequivaent tothat derived
by Radi (1968) for a general inelastic scattering case. The
numerical calculation can be performed using the FORTRAN
program devel oped by Spenceand Zuo (1992).

The second objective here is to prove that Equation
(19) isagenerdized formof theoptical potentid first introduced
by Yoshioka (1957). If the diffraction effect of the crystal is
ignored so that the Green’sfunction isreplaced by itsformin

free-space,
2mp eXP2TiKo|r -]

G(r,1r) =Go(r,r) = (21)
( rl) O( rl) hz 4_,_[|r_rl|
after some calculation, Equation (19) gives
Vi) = enpy lim jdu5(9+ki-U,h+_ki-U)
N 2mPh?Vee - 0 K3-u?+ie
11} ([dt(u S(g+ki -u,h+ki -u)
2181V (1) u?- K3
+iz"fdo(u)S(g+k -Uh+ki W} (22
2Ko

wheretheintegra t(u) isover al reciproca spaceu except a
spherical shell defined by Ju| =K, and theintegral o(u) isover
the Ewald sphere surface defined by |u| =K .. Thisistheform
of the optical potential first obtained by Yoshioka(1957) and
Yoshiokaand Kainuma (1962). Thisfunctioniscomplex, and
itsreal partisusually ignored becauseitismuch smaller than
the crystal potential. But in recovering the high order terms,
the real component needs to be included. The imaginary
component is just the absorption potential that has been
frequently used in dynamical calculations. The V' given by
Equation (22) is independent of the dynamica diffracting
condition because of the substitution of G by G, Inthiscase,
V' canbecalled an optica potentia, but, inageneral case, the
function V' isnot smply a potential function because of the
involvement of Blochwave coefficientsand crystal thickness.

From the discussion above, one might wonder: what
ismissing in dynamical calculations if the optical potential
takes the form given by Yoshioka (1957)? If the Green's
functionisreplaced by itsforminfree-space, Equation (11) is
approximated as

W) =W OK,r)
+(ey) fdr, Gy(r,r) AV(r ) W OK,r)
+(ey)?fdr [dr,[Gyr.r)G/r,r,)AV(r,t)
XAV(r ,t) W OK,r,)]
+(ey)fdr Jdr, fdr [G(rr)G/r.r,)
XG(rur ) AV(r ;) AV(r ) AV(r,b)
<K
+(ey)*fdr fdr,fdr [dr, [G/rr,)G/r,r,)
XG(r,r ) Gyrar ) AV(r ) AV(r )
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XAV(r,t) AV(r,t) W OK ,r )] + I (23
Wetakethesecond term asan exampletoillustratethe physical
meaning of this equation: the elastic wave at W O(K r,) is
diffusely scatteredat r, by AV(r ,t), followed by apropagation
in“free-space” fromr  tor, wherethewaveexitsthecrystal.
Thisapproximation simply ignoresthe dynamical diffraction
of the electron after the diffuse scattering, and it can be
schematicaly shown by Figure 3b, wheredynamical diffraction
occurs only prior to the diffuse scattering (Haier, 1973).
Equation (23) includes all of the orders of diffuse scattering
but not the dynamica diffraction of the diffusely scattered
waves. This is the consequence arisen from the Yoshioka's
approximation. On the other hand, the multiple diffuse
scattering isincluded in the optical potential. Therefore, the
high order diffuse scattering has already beenincludedin the
dynamical calculation although the calculation is performed
using the equation derived under the first order diffuse
scattering approxi-mation. The optical potential has a rich
meaning beyond the conventional interpretation of an
absorption potential.

TheGreen’sFunction Solution and
TheOptical Potential

The Green's function represents the electron wave
distributed in the space dueto apoint sourcelocated at r =r’
inthe crystal. The Green’sfunction can be expressed into an
integral form of the eigen Bloch states (Radi, 1968). In this
section, we usethe Green’sfunction of Dudarev et al. (1994)
tocaculatetheoptica potential for agenerd case. TheGreen's
function for electron scattering has been proven to be in the
formof

mo lim
218h%e - 0

exp(-2miK er’)

G(r,r’): (KZ_Kg_is)

WP (k,r)

=0 @PEIKO 1D g fexparin 1)
21,2 [r-r"|

X LIJS)) (' K, r)]

= rrbz |—exp(2Tll, Kol )—|DJdK [exp(2riker') x LIJSO) (K,
2mp? | r | e

whereW ©(& r) isthesolution of Equation (10) for anincident
planewavewithwavevector K, which can be cal culated using
conventional dynamical diffraction theories. This is a key
rel ation which correlatesthe Green’ sfunction with the solution
of the Schrddinger equation. We now take a double Fourier
transformof G(r,r’)

G(u,v)=[dr [dr’ exp(- 2riul) exp(-2mivE) G(r ')
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lim (0)(_
My Dy ( v,u)‘
oh? ¢, olv2-KE-ig) @

where ® ©(k,u) isthe Fourier transform of ® ©(k,r), and the
negative sign of the wave vector indicates that the incident
plane wave strikes the crystal from the bottom surface.
Substituting this equation into Equation (19), the optical
potential is

) li
Vil =2:2V% m Jdulfdk S +g-u.k +h-k)
L PP (kW) ]
k2-K§-ie

o (k,u)
an 2 fdu[de(K)S(kI +g-U,k; +h- K)—KO

i do (k) S(k; +g-U, ki +h-K) @ (k,u)]  (26)
2Ko

where the integral 1(k) is over al reciprocal space except a
spherical shell defined by [k| =K ; theintegral (k) isover the
Ewald spheresurfacedefinedby K =K ; andk =K +v 2. The
integral of u isto sum over the components scattered to the
entirerecipro-cal space. Since 1/(k?- K ?) isan antisymmetric
functionwhenk - (K-€) andk — (K +€), thustheintegral
around thesingular point k = K is approximately zero, thus,
no abnormal numerical singularity is expected in numerical
calculation (Rez, 1976). Equation (26) isagenera solution,
and itsmeaning can beillustrated by thefollowing two cases,
and a detailed andytical illustration of which will be given
later.

For transmission electron diffraction, the wave
functiontakestheform of the Bloch wavesgiven by Equations
(138) and (13b), thus

o (ku) =Y > CP () C'P ()8 (uk-v; 2-9') (27)
i g

whereC, ! arethesol utionsof Equation (20) withoutincluding
the correction potential V', the corresponding optical
potential is:

L—ZHZ ; C;;{Idr(K)CSV(K)CU)(K)
S(k.+gl< szg ki +h-K) ]
K Ko

)" (k) C'§ (k)

xS(k+g-K-v2-g' K +h-K)] (29

As pointed out in Equation (8), V' is a non-local func-tion
depending on the Green’sfunction sparked by apoint source
in the specimen. Thefinite thickness of the specimen affects
the solution of the Green’sfunction, resulting in thethickness
dependenceof V'. By the sametoken, V' aso dependsonthe
Blochwave coefficientsthat are responsiblefor thedynamical
diffraction effect, which, however, was dropped in the theory
of Yoshioka(1957). Thisisthekey differencethat distinguishes
our theory from the conventional approach. Thisis aso the
critical point that the potentia given by Equation (26) can
automatically include multiple diffuse scattering in dynamica
calculation with the use of the first order diffuse scattering
equation (Egn. 6a).

Under thezero order approximation, inwhichthewave
function is the incident plane wave, ®© (k,u) = (K - u),
Equation (26) givesthe exact result of Equation (22).

TheMultipleDiffusely Scatter ed Electron I ntensity

The theory for HRTEM image calculation using a
combined Bloch wave-multislice theory has been proposed
(Wang, 1998b). We now usethe Bloch wavetheory to calculate
the diffractiion pattern. The objective in this theory is to
calculate the angular distribution of the multiple diffusely
scattered electrons. We now consider the main stepsin this
caculation. Since V' isgpproximated by itsaveragevaue<V'>,
in Equation (16), which means that W (r,t) is replaced by
<Y (r b)>, thus,

<P (K ,U,,2=0) AV(r 1>,
=<{FT[<W (xy,z=00,)> JAV(r 1)} >_=0 (29)

Therefore, with the use of Equations (6¢) and (17), the
diffraction pattern formed by the Bragg reflected and all
diffusely scattered electronsis calculated by

I(u) =< DK u,t)] >F
+D[dQ [dQ" S(Q,Q"){ Jdr, [exp(2ri(r,@)
x W O(K -u,r)<W (K, r)>]
><jdr [exp(- 2rir [Q") W O (-K -u,r)
x<W (K, r)>1} 30

where D = ey’m [21Ph°E cos’q]™, and @, is the angle
betweenK and z-axis, and <¥ (K r,)> isthe solution of

(-h#12m, 2 - eV - E) <W >
=ey [dr [G(r,r )<AV(r, DAV (r ,)> <W (K )] (3D

whichisconvertedinto Equation (20) inthe Blochwavetheory;
and W © isthe solution of Equation (10).
Aniterative cal culation of Equation (30) showsthat al of
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theeven order termsof AV (e.g., AV?, AV*etc.) areincluded,
but the odd order terms (e.g., AV?, AV® etc.) are dropped asa
consequence of replacing V' by its average. This result is
equivaent to treating the electrons diffusely scattered by
different orders of diffuse scattering asincoherent. In fact, it
has been proven that the calculation according to Equations
(30) and (31) recoversthe entire multiple diffusely scattered
eectrons(Wang, 1996b,c). Therefore, Equation (30) holdseven
for highly distorted crystal structures. This is the point that
we have proveninthispaper. Thisresult could haveimportant
applicationsin RHEED of agrowing surface, wherethe surface
roughness could be so high that the single diffuse scattering
theory isinsufficient.

What isMissingin Conventional Calculations?

The theory for HRTEM image calculation using a
combined Bloch wave-multislice theory has been pro-posed
by Wang (1998b). Listed below is our calculation for the
electron diffraction, which ismore convenient with the use of
Bloch’swavetheory. The purpose of this paper istoillustrate
the rela-tionship between the optica potential and multiple
diffuse scattering. It is possible to cover al the high order
diffuse scattering termsif theoptical potential isintroducedin
an elegant way as showed earlier. The current dynamical
calculations reported in the literature are usualy performed
with including the Debye-Waller factor and an imaginary
absorption potentia following an equation

[(-h2m) O2- eV -eV' -E] W, =0 (32
Wewould liketo know what ismissinginthistypeof treditional
calculation. To illustrate this point one starts from the Born
seriessolution of Equation (32), whichis

WK =¥OK,r)

+eyfdr, Gr,r ) [V'(r )W (K,r)l

=W O(K 1) + (&) dr {G(r v,

x[dr, [G(r,r) AV (r ,H) AV (r,,t) W (K, r )}

=W OK,r)+(ey?fdr fdr,[G(rr)G(r,r,)

XAV(r ) AV(r,t) W OK 1)l

+(ey)*fdr fdr fdr fdr [G(rr)G(r,.r,)

XG(r,r,) G(r,r,) AV(r,H AV(r,t)

XAV(r,t) AV(r ,t) W O(K ,r )] + I (33
In comparison to Equation (11), the odd power terms of AV
aremissing. Therefore, intheclassical dynamical calculation
using either the Bloch wave or multislice theory, the
contribution made by the second, fourth and al the even
power order diffuse scattering termsareincluded but thefirst,
thirdand al theeven order diffuse scattering termsareignored.
Thus, the caculation includes only a small portion of the
diffuse scattering, and the calculated results should be
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considered as pure-elastic Bragg scattering only.

The approximations madein conventional calculations
are summarized in following. First, the Green function G is
replaced by its form in free-space G, which means that the
dynamical elastic diffraction of the electronsisignored once
they arediffusely scattered. Second, the optical potentia V' is
usually approximated as an imaginary function and the real
partisignored. Thismight beagood approximation for TDS,
but it may not hold for SRO of point defects. Third, thefirst,
third and al odd power terms of the diffuse scattering terms
aredropped. Sincethediffuse scattering ismainly distributed
at high scattering angles, in the low scattering angular range
the calculation accounts only the purely Bragg reflections
athough the Debye-Waller factor isincluded; inthehighangle
range, the caculation accounts only a smal portion of the
diffuse scattering. Finally, it must be pointed out that the
Debye-Waller factor characterizes the weakening of atomic
scattering factor dueto the blurring effect of the atom thermal
vibration, but the inclusion of this factor does not mean that
the diffuse scattering isincluded in the calculation. This has
been misunderstood by many readers. To account for the
contribution of entirediffuse scattering, Equation (6a) (or Egn.
30) must be used.

Calculation of V' by theBorn SeriesM ethod

Thecalculation of the Green’sfunction, in principle, can
be carried out following Equation (24), the computa-tion of
this equation, however, could be very large because of the
requirement of the elastic waves with awide range of wave
vectors and incident beam direc-tions. In the literature, the
Green'sfunction has been approximated by itsform in free-
space (Yoshioka, 1957)

Go(r,r)= ngzzjdueXp[Zﬂi ue (r-r')]

m(u?- K%— i0)
__mp exp[2mi Ko |r-r'[]
2172 Ir-r'| 34

The consequence of thisapproximationisthat the dynamical
Bragg diffraction between consecutive diffuse scattering is
ignored. We now introduce an approximated method for this
calculation, and the purpose is to improve the original
approximation proposed by Yoshioka (1957). Wenow usethe
Born seriestechniqueto give an approximated solution of the
Green'sfunc-tion (Wang, 1998c). Rewrite Equation (4) into
thefollowing form:

[(-72m)2-E)] G(r,r ) =3(r-r) +eW, G(r,r) (35
the Born series solution of this equation is

Gr,r)=Gr,r")+(ey) Jdr G(rr)Vr)G(rr)
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=G,(r,r")+Hey) [dr, G(rr)V(r)G,r.r)
+Hey)?fdr fdr,[Gy(r,r) Gyrr,) V(r)
xV(r,) Gy(r 1)l
+(ey)*fdr fdr, fdr [G/(r,r)G/rr,)
XG(r r )V (r) V() Vyry) Gyr,r)]+ (39
wherethefirst termisthe Green’sfunctionin free-space and
the second term is the kinematical scattering compo-nent of
the Green’sfunction. Thenthtermg, (r,r’) in Equation (36) is
relatedtothe (n-1)thtermg,_(r,r') by

g,(rr)=(ey) fdr, G(rr)Vyr)g,,(r.r) 37
We now take adouble Fourier transformof g, withthe use of
Equation (34)

én(U,V) =
Jdr [dr' exp (-2riulM) exp (2rivid)g (r,r')

_[ 1.
21%h? J(u

X gn—l(r11v)}

Kg N |0) Idrl{ exp[2riu Vo (1)

_[ o12h2 ]( K2 —|0)[ ()D@n—l(u-v)]
(3

whereV (u) isthe Fourier transformof V (r). Thecalculation
of g (u, v) isgivenintheAppendix.

Wenow usethefirst order approximationtoillustratethe
consequence of including the crystal potential in the
calculation of the optical potential V'. If only the first two
terms are kept, with the use of Equation (34), then for a
periodically structured crystal (see Appendix) the double
Fourier transform of G under thefirst order approximationis

ST O LT T (A0 I
Su)=| 2reh? ](v2 -KZ-io)

ZV915 u+v-g)
2 gl

My
+ s
& 212’ ] WZ-kZ=iofZ-kZ-i0) (9
A mathematical identity isused for thefollowing calculation

1, 1 - ]+iT[6(x-x’)
X-X-ig X- X

(40)

wherePsignifiestheprincipa vaue (i.e., thefunction 1/(x-x")
isgivenas 1/(x-x") for al vauesof X' except at thepointx =x',
forwhich 1/(x-x") istakento beidenticaly zero). From Equations
(19)and (39)
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(41)

where the terms in the first {} are those first derived by
Yoshioka (1957) when the Green’sfunctionisreplaced by its
formin free-space. Theterms contained in the second{} are
those from the first order kinematical electron diffraction as
included inthe Green’sfunction calculation: theintegral T'(u)
isover al reciprocal spaceexcept the spherical shellsdefined
by Ju|=K,and|u-g,| =K, thetwo Ewald spheres(Fig. 59); the
integra o’(u) isover the Ewald sphere surfacedefined by |u|=
K, except the pointsfalling onthe other Ewald sphere defined
by |u-g,| =K, theintegra o'(u-g,) isover the Ewald sphere
surface defined by |u-g,| = K except the points intersecting
the other Ewald sphere defined by |u| = K ; the last integral
0"(u) coverstheintersection lines of the two Ewald spheres
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(i.e, alineintegral). Thevolumeand lineintegralsgiveared
component correction to the potential, the surface integrals
giveanimaginary component whichisusually referred asthe
absorption potential. Since the calculation includes the first
order diffrac-tion effect in the Green’s function, the Ewald
sphere u-g,| = K, represents the newly generated scattering
center at g, due to Bragg reflection. The sum over g, isto
consider the contributions from all of the possible Bragg
reflections scaled kinematically by thestructurefactor V.

Theintegrals are over the volumes excluding the shells
of the spheres, the surfaces of the spheresand theintersection
lines of the sphere shells. The number of spheresinvolvedin
each calculation depends on the order of scattering to be
included inthe Green’sfunction cal culation. For higher order
scattering, the integral of points characterized by delta
functions (such asthejoint pointsof three spheres) ispossible,
as shown in Figure 5b for a second order scattering.

It appears that the calculation of Equation (41) may
encounter some numerical singularities, the separation of the
integra sinto volume, surface and lineintegralsautomatically
resolved thisproblem. It must be pointed out that the function
1/(u>-K ?) isanasymmetric functionwhenu — K +Oandu —
K0, thustheintegral iscloseto zeroaround u= K (Fig. 6).

Conclusion

In this paper, the absorption potential first proposed by
Yoshioka (1957) isrevised for dynamic electron diffraction
with consideration of the effectsarising from thermal diffuse
scattering and point defect scattering. Using the Green's
functionfor acrysta instead of itsforminfree-gpace, arigorous
theoretical proof is given to show that the inclusion of this
potential inthedynami-cal calculation automatically recovers
the contri-butions made by the high order diffuse scattering
although the calculation is done using the equation derived
for single diffuse scattering. This conclusion givesthe basis
for expanding the conventional diffraction theoriesdevel-oped
under the first order diffuse scattering to cases where the
specimen thickness is large and/or the degree of disorder is
high. Therefore, the calculated wave function is the full
solution of the Schrodinger equationincluding all of theorders
of diffuse scattering. Strictly spesaking, the optical potential
hereisnolonger apotential function, and it hasamuch more
rich meaning than the conventional interpretation of an
absorption effect.

Appendix

If V, isaperiodic function, then it can be written into a
Fourier series
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="V, exp(2rig 1) (A1)
¢}

or

whereV arethe so called structure factorswhich are related
to the atom types and atom distribution in the unit cell. From
Equation (37)

gn(u V) [ 2T[2h2 ](uz_Kg_iO)ng:Vggn—l(u

(A2)

(A3)

Thezeroth order is
m ] S(u, v)

golu,v)=
o) [2n2h2 V2 —KZ-i0
fromwhichthefirst order iscalculated

Gu(uv) = (ev)] 2222 I+ '

WZ-kZ=iofZ-kZ-i0)

x nglé(u +v-g,)
ol

(A4)

A substitution of Equation (A4) into (A2) gives the second
orderterm

1
2-k2-iofv?-K&-io)
g1V926U+V 0.~ 92)

(lu gl| —K0—|0)

aalo)= (o ]3(
DI

gl g2

(A5)
Thethird order termiscal culated similarly

asfo)=e 2 I Y

u2—K§—i0Xv2—K02—iO)
PIDIDI

glVgZVgsa(u"'V 079>~ 93) .
gl g2 g3 QU 91| KO—IONU 01— 92| —K0—|O)

(A6
For the higher order terms with n > 1, and with the use of
Equation (40)
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(a) The first term in Born series

Figure 5. (a) A model of two Ewald spheres showing the
physical meaning of theintegralsintroduced in Equation (41).
(b) A model for three Ewald spheres, wherethe point integral
OCCurs.
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Figure6. A plot of function 1/(u*-K %) showing assym-metry
aoundu=K.
o Pl o ool )]
(VZ—KOZ)J 2Ko
XA Sy
gl ogn n
1 LT
P{+ v+ olu-g;|-K
x| {Qu—91|2‘K§)‘ |2K0 (lu-g,1-Ko) |
1
D]]]ﬁp{' N
(u- gy, 1P -K3f

+i2—:05(lu =0, g, 4 |‘K0) ]}
(A7)

These terms appear to have singularities while perform-ing
the integrals, but as will be shown in Equation (41) that the
use of Equation (40) separates the integrals into volume,
surface, lineand point (for higher order scatter-ing) integrals,
thusthe singularities are automatically resolved.
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* Erratum:
Equation (15) inWang (1996¢) and Equation (16b) in
Wang (1996b) contain atypographic error. Thecorrect form of
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these Equations should be as follows:
< |¢O(Kolublt) |2 >tS: | < qu(Kolubvt)] >tS|2
Discussion with Reviewers

P. Rez: Following Yoshioka(1957) thetotal wavefunction can
bewritten asaproduct of thefast electron wave function and
somegenerdized wavefunction representing thecrystal inits
ground or excited state. Wouldn't this affect thetermsthat are
collected in Equations (9) and (11)?

Author: Therearetwo gpproachesfor calculating theintensity
of diffusely scattered electrons. The first theory considers
the phonon scattering to be an excitation of crystal state and
thetransitionisdescribed by amatrix dementH ', asdescribed
by Yoshioka's theory (1957). This approach is the quantum
mechanical theory and it is suitable for both high and low
energy electrons, but the theory can only be reasonably
formulated under the single phonon scattering approximation.
Thetheory becomesincredibly complex if multi- and multiple-
phonon processes are included, such as the case de-scribed
inthis paper.

The other approach is specifically developed for high
energy electronsunder thefrozen | attice approximation. Most
of the theoriesin the literature are devel-oped following this
scheme and the results have shown an excellent agreement
with experimenta observations(Loaneet al., 1991). Thisquasi-
elastic scattering theory isthe approach adopted in this paper,
and | do not think the cal cul ation following Yoshioka' stheory,
if possible, would produce any difference from the terms
collected in Equations(9) and (11).

P. Rez: Isthere not adifference in treating diffuse scattering
from disorder and diffuse scattering from crystal excitations
(such as phonons, plasmons, etc.)? Would it not be better to
use adensity matrix formalism to explicitly bring out these
differences?
Author: A condition for the quasi-€lastic scattering theory in
thefrozen lattice model to be hold isthat the electron energy-
losssufferedin phonon excitation (< 0.1 €V) ismuch smaller
thantheenergy spread of thefilamentin TEM (~0.5€V). With
consideration of the large difference in time scale, it isvery
reasonableto treat TDS as a quasi-elastic scattering process.
For plasmon excitation, however, the electron energy-lossis
usualy morethanafew eV, muchlarger thantheenergy spread
of thefilament, thus, theincoherenceamong theinelastically
scattered electrons must be considered, and the Yoshioka's
theory needs to be adopted. Therefore, the theoretical
approachesfor the phonon and plasmon excitations are quite
different.

Thedensity matrix theory could dso givethehigher order
terms, but its numerical calculation is usualy carried out
iteratively and the accuracy depends on how fast the
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calculation converge. The theory presented here, however,
showsthat the cal culation under thefirst order approximation
coversall of the higher order termsif the optical potentid is
introduced properly.

P.Rez: Theredl partin Equation (28) hasalready been shown
to bevanishingly small.

Author: Thenumerical calculation of Rez (1978) showed that
thereal component of the optical potentia for singleelectron
excitationisvery smdl, but thesituation could bevery different
for TDS and point defects. A full calculation must be done
before extrapo-lating the conclusion.

P. Rez: Cantheauthor givean estimation on the magnitude of
the contributions representing various orders of scattering to
the optical potential AV?

Author: From Figure2, it can be seen that the shape of AV can
be hardly approximated by its first order term which is
proportional to dV/dr. The numerical calculation shown by
Wang (1995bh, chapter 6) has demonstrat-ed this result, and
the high order terms are undoubtedly important.

G. Anstis: Does your work have any implications for
determining structure factors by convergent beam electron
diffraction (CBED)?

Author: Thedynamical calculationson CBED reportedinthe
literature have been performed using Equations (20) (or
Equations 7 and 22). Based onthe Born seriesform of Equation
(7), asgiven in Equation (9), the calculation covers only the
contributionsmade by even order termsof AV (i.e., AVZ2, AV*
etc, see the discus-sion given below Equation 33), but those
by all of the odd order terms (i.e., AV, AV? efc) are missing.
Thismeansthat only the second, fourth and sixth orders TDS
areincluded inthe cal culation, but the contributions made by
the firdt, third and fifth orders TDS are ig-nored. Thus, the
result of this paper will have an important impact on
quantitative CBED since al of the TDS electrons remain
although an energy filter is employed.

G. Angtis: Can you say what implications your results have
for Cowley and Moodie’'s multislice method using complex
potential s? In thismethod we cannot use thickness dependent
scattering functions.

Author: In Cowley and M oodie' smultidicetheory, the phase
grating function of each diceis

Q=explio(V,+AV)]. Following Cowley’s(1995) approach,
theabsorption potential isintroduced by taking atimeaverage
of Q,

<Q>=explioV ] <exp[icAV]>
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This approach kegpsthe even order terms of AV, but the odd
termsaredropped. Thismeansthat the cal cula-tion kegpsthe
contributions made by the second, fourth and sixth orders of
TDS, but those made by thefirgt, third and fifth ordersof TDS
are not included. Thus the multislice theory needs to be
extended toinclude all these odd termsfollowing the similar
schemeintroduced in thispaper (seeWang, 1995afor details).

To properly introduce the absorption effect in the
multidice calculation, two approximationsaremade. Firs, the
non-local property of the optical potential isignored, which
meansV' can beseparated from W . Thus, W (K ") isreplaced
by W(r) and Equation (8) is approximated as

= expfiofV, +i g

Vi(r)=ey[dr [G(rr)<AV(r,H) AV(r b)>]

Secondly, the Green’sfunction isreplaced by itsforminfree
space, thus, the optical potential is approximated as

Vi(r)=eyfdr [G(r,r)<AV(r,) AV(r t)>]

exp[ZTu K [ﬂr - rl)]
-K& -i0)
X exp[2T[| (r Q-n @ )]STDS(Q, Q')

exp[ZTur[ﬂQ Q)]
Q2-K3-i

evmo

dede jdrljd

JdQ J Q' Sips(Q.Q)

" o2

Thiscomplex potential should beusedinimagecaculations.
The recent theory by Wang (1998b) has implicated this
approach intheimage cal culation using themulti-dicetheory.

G.Ansgtis: Doesthenon-local property of theoptical potential
can be incorporated into the multislice calculations? what
errorsareintroduced by making alocal approximation?
Author: It is possible to introduce the non-local property of
theoptical potential for theatomsdistributed within onedlice,
but it may be difficult to incorporate the non-local property
along the beam direction (or z-axis) since the fundamental
assumption of the multislice theory is no backscattering. In
other words, the scattering in the nth dice is assumed not
being affected by the behavior of the dlices|ocated at deeper
depths.

Theerror introduced by the approximation of local optical
potential is equivalent to the error introduced by replacing
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the Green’sfunctionwithitsformin vacuum, which meansthe
multiple Bragg reflections between successive diffuse
scattering events are ignored. Therefore, the accuracy of the
calculated Kikuchi patternsusing the multislice theory might
be affected, particularly at high scattering angle region, but
for high resolution TEM image cal culations the error could
vanish.

G.Angtis. Doesyour method apply only to uncorrelated atomic
displacements?

Author: No. Thetheory isapplicablefor ageneral casewith
consideration of phonon dispersionrelations. Thecalculation
of dynamic form factors under the harmonic oscillators
approximation for TDS and SRO of point defects have been
given elsawhere (Wang, 1996a). Thetheory alsoworkswhen
TDSand SRO coexist.

D. Van Dyck: The paper claimsto extend the Yoshiokatheory
for thermal diffuse scattering. However, theoriginal Yoshioka
theory was set up for inelastic scattering whereasthe trestment
inthispaper only dealswith elastic diffuse scattering. Indeed,
in the Yoshioka paper the wave function of the whole system
(electron + crystal) isconsidered and expanded in eigenstates
of the crystal Hamiltonian so asto include inelastic electron-
crystal interactions that change the stete of the crystal (e.g.,
create a phonon). The present paper only describes the
electron wave and leaves the crystal unaffect-ed by the
electrons.
Author: | dwaysclaimthat theaim of this paper isto expand
the meaning and usefulness of the optical poten-tial, first
introduced by Yoshioka, beyond the conven-tional
interpretation. The paper was not intended to extend the
Yoshioka's inelastic scattering theory (e.g., the coupled
differential equations). This might be amisunderstanding.
Therefereeis correct that | did not consider the change
of crystal statesasaresult of phonon excitations. If theelectron
and the crystal is considered as a system, then the heat (or
energy) transfer between the crystal and theenvironment (i.e.,
the specimen holder in TEM) would a so have a small affect
on the form of the absorption potential (Fanidiset al., 1992,
1993), but thiseffect might be negligibly small in comparison
to other factors.

D.van Dyck: If oneusesatime-dependent potential oneshould
in principlestart from thetime dependent Schrodinger equation
unless it is proven that the approxi-mation of using t as a
parameter isvalid (for instance if the time scales are largely
different).

Author: Thefrozen lattice model (or quasi-€lastic scattering
model) isusually adopted in the calculation of TDSfor high
energy electrons. It is this model which converts a time-
dependent process into a sum over the time segments
composed of many instantaneoustime-independent processes
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becausetheinteraction time between anincident electron with
the crystal in TEM is much much shorter than the vibration
period of the crystal atoms. Thus, the lattice configuration is
seen as if stationary for one incident electron. For the next
incident electron, the crystal atoms are “frozen” at different
positions. Therefore, the observed diffraction pattern
contributed by many electrons is a sum of the intensities
contributed by these electrons, each of which has been
scattered by adightly distorted lattice, equivalent to taking a
timeaverageover thescattering intensity, whiletimetistaken
as a parameter in the calculation. The validity of the frozen
lattice model has been discussed by Wang (1995b, sections
2land7.1)andby Loanetal. (1991).

D. van Dyck: How arethe boundary conditionsasintroduced
a exit and entrance face of the crystal, or is the vacuum
considered as apart of the object for whichV = 0?

Author: Theboundary conditionisintroduced at the entrance
faceof thecrystal z= 0 (seethe paragraph following Equation
13D).

D. van Dyck: The diffraction pattern is calculated asthe 2D
Fourier transform of W at z = . | believe however that the
diffraction patternisthe Fourier transform of thewavefunction
at theexit faceof thecrysta, or inthe Fraunhofer gpproximetion
at thewave function W itself at z = co.

Author: For diffraction pattern cal cul ation, both ap-proaches
give the same answer, as proven below. If the electron wave
function at the exit face z = d of the crystal is W(b,d), the
diffractionintensity is|FT[W(b,d)]]?, whereb = (x,y) and FT
stands for the 2D Fourier transform. We now shift the
observation pointtoz=L (L — ), the propagation of the
waveinfreespacefor adistanceof L-d needsto beconsidered.
Thus, the wave function observed at z = L, under the small
anglescattering approximation, is(Cowley, 1995)

W(b,L)=W(b,d) O P(b,L-d)

where O standsfor aconvolution calculation of b, and Pisthe
Fresnell propagator

P(b,7) = PTIK bl /z)
' iAz
SinceFT[P(b,2)] = exp(- Tiu?Az\A), onesmply has

FTI¥(b.L)F= [FT[W(0.d)]F FT[Mb,L-d)]F
= [FT[¥(b,d)]F

Thus, the diffraction patterns are the same at the crystal exit
facez=dandat z=oo.
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D. van Dyck: V' is caled a nonlocal function. In the strict
senseitisnot afunction but rather afunctional.
Author: | agreewiththereviewer.
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