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Abstract

Helical structures are more disordered and diffract
more weakly than two-dimensional crystals, and images of
them areinherently noisier. Automated techniquesallowed
usto correct, align and merge datafrom hundreds of images.
To extend from ~1.0 nm resol ution to the near atomic level
(~0.4 nm), we needed to know whether our handling of
images could be improved. For example, curved particles
after correction may or may not produce data as good as
particles that need no correction.

We al so wanted to eval uate the accuracy with which
we predict the locations of layer lines hidden by noise and
determine if all images contribute equally to higher
resolutiondata. For thispurpose, we developed an a gorithm
(the sniffer) which evaluates regions of Fourier transforms
that contain signal buried in noise.

We examined both the image handling procedures
and the sniffer using images of bacterial flagellar filaments
embedded in glucose and phosphotungstic acid. Although
there was a correlation between phase residual and such
factorsastilt, curvature and disorder, these defectsexplained
only ~5% of the variance. This suggested that helical
particlesfollowing correction contribute almost asmuch as
particles requiring no correction. In addition, positions of
high resolution layer lines appeared accurately predicted
from lower resolution layer lines. We also found that the
signal-to-noiseratioinlow resolution layer linesonly weakly
correlated with that of high resolution layer lines.
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Introduction

Although a helical object was the first biological
structure investigated using el ectron microscopy and three-
dimensiond (3-D) reconstruction (DeRosier and Klug, 1968),
no one has yet attained resolutions comparable to those
attained for two-dimensional crystalline arrays (Henderson
et al., 1990). One reason isthat high resolution data from
helicesisgenerally much weaker than that from comparably
sized crystalline specimens (Morgan and DeRosier, 1992).
Moreover, asinglefilament hasfewer subunits, and hence,
lesssignal than atwo-dimensional crystal. Thirdly, helical
structures are generally more disordered than crystalline
objects: helical structures tend to flex in solution, and
subunit positionswithinafilament may vary fromtheaverage
value. Unless such factors are corrected, the amplitude of
the high resolution dataisreduced. By averaging together
many corrected images, it is possible to obtain these high
resolution data.

To this end, we developed methods (Morgan and
DeRosier, 1992) that allow for the analysis of hundreds of
images of helical objects. The algorithms use correlation
methods to automate many steps of the analysis and
correction, and thusrequirelittle or no human intervention.
With large numbers of imagesfor analysis, wewere ableto
collect data to ~1.0 nm resolution (Morgan et al., 1995).
Using various approaches, othersalso obtained 1.0 nm data
for helical structures(Jeng et al., 1989; Unwin, 1993; Mimori
etal., 1995).

To see if we could improve our averaged data set,
we wanted to know whether some images are better than
others:

(1) Even though we correct the images of filaments
for curvature (Egelman, 1986) and tilt out of the plane nor-
mal to the direction of the electron beam (DeRosier and
Moore, 1970), arethe data obtained from the corrected images
as good as those from images that require no correction?

(2) Dolayer line positionsvary from particleto par-
ticle, that is, is there redly variable twist or are the var-
iations simply due to noise in the images?

(3) Doimageswith good low resolution information
tend to have good high resolution information?

Since we were particularly interested in high reso-
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lution Fourier coefficients, we needed to be able to detect
them when they were hidden in the noise. Consequently,
we developed an algorithm wecall the sniffer (Morgan and
DeRosier, 1993). We describe herein the method and its
application to images of bacterial flagellar filaments
embedded in a mixture of glucose and phosphotungstic
acid (gIc/PTA). Weareexploring thismethod of embedment
since it preserves the filament structure to near-atomic
resolution (Ruizetal., 1994).

Materialsand M ethods

Microbiology and Biochemistry

Flagellar filaments were isolated from Salmonella
typhimuriumstrain SIW1660 (obtained from Dr R. Kamiya,
National Institute for Basic Biology, Okasaki, Japan). This
strain contains asingle point mutation in the flagellin gene
(fliC) which causesa Gly to Alamutation at residue 426 in
theflagellin protein (Hyman and Trachtenberg, 1991; Kanto
etal.,1991). Thissingleamino acid substitution causesthe
normally corkscrew-shaped filaments to be straight, and
therefore, more amenable to image analysis than wild type
filaments.

Bacterial cultureswere grownto mid log phase, and
the cells were isolated by centrifugation (14000 g for 20
minutesat 4°C) (Ruiz et al., 1993; Morgan et al., 1995). The
cells were resuspended in several volumes of ice-cold
phosphate buffer (pH 7.0). Filamentswere sheared fromthe
cells by vortex mixing using two slightly different
procedures. Thesamplereferred to below asglc/PTA | was
initially resuspended in 20 mM sodium phosphate (pH 7.0)
and wasvortex mixed for 60 seconds (s). The other sample
(glc/PTA 1) wasresuspended using 20 mM potassium phos-
phate buffer (pH 7.0), and the filaments were sheared by
vortex mixing for 30 s, diluting approximately two-fold with
ice-cold potassium phosphate buffer and vortex mixing an
additional 30s. Thislatter procedureincreasestheefficiency
of shearing.

Intact cellsand any filaments remaining attached to
them were removed by centrifugation (14000 g for 20to 30
minutesat 4°C), and theisolated filamentswere concentrated
by centrifugation (145000 g for 120 minutesat 4°C) into a
volume of approximately 0.1 mL, as described previously
(Ruizetal.,1993; Morgan et al., 1995). Isolated filaments
were stored oniceat 4°C and remain usablefor many weeks.
Specimen prepar ation and electr on micr oscopy

Theinitial electron micrographs used in this study
(referred to below asglc/PTA I) were obtained while one of
us (D.J.D.) was on sabbatical leave at the Laboratory for
Molecular Biology, MRC, Cambridge, U.K. Theremainder
of the work described here was performed at Brandeis
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University, Waltham, MA.

(1) glc/PTAI: Thefilament preparation was diluted
using distilled water until filaments were well spaced on
carbon coated electron microscope grids which had been
glow discharged for 2 minutesin amethylamine atmosphere.
Typically, the dilution was 1:10. A 2 pL drop of filament
suspension was placed onto the grid, blotted after 1-2
minutes, then embedded and lightly stained using a 2 pL
drop of 2% glucose (pH 7.0) followed by a2 pL drop of 2%
phosphotungstic acid. The combined drops were blotted
after 1-2 minutes. Grids were loaded into a cryoholder
designed by R. Henderson (Henderson et al., 1991) and
cooled to -150°C inside a Philips (Philips Electronic
Instruments, Mahwah, NJ) 420 el ectron microscope. |mages
at a defocus of approximately 400 nm underfocus were
recorded onto K odak (Eastman Kodak Co., Rochester, NY)
SO-163 film at anominal magnification of 55,000x using 100
kV electronsfrom astandard tungsten electron source. The
total electron dose waslimited to less than 1000 el ectrons/
nm?, and films were developed for 10 minutes using full
strength Kodak D 19 developer.

(2) glc/PTA1I: Thefilament preparation wasdiluted
200-foldusing MilliQfiltered water (Millipore Corp., Bedford,
MA) andimmediately vortex mixed. Freshly diluted filaments
(5 uL aliquots) werevigorously mixed with 15 uL of a2:1
mixture of 2% glucose (pH 7.0) and 2% PTA (pH 7.0). Drops
(4-5 pL) of this mixture were applied to freshly prepared
continuous carbon foils and directionally blotted using
Whatman (Whatman Inc., Clifton, NJ) #40filter paper after
4minutes. Gridswereimmediately loaded into either aGatan
(Gatan Inc., Pleasanton, CA) model 626 cryoholder or a
prototype Oxford Instruments (Oxford Instruments Inc.,
Concord, MA) singletilt cooling holder, loaded into aPhilips
CM12 electron microscope (Philips Electron Optics,
Eindhoven, The Netherlands), and cooled to-180 or -174°C,
respectively. The Philips microscope was equipped with
both the standard Philips anticontaminator and a Gatan
model 651N anti-contaminator held at -180°C. Imagesin
several defocus ranges (~200, ~500, ~700 and ~900 nm
underfocus) were recorded onto Kodak SO-163 film at a
nomina magnification of 60000x using 120kV eectronsfrom
aDenka(DenkaKagaku Kogyo Kaishi, Shibukawa, Japan)
M3 LaB electron source. Thetotal electron dosewaslimited
to less than 1000 electrons/nm?, and films were devel oped
for 12 minutes using full strength Kodak D19 devel oper at
20°C.

Digitization

Micrographs were screened visually and images
containing well separated, relatively straight filamentswith
no visible defects were included for analysis. We further
selected only those with clear Thon ringsindicating little or
no astigmatism or drift. Some micrographsfrom thesample
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referred to as glc/PTA | were digitized at a stepsize
corresponding to 0.35 nm using aflat bed microdensitometer
(Arndt et al., 1969). The remaining micrographs were
digitized at a 0.33 nm stepsize using an Eikonix (Eastman
Kodak) #1412 linear CCD (charge-coupled device)
densitometer (Owen and DeRosier, 1993). Wedigitized 240
to 500 nmlong lengths of filaments. Inaddition, large areas
from all the micrographs were digitized using the Eikonix
device. These areas were used to estimate defocus and
astigmatism (Morgan et al., 1995).

Imageanalysis

Aninitial analysis of the glc/PTA |1 data and a de-
tailed description of the analysis of vitreousice embedded
flagellar filaments have been presented (Morgan and
DeRosier, 1992; Morgan et al., 1995). Images from the
samplesreferredto asglc/PTA | and Il wereanalyzed using
the procedures described in Morgan et al. (1995). The
following steps briefly describe the image analysis. The
cross-correlation steps require a reference which isin the
form of alayer line data set.

(1) Estimation of helix axis. Each filament image
(240-500 nmin length) was divided into short segments of
filament (16.5to0 24.8 nminlength), and the equatorial data
from the transforms of each segment were cross-correl ated
with the equatorial datafromthereference. Thepeak inthis
cross-correl ation map gave the approximate |l ocation of the
helix axis for each segment of filament in theimage. The
helix axisfor an entirefilament was estimated by smoothing
these peak positions using a spline algorithm (Egelman,
1986).

(2) Refinement of helix axisand deter mination of
layer linepositions. Eachfilamentimagewasagain divided
into segments, but in this case, segmentswere longer (57.8
to 99 nm). Non-equatorial layer linedatafrom thetransform
of each segment (selected as depicted in Morgan et al.,
1995) were cross-correlated with thereference. The peaks
in these cross-correlation maps gave a better estimate of
thelocation of the helical axis.

We also used the peak positionsto predict the exact
layer line positions for the helical diffraction data in each
image. Thishelical cross-correlation approach (described
indetail in Morgan and DeRosier, 1992) worked asfollows:
if the reference and afilament being analyzed had exactly
the same helical symmetry, knowing the orientation of one
of the 60-100 nm segmentsfrom a240-500 nm long filament
image, we were able to predict exactly the position and
orientation of neighboring segments. If the symmetry of
the test filament differed from the reference, the positions
and orientations of neighboring segments deviated from
the predictions in a systematic fashion. Such systematic
variations were used to determine the exact helical
parameters, and hence, layer line positionsfor each particle.
In addition, the non-systematic variations provided a
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measure of theaxia and angular disorder in each filament.

(3) Filament straightening and layer line collec-
tion. The filaments were straightened using the refined
estimatesfor the helix axis. A splinefitting algorithm similar
to the one described by Egelman (1986) but constrained to
pass exactly through the refined positions (Press et al.,
1988) provided the estimates for the axis at all positions
along each filament. The filaments were straightened and
tightly reboxed (width ~30 nm), apodized (Stewart et al.,
1981), floated (DeRosier and Moore, 1970) into a 512 by
4096 array and Fourier transformed. The85 layer lines, with
Bessel orders [h[]1< 60 and with a meridional resolution
lessthan 0.68 nm, were extracted. |naddition, we extracted
170linesof noisewhich together withthe 85 redl layer lines
uniformly sampled reciprocal space.

(4) Alignment and merging of layer linedata. Se-
lected sub-setsof layer linedatafrom each filament (selected
as described in Morgan et al., 1995) were cross-correl ated
with the reference data set used in steps 1 and 2. The
position of the peak in these cross-correlation maps gave
the x and z shifts required to align the two data sets
(DeRosier and Moore, 1970; Morgan and DeRosier, 1992).
Out-of-planetilt was determined by further minimization of
the phase residual as a function of tilt applied to the layer
linedatafrom eachimage (Amosand Klug, 1975). Datasets
with aphaseresidual of <90° and at least a10° differencein
the phase residual in the up versus the down orientation
(AmosandKlug, 1975) weremerged. Themerged layer line
data set was used asreference datain the subsequent round
of alignment and merging. After agood average was gen-
erated, we repeated the entire process starting with the
determination of layer line positions and re-extraction of
data. Three to five iterations seemed sufficient to fix the
alignment (e.g., tilt) of eachimage.

(5) Three-dimensional reconstruction Lines of
noise and layer lineswith no statistically significant signal
(Morgan et al., 1995) were removed from the merged data
sets. Thestepsof near- and far-side data extraction, Fourier
Bessel inversion and three-dimensional reconstruction were
performed using standard methods and have been described
previously (DeRosier and Moore, 1970; Trachtenberg and
DeRosier, 1987; Owen and DeRosier, 1993; Morgan et al.,
1995; Owenetal., 1996).

During steps 1 through 4, we collected a set of
parameters that describe in detall the images themselves
and the operations performed on them (see Table 1). We
calculated linear regression analyses of pairs of parameters
tolook for correlations, for example, phaseresidualsversus
initial amount of curvature. The coefficient of determination
(r3) from the linear regression measures the amount of
variation explained by the correlation while the statistical
significance of the correlation is measured using the
Student’s t-test:
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Table 1. Examples of parameters collected during image
processing.

micr oscopefactors:
defocus/astigmatism
accelerating voltage
magnification

imagequalities:
dimensions
minimum density
maximum density

image processing char acteristics:
pixel size
overall curvature
in-planetilt
out of planetilt
angular disorder
axial disorder
helical lattice parameters
alignment parameters
orientation
amplitude weighted phase residuals
up/down phase differences
run-time parameters for various programs used during
analysis

_Vr’iN-2)
(1-r?)

where N isthe number of pairs of observations.
Contrast transfer function (CTF) correction

To combine datafrom images taken at different de-
grees of defocus, we corrected each individual layer line
data set using values for defocus and astigmatism (deter-
mined as described in Morgan et al., 1995). For theresults
presented here, we corrected only the phase information
for the effects of the CTF.
Satistical analysis

Statistical evaluation of thealigned and merged layer
line data sets has been described previously (Morgan et
al., 1995). Evaluation of the final three-dimensional
reconstructions was performed as described in
Trachtenberg and DeRosier (1987) and Morgan et al. (1995).
Thesniffer algorithm

We have devised a simple method to quantitate the
amount of signal present in noisy regimes (Morgan and
DeRosier, 1993). Our proposed measure is based on the

@
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cosine of the phase differences between corresponding
pairs of Fourier coefficients, one phase from a layer line
pixel of an individual image and the other from the cor-
responding position from an average of a set of images.
The phase difference for any one pair of Fourier coeffi-
cientswill depend upon the signal-to-noiseratio: for Fourier
coefficients with very large signal-to-noise ratios, the
expected phase difference will be close to zero (its cosine
will approach 1), and for very small signal-to-noise ratios,
the average phase difference will approach 90° (its cosine
will approach 0). An estimate of signal based on one pair of
Fourier coefficientswill not be very reliable but averaging
cosines from many pairs increases the reliability in a
predictable fashion.

Our proposed measure of the signal present in the
k™individual imageis Sg,:

S, = (cos(A g )=

N @
(UN) D cos(, - ()
=1

where [¢os(A¢,)[s the average value of the cosine of the
phase difference Ad, Ad, = ¢ - [¢,0)N is the number of
Fourier termsincludedinthe eval uation, ¢, isthe phase of
the j'" Fourier term of the k" image, and E[b Ois the
corresponding phase derived from the average of all the
images. Wetried calculating an amplitude-weighted average
of cos(Ag) but found it made little improvement. We
included only terms corresponding to regions where there
was statistically significant signal in the average.
Alternative selection or weighting schemes may improve
the sensitivity of Sg.

Noiseintheimagewill contribute noiseto the Four-
ier coefficients obtained from theimage; in particular, if the
noise or variance in the densities in the images is a2, then
the variance in the Fourier coefficients derived from the
images will also be o2 The variance will be equally
partitioned into the real and imaginary components of the
Fourier coefficients and should have anormal distribution
according to the central limit theorem. We can therefore
calculate the expected effects of noise on Sg (see Fig. 1):

Sg=< cog(A)>=
1) (S+ R)]}exp%@zexp'i—';del

©)

where Sisthe amplitude of the signal which is defined for
simplicity to have only areal component, 2 isthevariance
of thenoisein either theimage or itstransform, and Rand |
aretherea and imaginary parts of the Fourier transform of
thenoise. Rand | should benormally distributed, i.e., P(R)
0 exp(-2R%a?) and P(I) O exp(-21%/a?).

Wenow wish to characterizethe accuracy withwhich
we can estimate Sg, by calculating itsvariance, var(Sg), and
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where N is the number of observations, and [Cos’Ad)Lls
the expectation value of the square of the cosine of the
phase difference:
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Figurel. Expected resultsfrom sniffer agorithm. InA and
B, Sg is shown using plus signs. sd(Sg) is shown using
filled diamonds for one observation, open triangles for 10
observations, X'sfor 20 observations, and closed triangles
for 50 observations; (A) Sg and sd(Sg) are plotted as
functions of o; (B) Sg and sd(Sg) are plotted as functions
of themorefamiliar signal-to-noiseratio (SNR). Figure la
shows the behavior of Sg and sd(Sg) as 6 increases (asthe
noise increases) while Figure 1b shows the behavior of Sg
and sd(Sg) asthe SNRincreases; (C) Sg (plussigns), sd(Sg)
(filled diamonds) and the number of observations necessary
for Sgto belarger than 2 x sd(Sg) (opentriangles) areplotted
asfunctionsof SNR. The SNR coverstherange0to2.0in
order to show the behavior of these quantitiesaround SNR
=1.0. Intheseplots, thesignal isfixed at avalue of 1.00.

< cos?(Ad)>=
[ cod{ tan2[1,(S+ R)] }exp-zc—szexp%jdm

©
2
o 2

Weevaluated Equations (2) to (6) using numerical methods.
The results, assuming one, ten, twenty and fifty observa-
tionsare plotted asafunction of o in Figure 1A. Figure 1B
shows these same data replotted as a function of the more
familiar quantity signal-to-noiseratio (SNR). Wedefine SNR
as [Fllo?, the ratio of the average power of the signal Sto
the average power of thenoiseo. Sincewe havearbitrarily
setthesignal to 1, SNR = 1/o2

The error in Sg needs to be sufficiently low for a
single value of Sg to be considered significantly different
fromzero. If wepick Sg> (2 x sd(Sg)) assignificant, wecan
use Equation (4) to calculate the number of observations
necessary for Sg to be significant for any given value of o
or SNR. Figure 1cisaplot of the number of observations
necessary for Sg to be statistically significant asafunction
of SNR.

A redlistic situation is one in which signal varies
while the expectation value of the noise is relatively con-
stant. In such cases:

(Sl [ P(9IH(9WS 0

where P(S) isthe distribution of the signal S and [$g(S)Cis
the expectation value of Sg for a given S (assuming o
constant). The variance of [$glis

var((3gl) = [ P(9var(Sy(9)dS ®
Toillustrate the effect of varying signal, we elected

toletthesignal S=J,(X), asmight occur for somelayer line
of asimplehelical structurewhere J, isaBessel function of



D.G Morganand D.J. DeRosier

Figure2. Imagesof bacterial flagellar filaments. Imagesfrom (A) glc/PTA | (400 nm underfocus), (B) glc/ PTA 1l (200 nm
underfocus) and (C) vitreous ice embedded (~500 nm underfocus) samples. Bar = 40.0 nm (A, B and C are at the same

magnification).

order 10. Weevaluated Equations(7) and (8) over theinterval
6 < X < 15, which might be a typical range over which
significant values are found in the average of aset of noisy
images. We compared the values obtained to those which
would apply if the signal were constant and equal to <S>,
theaveragevalueof S, obtained from J,  over theinterval 6
<x<15. Forthisinterval, (5g(91s0.481 and var((5g(90)
i50.0295. If thisinterval is sampled at 19 evenly spaced
points (every 0.5 units), (S9) is0.476, Sg([$)is0.547 and
var(g([8)) is0.0290. Sincethesevaluesarefairly similar,
we believethat we can obtain areasonable estimate of signal
even in regions of varying noise.

Computational requirementsand times

The work described here was done using a variety
of Digita Equipment Corporation (DEC; Maynard, MA) VAX
computersrunning either VM S (3000 series VAX Stations)
or Open VMS (a DEC3000 Alpha). The Alpha runs our
programs~10x faster than the non-Alphaworkstations. Es-

114

timation and refinement of the helix axis and layer line
extraction takes < 5 minutesfor each filament image on the
Alpha. Alignment and averaging of the largest data set
takes ~2 hours on the Alpha. The sniffer takes ~1 hour to
process all the datafrom aset of 150 filaments.
Display of images

All the images were processed using Adobe Photo-
shop version 3.0 (Adobe Systems|Inc., Mountain View, CA).
Graphs were made either with Kaleidagraph version 3.0.2
(Synergy Software, Reading, PA) or Deltagraphversion 2.0.3
(DeltaPaint, Inc., Monterey, CA).

Results
General characterization of images

Micrographs(Fig. 2) of flagdllar filamentsreved long,
often curved structures ~25 nm in diameter. The
morphological featuresof filaments(clearestin Fig. 2C, but
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Figure 3. Amplitude data from Fourier transforms and
average images. Panels A, D and G show the amplitude
portion of thelayer line data collected from images similar
to those shown in Figure 2. Panels B, E and H show the
amplitudes from the averaged layer line data of the three
sets of images. PanelsC, F and | areimages generated by
back Fourier transforming thelayer line datafrom panelsB,
E and H. Thescale bar in | represents 10.0 nm. The data
used to generate panels E and | were phase corrected for
effects of the CTF before aligning and merging. For the
amplitude data (panelsA, B, D, E, G and H), we eliminated
theequatorial data. InpanelsB, Eand H, wedisplay (In(1.0
+ amp))? in order to show the weak, high resolution data.
We additionally adjusted the visibility to better reveal the
high resolution informationin all the amplitude data (panels
A,B,D,E,GandH).

also present, albeit more weakly, in Figs. 2A and 2B) form
rows characteristic of the5-, 6- and 11-start helical |attice of
thefilament. Amplitudesfrom computed Fourier transforms
(Figs. 3A, 3D, and 3G) show thelayer lines corresponding
toordersn=-11, 6,-5and 1. Thesefour layer linesprovide
datato aresolution of ~2.5 nm. Thereis no indication of
higher resolution datain either the meridional or equatorial
direction.

We aligned and merged data into three averages:
the glc/PTA | average (Fig. 3C), which has data from the
fewest images and is the noisiest of the averages; the glc/
PTA Il average (Fig. 3F) and the vitreous ice embedded
average (Fig. 31). Thislast average showsmost clearly the
striations due to the subunit organization athough such
strigtionsarepresent in all theaverageimages. Theaveraged
sets of Fourier coefficients (Figs. 3B, 3E and 3H)
corresponding to theimages show striking differenceswhen
compared to the transforms of singleimages; namely, more
layer lines are visible in the low resolution region of the
transforms, and thislow resolution information is stronger
and extends further from the meridian. More importantly
for thecurrent study, higher resolution layer linesarevisible.
These higher resolution data extend to a meridiona reso-
Iution of 1.0 nm and are strongest in the glc/PTA 11 sample.

Alignment and merging of layer linedata

Using the described correlation based methods, we
processed 64 imagesfromthe glc/PTA | sample, 336 images
fromtheglc/PTA Il sampleand 223 imagesfrom thevitreous
iceembedded sample (Table 2).

The sixty-four images from the glc/PTA | set were
taken between 400 and 500 nm underfocus. Wedid not CTF
correct any of these databut restricted thelayer linedatato
aresolution of 1.4 nm (beforethefirst nodeinthe CTF).
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Table 2. Parametersfrom alignment and merging of data sets.

number of images phase polarity* Z P° zp axid® angular®
(included)  (total) residual® (std. dev.) (std.dev.)  disorder disorder
(# subunits)
glc/PTAI
62 64 63 2 0.010838 0.19255 0013 0.10
(45)
glc/PTA
-200nm 129 149 61 20 0.01107 0.19541 0018 013
(99K) (0.00089) (0.00172) (0.020) (010
-500nm 6 63 5 27 0.01081 0.19561 0013 011
(50K) (0.00084) (0.00158) (0011 0.07)
-700nm 5 5 5 2 0.01068 0.19568 0021 014
(21k) (0.00000) (0.00101) (0.020) 009
-900nm a R 3 % 0.01089 0.19366 0013 0.10
(71K) (0.00048) (0.00115) (0.010 0.07)
after CTF 30 3% 56 20
correction (240Kk)
vitreousice
169 223 56 2 0.01109 0.19682 0.037 015
(126K) (0.00181) (0.00024) (0.037) 019

3n degrees; "in nn?; <in nm/subunit; “in degrees/subunit; std. dev. = standard deviation.
“Most of the images which could not be aligned and merged were from a single micrograph. Upon closer inspection of this
micrograph, it was determined that its CTF exhibited unusual features and these data should not have been included in this

analysis.

For the purpose of checking the quality of theimages
taken at different degrees of defocus, images from the glc/
PTA Il set were initially processed according to defocus
groups: ~200 nm underfocus, ~500 nm underfocus, ~700 nm
underfocusand ~900 nm underfocus. Thelayer line positions
and amounts of axial and angular disorder in these sets of
images are very similar (Table 2). As expected, layer line
data from the further-from-focus images, which have
stronger low resolution Fourier coefficients, aligned and
merged with lower phase residuals and greater differences
in polarity than that from images recorded closer to focus.
Satisfied with the images, we then produced a proper CTF
weighted data set. To do so, we corrected for CTF induced
phasereversasin each of the 336 layer line datasets, aligned
and merged the data, and trimmed the average layer line
data to a resolution of 0.7 nm. Layer line data from the
closest-to-focus images were also separately aligned and
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merged, and the average trimmed to 0.7 nm.

Images of vitreousice embedded filaments at defo-
cusesranging from ~400 nm to ~2500 nm underfocuswere
processed as described previously (Morgan et al., 1995).
After correction for phase reversals due to the CTF, these
images were merged, and the average data trimmed to a
resolution of 0.7 nm.

Despitedifferencesin embedding media, microscopy
and digitization, thethree datasetsare al similar with respect
to layer line position and strength and angular and axial
disorder. Although wewere ableto identify only the layer
lines corresponding to Bessel orders -11, 6, -5 and 1 in
transformsof singleimages, we collected Fourier coefficients
along 85 redl layer lines. Thiswasdonein order to collect
all possible high resolution data for our averaging
procedures. After averaging, 34 of the 85 layer lines had
statistically significant signal (using the q = 2.0 statistical
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Figure4. Selected layer linesafter CTF correction, alignment and merging. PanelsA and B show then=28and n=-3 layer
lines, respectively, for datafrom the glc/PTA 1| embedded filaments. Each panel contains (from top to bottom) the amplitude,
theq statistic (including aline at the g = 2.0 or 95.7% confidencelevel), the phase and the near-side/far-side phase difference
deviationfrom 0° or 180° versusdistance, R, radiusfromthe meridian. Thelayer line order and meridional resolution arelisted

inthe upper right of each panel. Phase datarange from -180° to 180° and the near side/far side phase difference rangesfrom

0°t0180°.

threshold described in Morgan et al., 1995) in at least two
of the three data sets. In &l three data sets reduced to 34
layer lines, the near side versus far side phase symmetry is
good (i.e., the phases for the corresponding sides differ by
less than ~30°). The glc/PTA Il data set appeared best: A
set of three layer lines (Bessel orders 8, -3 and -14) at a
meridional resolution of ~1.0 nm have statistically signifi-
cant, symmetrically shaped amplitude peakswith good near
side/far sidephase symmetry. Inaddition, thereareanumber
of layer lines(e.g., Bessal orders 28, -26 and -20) with lower
meridional resolution but with statistically significant,
symmetrically shaped amplitude peaks and with good near
side/far side phase symmetry. Figures 4A and 4B show
these data for the Bessel order 28 and -3 layer lines,
respectively.

We could align the average data sets from the glc/
PTA embedded preparationsto one another. However, when
attempts were made to align and merge individual sets of
layer line datafrom the two preparations, multiple cycles of
alignment and merging resulted in rejection of the glc/PTA
| data, and the resulting averaged data were dominated by
the glc/PTA |1 data (see Discussion).
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Variationin layer linepositions

In the collection of data from different images, we
used dightly different estimatesfor thelayer line positions.
Each image was used to obtain an estimate of the positions
of the layer lines for the transform of that image. |s the
apparent variationin layer line positionreal, or isit simply a
consequence of noisein theimages? From the closest-to-
focus images, we collected the same set of 85 real layer
lines, assuming constant positions for the layer lines. The
constant positions were of course the average positions
determined for the set of images. If thelayer line positions
really vary, the average generated using constant positions
will be significantly worse than the average generated
assuming variable positions, whereas if the positions are
really constant, thereversewill betrue. Figure5 compares
the average assuming avariabl e position with that assuming
aconstant position for apair of layer lines: the strong n =+l
layer line and the wesak, high resolution n = -3 layer line.
Clearly, the data obtained assuming variable position are
better, especialy at high resolution. Thus, the positions of
the layer lines do vary, and the apparent variation in the
twist of thefilamentsisreal.
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Figure5. Comparison of averaged layer linesassuming constant or variablelayer linepositions. Theresultsfor astrong, low
resolution layer line (n=+1, panel A) and for aweak, high resolution layer line (n = -3, panel B) are shown. The upper trace
in each panel represents the average data using the measured position for the layer linein each image, while the lower trace
represents the results using the average of that position from al the data sets. For both layer lines, assuming a variable
position produces significantly better results. In panel A, although the difference in amplitudesis ~2x, the overall dataare
quitesimilar. Inpanel B, not only istheamplitude difference greater (~3-4x), but the signal near the meridian ismuch stronger,
and the noise away from the meridian is much weaker. Thelayer line order and meridional resolution are listed in the upper
right of each panel. Amplitude scalesareidentical for each trace within apanel.

Char acterization of reconstructions

Figure 6 shows surface representations obtained
from three averaged layer line data sets. The directions of
the11-, 6- and 5-start helical | attices are marked on panel c.
All three reconstructions show a knobby structure whose
outermost (D3) domains[using the nomenclature of Mimori
etal. (1995) and Morganet al. (1995)] dew fromIeft toright.
Thereconstructions from glc/PTA embedded samples (Figs.
6A and 6B) show an extension (marked with arrows) between
the base of D3 and the tip of D3 from a subunit along the
5-start helical lattice. This extension is not present in the
reconstruction from the vitreousice embedded preparation.

Thick and thin transverse slices through the recon-
structionsin Figure 6 are shown in Figure 7. Although the
surface representations of thethree preparationsare similar,
these transverse sections appear different. Common
features are most easily seen in 5.2 nm thick slices (Figs.
7A, 7B and 7C). Thecentral channel (diameter ~2.5nm) is
surrounded by aring of density (r, or DO) at aradius of ~2.0
nm. Surroundingr, thereisan annular feature(r ) in Figure
7F at aradius of ~4.5 nm. In the reconstructions from the
glc/PTA embedded filaments, this feature is made up of
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peaks of density referred to as D1 in previous work
(Trachtenberg and DeRosier, 1987; Namba et al., 1989;
DeRosier, 1992; Ruiz et al., 1993). Therearepeaksof density
(D2) at aradiusof ~6.5nm inall three reconstructions. The
outermost feature (D3) occursat aradiusof ~9.5nmandis
muchweaker intheglc/PTA Il sample (Figs. 7B and 7E) than
in the other two. The relative strengths of these features
differ in the three different reconstructions, and it is the
variationsin strength which make these transverse sections
appear so different.

We determined the significant features in these re-
constructions using the significance map procedure of
Trachtenberg and DeRosier (1987). Figure 8 showsthere-
gions of the transverse thin sections (Figs. 7D, 7E and 7F)
which are statistically significant at a99% confidencelevel.
At this confidence level, al the domains referred to above
are significant in all three reconstructions, including the
weak D3 region of theglc/PTA 11 structure (arrow, Fig. 8B).
Small, statistically signifi-cant differences (Milligan and
Flicker, 1987; Trachtenberg and DeRosier, 1987) between
near side and far side reconstructions are associated
primarily with the D3 domains (data not shown).
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Figure 6. Surface representation of the three-dimensional reconstructions. Contour levels enclosing similar volumeswere
chosenfor theglc/PTA | (A), glc/PTA 11 (B) and the vitreousice embedded (C) samples. Thecell proximal end of theflagellar
filament isat thetop, and the directions of the 11-, 6- and 5-start helical lattices are marked with arrowsin panel C. Arrowsin
panelsA and B mark an extension between the base of D3 and thetip of D3 from asubunit along the 5-start helix, whichisnot
seen in the vitreous ice embedded reconstruction. The reconstructions shown in this and subsequent panels correspond to

thefar sidedata. Bar =5.0nm (for A, B and C).

Signal detection

The purpose of our proposed sniffer algorithmisto
detect asignal in regions where it is masked by noise. By
locating and measuring the signal, we tried to refine the
positions of layer lines and to determine if someimagesin
the data set were better than others. We report here on the
use of this agorithm on the glc/PTA |1 data taken at ~200
nm underfocus. We chose this set because the layer line
datafromtheglc/PTA Il imagesare generally better, and the
higher resolution signal should be strongest in the closest-
to-focusdata. Inaddition, no CTF correction was necessary
for the interpretation of these data.

To estimatethe SNR in theimage, we used the posi-
tions at which the averaged amplitudes were significantly
different from zero. Wedid thisfor thefour strongest layer
lines at the 99.9% level, and then at the 95% level, and for
two high resolution layer lines, at the 95% level (Table 3).
The value of Sg for the low resolution layer lineswas 0.7,
dropping to about 0.4 for the regions within the 95%
confidencelevel. Thiscorrespondsto achangeinthesignal
tonoiseratio (SNR) from 1t00.25 (Fig. 1C). Wefound Sg of
about 0.25 on two high resolution layer lines. This
correspondsto a SNR of lessthan 0.1.

In Figure 9A, we show how Sg varies when the po-
sition of thelayer lineisvaried about the position previously
determined using helical cross-correlation methods. We
show values of Sg for three layer lines obtained from a
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singleimage. We seethat the peakslie closeto themeasured
positions of thelayer lines. We can get a better estimate of
layer line positions by increasing the number of points used
to determine Sg. Thus, rather than trying to determine the
position of each layer line individually, we can determine
themjointly. Recall that in the Fourier transform of anim-
age, the positions of all potential layer lines are linear
combinations of the two helical lattice constants, aand b
(Owenet al., 1996). To combine datafrom all or from any
subset of layer lines, wevaried aand b systematically about
their calculated values, determined the corresponding
positions of thelayer linesand combined thelayer linedata
fromthese positionsto calculate Sg,. The correct values of
the constants a and b should maximize Sg. We tried this
procedurevarying just the high resolution layer lines, which
should more accurately fix thelayer line positions, and also
just thelow resolution layer lines. Figures9B and 9C show
typical plots for the low and high resolution data, respec-
tively. The best values for the constants a and b derived
from the high or low resolution datawere not very different
from each other or from those determined in the original
processing of the data. Values of aand b typically varied
by less than a reciprocal pixel. Changesin the predicted
positions of layer lines increase due to changesin aand b
with increasing layer line height. Given the measured
changesin aand b, the positions of the highest resolution
layer lines changed by lessthan 2 pixels, which iswithinthe
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Figure7. Thick and thin transverse sections taken from the three-dimensional reconstructions. Thethick sectionsin panels
A, B and C are 5.2 nm thick, showing an entire asymmetric unit along each 11-start helix. PanelsA and D correspond to theglc/
PTA | datashownin Figure 3B after trimming theresolution to 1.4 nm. PanelsB and E correspond to the glc/PTA 11 datashown
in Figure 3E and panels C and F correspond to the vitreousice embedded data shown in Figure 3H. Theresolution in these
last two data sets was trimmed to 0.7 nm before each reconstruction was calculated. Domains DO, D1, D2 and D3 and the
channel (ch) aremarked in panel D, whileD2, D3, 1, r, and ch are marked in panel F. Anarrow markstheweak D3 domainin

panelsB and E. Bar =5.0 nm (for 7A-7F).

layer linewidth. Moreover, the use of the changed positions
to collect the layer line data for a subset of images did not
result inan improvement of the phaseresidualswhen sets
were compared to the average (data not shown).

Correlation of variousfactor swith “ goodness’ of
individual images

The data collected from the glc/PTA 11 preparation
represent the largest collection of datain this study. This
method of sample preparation also appearsto preserve the
strongest high resolution/high Bessel order information.
For these reasons, we used these data to determine the
quality of individual imagesin the set. We used the phase
residual for the alignment of individual imagesasaninitial
measure of overall image*goodness’ and correlated it with
parameters we collected during image processing (e.g., tilt
out of theimage plane, filament curvature, axial and angular
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disorder and Sg on several layer lines). Results of such
comparisons are shown in Table 4. Although most of the
correlationsare statistically significant (t > 2), they account
for only a small fraction (~5%) of the variance. We also
looked for correlation between axial and angular disorder
and between tilt out of the plane of theimage and the posi-
tions of the two helical lattice constants. These correla-
tionsare statistically significant, but they account for only
asmall amount of the variance.

Discussion

Wewant to produce maps of filamentsto better than
1.0 nm, ideally to about 0.4 nm resolution. As part of this
effort, we are exploring the use of glc/PTA embedment. In
olc/PTA, structural detail is preserved to 0.4 nm, and since
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Figure 8. Statistical significance of reconstructions. Features significant at a 99% confidence level are shown for the glc/
PTA 1 (A), glc/PTA 1l (B) and vitreousice embedded (C) data. Inthesereconstructions, all thefeaturesmarked in Figure 7 are
significant, including theweak D3 domainsin Figures 7B and 7E (marked with arrow in panel B). Positive significant density
(relative to the density corresponding to the edge of the structure) iswhite, negative significant density isblack, and density
that isnot statistically significantisgray. Bar =5.0 nm (8A, 8B and 8C).

Table 3. Determination of Sgfrom closest-to-focus data set.

Bessel order Sg(al images) Sg(datawhich align)
(# observations) average range average range
q=5.0
-11(20) 068 (0.92t00.13) 071 (0.92100.20)
+6(15) 067 (0.91t0-0.06) 0.70 (0.91t00.35)
-5(16) 067 (0.92t00.04) 0.72 (0.92t00.45)
+1(14) 061 (0.93t0-0.17) 067 (0.93t00.21)
q=20
-11(48) 044 (0.69t00.17)
+6(41) 040 (0.74t00.14)
-5(43) 043 (0.70t0-0.02)
+1(34) 043 (0.68t00.16)
+2(31) 029 (0.66t0-0.07)
(at~1/1.29nmY)
-3(19) 024 (0.61t0-0.18)

(at~1/1.03nmY)

stain embedment provides better contrast at low resolution
than ice embedment, we can work closer to focuswherethe
transfer of high resolution detail into the imagesis better.
We beganwith al.0 nmresolution study of flagellar filaments
embedded in glc/PTA.

Attemptstocollect alar ge set of images

Since the glc/PTA | images appeared suitable for
higher resolution structural studies, we set out to repeat
the work, and therefore, to increase the number and defo-
cusrangeof imagesof glc/PTA embedded flagellar filaments.
Theglc/PTA Il imagesaretheresult of thiseffort. Although
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Table4. Correlationsamong image processing parameters’

parameter 1 parameter 2 coefficient of coefficient of tvaue
correlation determination
phase residual up/down difference -082 0673 253
Sg(n=-5) -042 0.176 5.2
Sg(n=+1) -043 0.187 55
2 Sg(n=-11,+6,-5, +1) 065 0422 9.7
out of planetilt 0.06 0004 10
inplanetilt 023 0.052 41
curvature (I/r) 015 0024 18
angular disorder 022 0048 40
axial disorder 0.18 0031 32
Sg(n=+3) 0.18 0031 20
Sg(n=-8) -0.30 0.092 36
out of planetilt position of lattice 0.18 0035 33
constant a
position of lattice 025 0.060 46
constant b
axial disorder angular disorder 034 0114 6.3
Sg(n=-5) Sg(n=+1) 017 0.029 20
Sg(n=+1) Sg(n=-3) 014 0022 17
Sg(n=-5) Sg(n=+8) 005 0.003 06
Sg(n=-3) Sg(n=+8) -002 0.004 02
2Sg(n=-11, 2Sg(n=+8,-3,-14) 0.18 0.003 21
+6,-5, +1)

“Determined from the 200 nm underfocus dataonly.

we could align averages produced from the two sets of
images, attemptsto align and merge the individual images
from both sets did not succeed: when data from individual
imageswereiteratively aligned and merged, the procedures
tended to eliminate most of the less numerous glc/PTA |
images. Weexamined several possible causesfor thisfailure.

One cause could bethat the two sets of imageswere
digitized using different devicesand (dightly) different pixel
sizes. Wetested thispossibility by processing approximately
30 additional glc/PTA | images exactly asdescribed for the
glc/PTA 1l images. This reconstruction (data not shown)
appearsvirtually identical tothat fromtheoriginal glc/PTA
I images (Figs. 7A and 7D), and has essentially identical
statistically significant regions (Fig. 8A). Wewereableto
align and merge these datawith the layer line datafrom the
original processing, but werestill unableto align and merge
the new data with that from the glc/PTA 11 images. Thus,
processing of the micrographs did not seem to be the cause
of the failure of the data setsto merge.

It seemed likely that the cause lay in the sample
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preparation prior to microscopy. Conditions for the glc/
PTA 11 samplesinvolved longer exposureto negative stain,
which could disorder variousfestures of thefilaments. Since
the glc/PTA Il images generate good high resolution data,
we do not believe thisto be asignificant factor. Whilethe
outside surfaces of the two reconstructions look the same,
the features within the two have noticeable differences.
What is particularly striking is the lack of internal detail
within the region defined by the ring of D1 domainsin the
olc/PTA Il map. Itisasif thereislessstain penetrationin
that preparation. Inlight of thisobservation, itisinteresting
that the amount of glucose in the glc/PTA Il samples is
greater than that in the glc/PTA | sample. Thus, theratio of
glucose and PTA may be important.
Comparison tothereconstr uctionsfrom ice-embedded
preparations

The surface representations (Fig. 6) of thethreere-
constructions are similar. Thick and thin sections through
the reconstructions (Fig. 7) reveal that the outermost (D3)
domains of the filament are weaker in the reconstructions
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Figure9. Application of the sniffer to asingleimage from
the closest-to-focus glc/PTA Il set. (A) Plot of Sg versus
axia position. Theresultsfromthreelayer lines(n=1, 2and
8) areshowninthispanel. Theabscissarepresentsdistance
(inreciprocal pixels) from the expected meridional positions
of these layer lines and the ordinate is the value of Sg
averaged along thelayer line. (B) Plot of Sgversusaandb
|attice parameters. Thefour visible, low resolution (to~2.5
nm) layer lines(n=-11, 6, -5and 1) provideinput to Sg. The
valuesof aand b areinreciprocal pixelswith 0,0 representing
the position determined previously using the helical cross
correlation procedure. (C) SameasB, except we used a set
of highresolution (~1.0-1.2 nm) layer lines(n=24, 13, 2, -9,
-20, 19, 8, -3, and 14). Thepeaksin both b and cliewithin
onereciprocal pixel of 0,0.

based on glc/PTA embedded filaments than in the
reconstruction from the vitreous ice embedded filaments.
Ingeneral, themap derived from theice-embedded filaments
reveals better detail. While all three reconstructions show
the same subdomain organization, and both the glc/PTA 11
and the vitreous ice embedded reconstructions have data
to beyond 1.0 nm resolution, only the latter reconstruction
revealsthe 1.1 nmfeatureswithinr_(D1) andr, (DO), which
we believe correspond to axially-oriented a-helices. The
most likely explanation for the failure of the glc/PTA
embedded samples to show such features has to do with
the reversal of con- trast caused by the stain. In negative
stain, domains appear as low density holes and scatter
generally out of phase with respect to the scattering from
internal features of the domains. In ice, both the domains
and their internal features scatter in phase. Thus, the stain
shell surrounding the protein, which produces strong low
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resolution scattering at ~0.8 nm resol ution, will weaken the
1.0 nm resolution scattering due to the protein itself, in
particular the a-helical rods. The portion of the transform
that arisesfromthe a-helical rodsislocated near the equator
at ~1.0 nm resolution. Thisregion is strong in Figure 3H
(ice data set) relative to that in Figure 3E (glc/PTA |1 data
set).

We concludefrom thislow resolution work that with
stain embedment, we can work close to focus yet preserve
sufficient low resolution information by which to straighten
and alignimages of the filament. Werecord dataat 1.0 nm
resolution even though it does not reveal the expected peaks
corresponding to a-helices. This fine detail should,
however, reappear at aresolution beyond 0.8 nm (i.e., the
usual cut-off used by X-ray crystallographers to avoid
reflectionswhose amplitudes are affected by solvent). Thus,
the increase in the scattering due to stain should not



D.G Morganand D.J. DeRosier

(+1, 1/2.6 nm)

n=75

n=40

n=20

n=10

nes

best

(-3, 11.14 nm)
P W TETCREINY 1, U1 . PO S YIS S

TG . Ul £ ¥ g O
SR WY A VY A WO
s mmamposrnd NN YN oimpe i i

__WW\/W»«W__,_‘

T T T
-1 /0.85nm

A R

1/0.85nm

T T T

-1 /0.85 nm 1/0.85 nm

B R

Figure10. Resultsof averaging data. Theresultsfor averaging datafrom 5, 10, 20, 40, 75 and 129 (all) imagesfor astrong,
low resolution layer line (n=+1, panel (A) and for aweak, high resolution layer line (n = -3, panel B) are shown. Each panel
contains the amplitude versus radius from the meridian along both sides of the meridian. At the bottom of each panel, the
corresponding best and worst layer lineare also shown. Theworst inthetwo cases are from different images as are the best.
Inpanel B, theincreasein SNRismost obvious. Thelayer lineorder and meridional resolution arelisted in the upper right of
each panel. Amplitude scales areidentical for each trace within apanel.

compromise our ability to collect datain the 0.8 to 0.4 nm
region.

How Good areour Proceduresfor Extracting Data?

Withthelarge dataset glc/PTA |1, we can ask whether
we could improve our signal to noiseratio intheaverage by
handling the set of images differently, for example, by
eliminating “ poor” images.

Determination of layer linepositions

We showed that thelayer line positions actually vary
from particle to particle. This variation results from the
flexibility of thefilament much likethevariation in particle
curvature. To see if we had correctly located the high
resolution layer lines, which are not visiblein transforms of
singleimages, we used the sniffer algorithm to redetermine
thelr positions. We concluded that the layer line positions
(at least to 1.0 nm resolution) were sufficiently accurate to
reguire no further correction. However, Carragher et al.
(1996) have reported that use of the sniffer produces a
significant improvement in finding weak layer linesat ~2.5
nm resol ution with images of actin decorated with the my-
osin S1 fragment.
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Validity of correctionsfor curvatureand tilt

If there are systematic errors in any of our image
processing procedures, we might identify them by corre-
lating various parameters (e.g., tilt out of the plane) with
phase residual. If the correction for out-of-plane tilt is
imperfect, there should be a correlation between high tilt
angles (requiring large corrections) and high (bad) phase
residuals. We might also identify other defectsin particles
(e.g., highaxial and angular disorder), which we could
correct in a way similar to the correction of images for
curvature.

Thecorrelationswe examined (Table4) areall statis-
tically significant but account for < 5% of the variance
between images. Thus, there is no reason to eliminate a
subset of images (e.g., thosethat aretilted) sincetheloss of
signal would far outweigh the loss of noise. It also seems
unlikely that a weighted average would be much of an
improvement. Thus, we conclude, at least for this data set,
that our proceduresfor correction work well enough.

This kind of analysis can be useful in uncovering
problems in the algorithms used for the corrections. We
initially noticed acorrelation betweentilt in the plane of the
image and phase residual that accounted for about 10% of
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thevariance. Sincetilt in the planeissimply afunction of
orientation of the micrograph in the densitometer, it seemed
to point to aproblem inthe spline- fitting algorithm weuse
to correct for curvature and tilt. Indeed, there was adefect
and much of the correl ation disappeared when the a gorithm
was corrected.

Assessment of thegoodnessof individual images

Isit possible that some of the imagesin the set are
much worse than the others and that the “worst” of these
are degrading the average, especially at high resolution?
We examined this hypothesis by creating a series of
averages which include data from increasing numbers of
images. We used the data from the closest-to-focus glc/
PTA 11 images and ordered theimages based on increas-ing
phaseresidua. Theresultsof averaging5, 10, 20, 40, 75 and
al (129) data sets is shown in Figure 10 for both a strong,
low resolution layer line (n = +1) and for a weak, high
resolution layer line (n = -3). In both cases, the noise
decreases with the square root of the number of filaments.
Theresults are more dramatic for the n = -3 layer line: the
increasefrom 75to 129 data setsimprovesthe near side/far
side amplitude symmetry, and while it appears that the
amplitudes of the maximadecrease somewhat between the
average containing 20 datasets and thefinal average of 129
data sets, the SNR improves due to the large reduction in
noise along the layer line. The weak fall-off in amplitude
with increasing numbers of filaments suggeststhat thereis
real variation in the set of images but that the variation is
modest.

We al so examined anumber of parameters collected
during image processing to determine which other pa-
rameters are correlated with phase residual. These results
are listed in Table 4. Polarity (up/down phase residual
differences) shows the expected correlation with phase
residual: the higher the phase residual, the smaller the up-
down difference. Thiscorrelation accountsfor almost 70%
of the variation in the two measurements. Thus, either of
these measures could be used as an indicator of overall
image goodness. Therearealso strong correl ations between
the phase residual and Sg measured on two strong, low
resolution layer lines (n = -5 and n = +1) which account for
15-20% of the variation. The correlation between phase
residual and the sum of Sgaong thefour layer linesvisible
inall Fourier transformsof these filamentsiseven stronger,
accounting for over 40% of thevariation. These correlations
are not surprising since in the calculation of an rms (root
mean square) amplitude-weighted phase residual, the data
along theselayer lines accountsfor asignificant amount of
the overall amplitudeweighting.

We also investigated whether Sg at low resolution
isagood predictor of Sgat high resolution because this
might afford usaway to screen particlesfor inclusioninan
average where we seek to include the best high resolution
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data. Our results (Table 4) indicate that the correlation
between Sg measurements for alow resolution and a high
resolution layer lineisbarely statistically significant (t ranges
from 0.6 to 1.7) and accounts for only afew percent of the
variance (0.3-2.2%) in the measurements. Correlations
between pairs of low resolution layer lines or between pairs
of high resolution layer lines are also weak (t ranges from
0.2 to 2.0) and account for small amounts (0.4-2.9%) of
variance. Wealso correlated the sum of Sgfromthe4 strong,
low resolutionlayer lines(n=-11, +6, -5, +1) with the sum of
Sg from three weak but statistically significant, high
resolution layer lines(n=+8, -3, -14). Again, thecorrelation
isbarely significant (t = 2.1) but accountsfor asmall amount
of thevariance (0.3%). Thus, the strength of low resolution
dataisnot agood predictor of the strength of high resolution
data.

It is perhaps a surprising conclusion that measure-
ments of signal in one region of layer line datado not
better predict signal in other regions. Of course, we
eliminated those images which do not align and merge, and
thus, we are not making a statement about all the images
but rather only those that have passed our selection proce-
dure. From this analysis, we conclude that the selected
imagesused intheaverageareall similar in quality and that
variations among them are uncorrel ated.

We are thus in a position to tackle the extension of
datato 0.4 nm. Thesniffer algorithm appeared to work and
provided acheck onthe accuracy of layer line positionsfor
1.0nmresolution layer lines. It may helpinlocating the0.4-
0.5 nmresolution layer lines. The sniffer, however, can be
used for any structure: nothing in the formalism excludes
its use for other symmetries.
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Discussion with Reviewers

B. Carragher: It would be helpful to providethe number of
images involved in reaching 1.0 nm resolution for the
flagellar filaments and al so to estimate how many would be
required to reach still higher resolutions.

Authors: While we used more than 100 imagesin our re-
construction of vitreous ice embedded flagellar filaments,
significant high resolution data on either the near- or the
far-side are obtained with about 20 images (see Fig. 10B for
data based on glucose/PTA embedment). The additional
images increase the signal to noise (and thus our
confidence) in the final reconstruction. Approximately 20
imagesfor a1.0 nmresolution structureisin rough agreement
with theresults both of Mimori et al. (1995), who averaged
datafrom both sides of 16 imagesto attain 0.9 nm resolution
for adifferent form of the bacterial flagellar filament, and of
Jeng et al. (1989), who averaged datafrom both sides of 12
images of tobacco mosaic virus(TMV) to attain an ~1.0 nm
resolution structure.

We did not attempt to look for 0.45 nm data (where
the electron diffraction is strong), but we did not see
anything significant between ~1.0 nmand 0.7 nmresolution
(the digitization limit of this study which happens to
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correspond to where the electron diffraction isvery weak).
We may require 1000 or more images to attain ~0.4 nm
resolution. For example, the amplitudes of the 1.0 nm data
are reduced by an order of magnitude relative to the low
resolution (< 5.0 nm) data, and if thefall-off islogarithmic
with resol ution, then onewould roughly need 101204 [ ]300

times moreimages or ~300 x 20 [16000. Thisestimate may
be too pessimistic, but until we try, we have no way of
accurately determining the number of images.

B. Carragher: Why are CTF corrections made only for
phases and not amplitudes (or temperature factors)? Isit
the casethat groups of imagesin similar defocusrangesare
averaged together prior to CTF correction? Authors. We
have attempted CTF correction with simple phase reversal
and with amorerigorous, multiple-image-based Wiener filter
approach [cf. Morgan et al. (1995) for adescription], which
attemptsto correct phase and amplitude. Amplitudesat the
lowest resolutions, especially on the equator, appear to be
incorrectly amplified by the Wiener filter in that the density
modulations across the interior of our reconstructions are
too flat. We explored the use of temperature factors to
correct our higher resolution amplitudes, but sincewe have
no knowledge of the fall-off in amplitudes, these correc-
tions are hard to justify.

Inall our CTF correction work, we determined the
defocus and astigmatism for each micrograph and applied
those parametersto theindividual layer line data setsfrom
singleflagellar filaments. Thisallowsusto account for any
azimuthal rel ationship between the major axisof astigmatism
inthe micrographsand thefilament axis. Wedid, however,
as away of checking on image quality, try aligning and
merging our datain setswhere all members of the set were
recorded with similar defocus. We did not use those
preliminary averagesfurther.

K. Namba: Although it is stated that the scattering due to
stain should not compromise the ability to collect datain
the 0.8 to 0.4 nmregion, the significant differences between
themapsshowninFigures 7D and 7E, which werecal culated
from the two sets of data collected from two different
preparations of stained samples (especially the differences
in the core region of the filament, where the &-helices are
densely packed) seem to suggest that the distributions of
penetrated stain can vary from preparation to preparation.
This implies possible variations and modifications of the
density distributions by stain, which may make the
interpretations of themap rather difficult, evenif the structure
itself iswell preserved by the sample-preparation method
and can be deduced at higher resolution.

M. Schmid: The difference between the two data setsin
glucose appears to be that the glc/PTA | has generally less
contrast between the layer lines and the background, both
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individually and in the average. Isthisdueto alower red
space contrast arising from different embedding of the
filaments in the two experiments? |sthen the observation
of weaker density at the outside of the filamentsin the glc/
PTA Il reconstruction perhaps due to a higher level of
staining at the periphery of the filament?

Authors: The differences in the two maps appear due in
part to differences in stain penetration. Note that the glc/
PTA Il specimen, which shows |ess stain penetration, was
exposed to 0.7% PTA, while the more stain penetrated glc/
PTA | specimen was exposed to 1.0% PTA. On the other
hand, the glc/PTA |1 was suspended in the stain solution,
placed onto agrid and blotted, whilethe glc/PTA | specimen
was only briefly exposed to stain after being deposited on
thegrid. Inadditionto differencesin stain penetration, the
outer domain (D3) of the glc/PTA |l preparation appears
weaker. Theglucose/stainlayer intheglc/PTA I preparation
is thinner (compare Figs. 2A and 2B) and perhaps,
interactions of the surfaces of the stain layer with the
filaments have disordered the outer domains of the
structure.

Whether or not the glucose/stain mixture used here
alters the subunit conformation is unknown. We do know
that the axial &helicesare present in both the glc/PTA and
vitreous ice embedded samples, but we do not know that
either of these methods preserves the subunits in their
native states. Fortunately, there is X-ray fiber diffraction
data available, and ultimately, this may permit usto judge
how well the structure determined by microscopy accounts
for the X-ray diffraction results.

M. Schmid: How could onetell that one needsthe” sniffer”?
If the data appear to end past a certain resolution, are there
always more data there, waiting to be extracted and
averaged, or are somestructuresintrinsically limited intheir
resolution, and can the sniffer tell the difference?

Authors: Thesniffer aswe have used it does not find data
where none has been detected in the average. Its use
therefore, isin assessing the contribution of each filament
to the average and in refining parametersfor each filament
(e.0., locating layer line positions). We found that our
filaments contribute roughly equally to the average data
and that our estimates of layer line position were good
enoughfor 1.0 nmresolution. Onthe other hand, Carragher
et al. (1996) found that an algorithm similar to the sniffer
helped them in analysis at ~2.5 nm resolution of F-actin
decorated with the S1 fragment of myosin. It seems,
therefore, worth using, even if only to judge whether oneis
doing aswell aspossiblefor agiven set of images. It could
al so be used to assess new images which oneisthinking of
adding to an existing dataset. More exotic applications of
the sniffer are also possible (e.g., the sniffer should detect
anti-correlation in regions of phase reversal and might
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therefore be useful for CTF correction, although our initial
attempts at this have been less than satisfying).

With regard to the question of datawhich disappear
beyond a certain resolution, it may well be that there are
aways data there, but that the signal-to-noise ratio drops
below auseful level. Thesniffer relieson the comparison of
a high signal-to-noise data set (an average in the cases
described here) to individual data sets. if one had such a
high signal-to-noise data set (e.g., an atomic resolution
structure based on modeling rather than averaging data), it
might be possible to use the sniffer to detect comparable
signal fromindividual images.

M. Schmid: How good doesone'sinitia estimate of helical
parameters (of n’s, and of the aand b cell axes) haveto be
for the sniffer (or the helical cross-correlation) to work
properly?

Authors: Todo any sort of three-dimensional work on hel-
ices, one must know the values of n, the order of the layer
line. Estimates of aand b must be accurate enough so that
dataiscollected withintheaxid width of thelayer line (which
is inversely proportional to the length of the image
transformed). One might usethe sniffer to refine estimates
made at low resolution for higher resolution work.

M. Schmid: Any weighting schemethat could be appliedto
the described phase correlation methods would likely
upweight lower resolution data at the expense of weaker,
noisier high resolution data. After thedecisiontoincludea
pieceof datainthefirst place, it would appear that the most
sensitive weighting scheme would be to treat all datawith
equal weight. Do you agree?
Authors. We experimented with variousweighting schemes
for both the sniffer and for the alignment and merging
algorithm. Thesniffer algorithm, whichisintended to answer
ayes/no question concerning the presence of asignal along
given tracks through Fourier space, appears to work best
when all data are weighted equally. This makes intuitive
sense in that the best possible answer should occur when
the maximum number of positions are most phase coherent.
For purposes of alignment of imagesto areference,
we have tried amplitude based weighting of all data, log
(amplitude) based weighting of all data, weighting based
only on reference amplitudes, equal weighing of all data
and 1Q-like estimates of either the signal-to-noise or sta-
tistical significance of each Fourier coefficient (i.e., weights
based on classifying datainto alimited number of “quality
ranked” groups). With the closest to focusimagesfrom the
glc/PTA 11 data set described here, there is very little
difference between averages generated using an alignment
based on any of the amplitude-related weighting schemes
or ascheme which uses the statistical significance of each
Fourier coefficient. When these same dataare aligned using
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only phase coherence (weighing all data equally), the
resulting averageissimilar to the other averagesreferred to
above except that the number of images which align drops
by ~60%, and the average is appropriately noisier.

M. Schmid: A signal observable at 1.0 nm resolution is
quiteremarkablein negative stain, wherethe resol ution limit
isnormally about 1.5 nm. Isthe glucose/ PTA embedding
medium described here more properly considered “high
contrast glucose”? Do you have an estimate of the mass
density of the embedding medium?

Authors. Clearly, the resolution described here is higher
than that usually cited. If by “high contrast glucose,” you
mean something like auro-thio-glucose, which has been
shown to preserve atomic detail in certain specimens, it is
not yet clear that such data exist in the glucose/PTA
embedded flagellar filaments although electron diffraction
patternsreveal near meridiona layer linedataat 0.4-0.5nm
(Ruizetal.,1994).

In X-ray diffraction experiments, variation due to
solvent density extends down to about 0.8 nm resolution,
and in this sense, negative stains appear to act like high
density mother liquor. It is not perhaps surprising, there-
fore, that comparable resolution is obtained from the dis-
ordered “solvents’ (stain and mother liquor) in the two
cases.

We have not measured the density of the dried glu-
cose/PTA layer.

N. Unwin: Theanalysis of the same structure to the same
resolution has previously been reported (Morgan et al.,
1995). Inthat paper, theauthors* present detail s of improved
methodology to extract and evaluate the original data and
also to assess the statistical significance of featuresin the
three-dimensional map.” One aspect of the present paper
not discussed thoroughly in the earlier work isadescription/
analysisof the sniffer algorithm. Thisalgorithm represents
amethodol ogical advance that should benefit other people
inthefield.

Authors: Inthis paper, we are attempting to present some
results on glucose/PTA embedment which might, in some
cases, be preferred to the use of vitreousice embedment. In
analyzing these data, we developed the sniffer algorithm
and tested it on the glucose/PTA embedded samples which
have a bit stronger signal-to-noise ratio than the ice
embedded samples, and for which we have a large set of
images recorded close enough to focus that the CTF does
not affect the data until beyond the disappearance of all
useful signal. Although the concept of the sniffer has been
mentioned before (Morgan and DeRosier, 1993), it was not
used in our analysis of vitreous ice embedded filaments
(Morganetal., 1995).
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A. Steven: Based on our limited but decidedly negative
experiencewith datadigitized on an Eikonix scanner, | found
it surprising that the glucose/PTA | data scanned with an
Eikonix scanner appeared to be as good as data from the
same series of micrographs scanned on a Joyce Loebl
densitometer at the L aboratory for Molecular Biology, MRC.
Could the authors comment on that?

Authors. The Eikonix scanner does not measure densities
aswell as the Joyce Loebl scanner. We think the Eikonix
degrades both moderate and high resolution amplitudes
but not phases, so that although both the signal and the
noise amplitudes are suppressed, averaging allows us to
extract useful signal from the Eikonix scanned data. Our
comparison of images scanned with the Joyce-L oebl and
the Eikonix was not used to provide information about the
quality of data from the two scanners, but rather to show
that the glc/PTA | and glc/PTA |1 images are inherently
different.
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