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Abstract

Sincetheir inception, three-dimensional reconstruc-
tion techniques have been based on the theory of Radon
transforms. Only much later were Radon transforms
recognized as powerful tools for image processing and
pattern recognition. Techniques like the common lines
techniquefor finding the orientation of projectionsof highly
symmetrical particles can easily be translated into a
technique that uses Radon transforms. Radon transforms
have the advantage of being real valued which simplifies
many interpolation steps. Correlation techniqueshave been
developed for alignment of asinglenoisy projectionrelative
to athree-dimensional model and many ideasoriginally set
forwardin previouswork by the author have been realized.
These include simultaneous rotational-translational
alignments, iterative refinements of three-dimensional
reconstructionsand a Two-step Radon Inversion Procedure

(TRIP).
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Introduction

For athree-dimensional reconstruction from projec-
tions the orientation of the projections in relation to a
common coordinate system must be known. Intomographic
reconstructions of single objects- e.g., centrosomesin thick
sectionsor individual macromolecules- from single-axisor
conical tilt series, the orientation of the projectionsisknown
from the microscope’s goniometer reading. Here, themain
alignment problemisatranslational alignment relativeto a
common origin [7]. Inareconstruction from projections of
multiple copies of the same macromol ecul e, the orientation
cannot be determined solely from the goniometer reading.
The method of reconstruction from a random conical tilt
series [13, 15] still takes advantage of the fact that most
macromolecules attach to the carbon support of the
specimeninapreferred orientation, which again relatesone
angle to the goniometer tilt. The second angle here can be
found through rotational alignment techniques applied to a
0° image of the specimen. If atilt seriesisnot availableand
the molecule does not exhibit preferred orientation, then
the orientation of aparticlein any given projection must be
found by information contained in theimage. The common
lines method developed by Crowther et al. [3] solved this
problem for particles with a high degree of symmetry. For
icosahedral symmetry the Fourier transform of one
projection intersects with up to 59 symmetry-related
projections. The pattern of common lines can be found in
one projection as each projection also represents all
symmetry related images. This pattern determines the
orientation of the projection. Projections of
asymmetrical particlesdo not contain common lineswithin
one image. However, the Fourier transforms of any two
projections of the same object share at least oneline, which
liesalong the direction of thecommontilt axis. If three non-
colinear common lines among three projections can be
found, then these three lines determine uniquely - aside
from a mirror operation - the orientation of these three
projectionsin space(5, 6, 18].

Whereas the original method for finding common
lines had been developed using Fourier techniques, there
are advantages in replacing some of the analysis by
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operations on Radon transforms[12, 16].
Theory

The three-dimensional Radon transform is defined

f(pE): If(r)a(p-i-r)dr (@)
where &(p-€ [1l) specifiesaplane over which theintegration
is carried out and € is the unit vector that determines the
direction of this plane. For the two-dimensional Radon
transform, € and r are replaced by two-dimensional vectors
and theintegration becomesalineintegration instead of an
integration over planes.

Radon transformsand Fourier transformsare closely
related. The two- or three-dimensional Fourier transform
can be calculated from the two- or three-dimensional Radon
transform by aone-dimensional radial Fourier transform

f(pE)= IF (s£)er™ds @
with F(st) being the two- or three-dimensional Fourier
transform of f(r) in polar coordinates. The projection theorem
known from Fourier theory isaso valid for Redon transforms

[4].

A further theorem is the shifting property of Radon
transforms. If f(r-a) is the function f shifted by a, then its
Radon transformis

[1(r-a)5(p-&-a)dr=

=1 1(d)5(p-€- a-€- q)ag= f(p-€-af)
Many convolutions that have kernels of two or three
dimensions when applied to a real space object become
one-dimensional kernelswhen applied to Radon transforms.

Alignment

Therotational and translational alignment between
two images can be found from the cross-correl ation of their
Radon transforms. Let £ (p,), with & = (cos (€), sin(g)), be
thethe Radon transform of areferenceimageand let g (p,€)
be the Radon transform of the image that is to be aligned
with respect to . Let g berotated relativeto f by ananglea,
and shifted by r, = (r,[dos(n,), r,[sin(n,)). The cross-
correlation function

©)

c(a,r,n)=

Tz . 4
J1f (&) (p-rEin(e+n) e+a) dpde @

then hasitsmaximumat (o, 1, n,).-
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Figure 1. Simultaneous translational/rotational alignment
of animage seriesrelativeto afixed reference. Bothreference
andimage series (a) are Radon transformed (b), followed by
aone-dimensiona Fourier transform (c) along p (Eqgn. 2).
The Fourier Radon transform of theimageismultiplied with
the Fourier Radon transform of the reference (d) followed
by aone-dimensiona inverse Fourier transform (€). A series
of cross-correlation coefficientsis cal culated by summation
over sine curves (f). Their amplitudes correspond to the
size of the shift and their phasesto the shift direction. These
cross-correlation coefficients are stored in the cross-
correlation file (g) (see Figure 2). Thelinesin the Fourier
Radon transform of the image are then permutated and the
calculations repeated for the next orientation, starting at

step (d).

The alignment procedure can be directly extended
toanalignment of projectionsrelativeto athree-dimensional
reference. The cross-correlation function then becomes

c(@6,a,r,n)=

[F. (pDsprSnErmerydpde

f' o0 IS the cross-section through the three-dimensional
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Table 1. Comparison of average residual shifts, rotations and resolution limits.

Separate translational/rotational alignment Simultaneous alignmert
residual resolution residual resolution
rotation translation (DPR) (FRC) rotation translation (DPR) {FRC)
test 1 9.7 0.95 3.9nm 2.3nm 1.25 0.13 2.8nm 1.3nm
test 2 34.2 il 3.9nm 3.7nm 1.76 0.20 3.2nm 2.1nm

Comparison of averageresidual shifts(in pixels), rotations (in degrees) and resolution limits of the resulting average images
after atraditional rotational/trand ational alignment versusasimultaneousrotational/trand ational alignment (DPR: Differential
Phase Residual; FRC: Fourier Ring Correlation). Test 1 showsthe residuals after several steps of alignment, i.e., centering,
dynamic reference alignment followed by fixed reference alignment. Test 2 shows residuals after a single fixed reference

alignment.

Radon transform at angles (g, 6).

For higher computational efficiency the Radon
transform of the reference aswell asthose of al projections
are Fourier transformed (Fig. 1). The cross-correlation is
calculated by line-by-line multiplication of Fourier-Radon
transformsfollowed by inverseradia Fourier transformation.
The integration over € is done as a summation across the
linesalong curvesc(e) = rldn(e+n).

The rotation of the projections can be applied to
their Fourier-Radon transforms by a commutation of lines.
Shifts can also be applied to the Fourier-Radon transforms
by phase multiplication. If the Radon transformiscal cul ated
with an angular increment of Ag, the number of sampling
points per lineisK, and the shift vector is rl(tos(n),sin(n)),
then the phase factor Pfor the Fourier coefficientkinlinen
is

P =exp [2TiFcos((n-1) Bp-n) K/K] ©

Like the traditional rotational and translational
alignment algorithm the new algorithm can also be
implemented either asalignment algorithm relative to afixed
reference or as an iterative algorithm with a dynamic
reference. (Note: Originaly this method had been called
referencefreealignment [11]). Inthelatter caseoneimageis
chosen asthe first reference and the next image is aligned
tothisreference and added to create anew referencefor the
followingimage. Alternatively an averagein two dimensions
or athree-dimensional Radon transformiscreated asafirst
referencefrom the projection serieswith randomly assigned
angles. Whereas in two dimensions the number of
measurements averaged is the same for each point, in the
three-dimensional Radon transform thisnumber variesfrom
one line to the next. Here, each radia line in the Radon
transform has an averaging index that keeps track of the
number of projection lines used for each line in three
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dimensions.

In three dimensions the alignment with dynamic
referenceisdoneinthefollowing way: Thelinesthat form
the intersection of the projection through the three-
dimensional Radon transform are determined. Each lineis
multiplied by itsaveraging index. The corresponding line of
the current projection issubtracted, theindex reduced by 1,
and the result divided by the new averaging index. The
orientation and relative position of the Radon transform of
the projection is determined according to equation (5) and
is averaged back into the three-dimensional Radon
transform using the reverse of the procedurefor subtraction.
Linesthat have an averaging index of O are skipped in the
calculation of the cross-correlation.

For three-dimensional alignment relative to afixed
reference, only the cross-correlation function (egn. 5) is
used.

The alignment procedures that use a dynamic
reference are iterated. As stated earlier, for higher
computational efficiency eachimageisRadon transformed,
followed by aradial Fourier transform before the alignment.
Averaging in two and three dimensions is then done in
Fourier space.

The translational alignment is implemented with a
fixed accuracy, currently 1 pixel. The shift coordinates are
determined in polar coordinates. For al pixel shift, 8 cross-
correlation coefficients are calcul ated for anglesn (egn. 2)
withvaluesof 0°,45°,90°, 135°,180°, 225° and 270°. For a
2 pixels shift the 360° angular range is divided into 16

intervals, and for an n-pixel shiftinton[8intervals. Figure 2
shows a cross-correlation function of a two-dimensional
simultaneous translational/rotational alignment with a
maximum at an angle of 78° and a shift of 9[(tos 70°, sin

70°).
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Three-dimensional reconstruction

To observe the progress of the alignment in three
dimensions, a fast Two-step Radon Inversion Procedure
(TRIP) has been developed. The three-dimensional Radon
transform as implemented is sampled on a polar grid.
Whereas this sampling scheme uses more points than
necessary according to Shannon’s sampling theorem, the
regular grid simplifies many calculations. The three-
dimensional Radon transform is calculated in two steps. In
step one, a series of projections forming a single-axis tilt
seriesis calculated from the three-dimensional real space
volume. In step two, each projection is then Radon
transformed in two dimensions. As a result, each two-
dimensional Radon transform then forms a 6-slice (z-
direction) in the three-dimensional transform. The radial
coordinateincreases along theline of each dlice (x-direction)
and the angle @ varies with y. For the inversion an r'-
weighted back-projection algorithm has been written. The
inversion follows the opposite sequence of the forward
Radon transform. First, two-dimensional reconstructionsare
calculated for each B-dlice, which recreatesthe” single-axis
tilt series”. From this series the three-dimensional volume
iscalculated by asecond two-dimensional inversionindices
perpendicular to they-axis. Thisprocedureisvery fast and
cantakeaslittle asthree minutesfor a64x64x64 reconstruc-
tion done on aVAX &l phastation.

The r'-weighted back-projection can easily be
replaced with other two-dimensional inversion algorithms,
e.g., amoving window Shannon interpolation [9, 10] or a
Fourier Bessel inversion[3].

The reconstruction algorithm can be used indepen-
dently of the alignment procedurefor areconstruction from
random projections. A part of the dynamic reference
alignment procedure is averaging of projections into the
three-dimensional Radon transform at given angles. Thusa
series of projections with known angles can be averaged
into athree-dimensional Radon transform, which can then
be inverted. Like the averaging algorithm, the inversion
algorithm works for real space Radon transforms and for
Fourier space Radon transforms.

If the sampling of the three-dimensional Radon
transform is complete (i.e., there are no empty lines), the
algorithm works essentially with the same accuracy asother
algorithms specifically written for arbitrary tilt geometry
(discrepancy (e.g., [1, 2]) ~12% for general geometry
weighting versus~8% for the current algorithm). However,
when large angular sampling gaps are present, the weighted
back-projection for arbitrary geometry works better. The
difference in performance can be easily explained. A true
three-dimensional reconstruction algorithm is able to
interpolate between measurements coming from all
directions, whereas the measurements available to the
current algorithm either need all bein the same 6-plane (in
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step 1) or all inthe samey-z-plane (step 2).

Thereconstruction algorithm isan averaging method
in three dimensions. Thus, a number of the same error
measures can be calculated as in other averaging proce-
dures. Among them are a determination of the standard
deviation of every point in the three-dimensional Radon
transform, which when inverted leads to an error estimate
for every pixel in the three-dimensional reconstruction.
Becausethe averaging step canbedoneinreal orin Fourier
space, calculationslike three-dimensional Q-factors([8, 19]
and spectral signal to noiseratios[17] are possible.

Test Calculationsand Applications
Alignment in two dimensions

Simultaneoustranslational and rotational alignment
has been applied to a series of 448 images of the 50S
ribosomal subunit prepared in vitreousice.

The new simultaneous alignment algorithm and the
traditional separate translational/rotational alignment
methods were compared in two series of test calculations.
Thefirst test (test 1 in Table 1) consisted of three steps:

Firgt, all imageswere centered, asistraditionally done,
by cross-correlation to theimage of alow-passfiltered disk
with the approximate size of the particle [13]. Second, a
dynamic reference alignment wasdone, followed inthethird
step by afixed-reference alignment. Thereference used was
the averagethat was obtained in the previous step. Residual
shifts and tranglations were then determined by another
fixed reference alignment.

In asecond test (test 2 in Table 1) both alignment
procedureswereapplied directly to the non-centered original
imagesusing afixed reference. Thiswas again followed by
a second alignment step to determine residual shifts and
rotations.

Intest 1theresidual shiftsturned out to be approxi-
mately thesame, lessthan 1 pixel. One pixel wasthe accuracy
to which the simultaneous alignment determined the
tranglation. The differences are larger for the rotational
alignment, where the simultaneous alignment was more
accurate. Asexpected, the differencein performance of the
two algorithms is much larger in test 2, where the
simultaneous alignment produces average residual shifts
and rotationsthat are smaller by afactor of about 20. There
aretwo advantagesto the s multaneous alignment algorithm.
One advantage is a simple time factor: an alignment with
thenew algorithm takes approximately the same amount of
timeasasingleiteration of the non-simultaneous alignment
algorithm. Thefaster performanceresultsfrom not needing
multiple iterations. A second advantage is that the
simultaneous alignment algorithm when applied to afixed
referencewill find the best global maximumin therotational/
translational cross-correlation function, whereas the
traditional algorithm is more prone to finding a local
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Figure2. Cross-correlation function from atwo-dimensiona
simultaneous translational/rotational alignment. The
function shows bands of increasing width. The width of
each band correspondsto the number of directions searched
for each value r. In each band the horizontal axis is the
direction of the shift vector, and the vertical axis is the
rotation of theimage.

maximum.
Three-dimensional alignment and reconstruction

As atest object a volume was created containing
eleven spheresin random positions (Fig. 3). Two hundred
projectionswere cal culated from this volume with random
angles. A different set of random angles was assigned to
these projections and a reconstruction was calculated that
essentially, because of the arbitrary angle assignment,
showed no significant features. The three-dimensional
alignment procedure with dynamic reference was then
applied. In sequence each projection was subtracted from
the volume, the cross-correlation function (Egn. 5) was
calculated, and the projection was averaged back into the
volumewith the anglesfound. Figures4, 5and 6 show the
resultsof thiscalculation. Features already appear after the
first iteration and the pattern of spheres appears after
iteration 7. TRIP was used in the calculation of all
reconstructions shown.

This example uses a noise-free data set, and it is
clear that thethree-dimensional dynamic referencealignment
algorithmwill not perform aswell with real data. Thesignal-
to-noise ratio of Radon transforms of images of frozen
hydrated samplesison the order of 0.3, and trialswith raw
data thus far have not yielded convincing results. The
current implementation can still beimproved to make better
use of the information present, and the noise limit of the
algorithmwill be determined oncetheseimprovementshave
been implemented. It hasbeen shown earlier [ 14], however,
that the alignment algorithm works for a fixed-reference
alignment down to asignal to noiseratio of lessthan 1. The
dynamic reference alignment algorithm is the first
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Figure 3. Test of three-dimensional dynamic reference
alignment. (a) Surface representations of the model volume,
(b) Slices through the volume, perpendicular to z near the
center, (¢) Projections of the volume, (d) Selected cross-
sections through the three-dimensional Radon transform.
The angles correspond to the angles of the projections
shown in (c), (€) Sections through the three-dimensional
Radon transform that was created from the projectionswith
arbitrarily assigned angles. Slices correspond to the same
B-angles as the cross-sections shown in (d); (f) Slices
through the reconstruction cal culated from (€). The surface
representation of thisvolumeisshown in Figure 4, panel 0.
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Figure 4. Surface views of the volume during iteration of
the dynamic reference alignment in three dimensions.
Numbers indicate iteration. Iteration O is the start volume
created from projectionswith arbitrarily assigned angles.

implementation of the extension of this original algorithm
asit was proposed in [14].

Conclusion

Radon transform-based methods have been
presented that allow a reconstruction from random
projections and provide a technique for simultaneous
translational and rotational alignment in two and three
dimensions. The simultaneous alignment worked faster and
with substantially higher accuracy than traditional methods
that alternate between translational and rotational
alignments. Fixed-reference and dynamic-reference
alignment procedures have been developed for two and
three dimensions. They have been combined with a fast
Radon inversion algorithm. By itself, this algorithm can
also be used for three-dimensional reconstruction from
projections with any set of known orientations. The first
step in building the three-dimensional Radon transform is
an averaging procedure that averages al lines that are
common to morethan one projection. Thefact that thethree-
dimensional Radon transformisbuilt up by averaging allows
for the cal culation of error measures and resolution criteria
that to date have mainly been used in two-dimensional
alignment methods. The averaging can either be done by
averaging Fourier Radon transforms, which should allow
the calculation of Q-factors, or by averaging real-space
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Figure 5. Sections through the reconstruction after 1, 13
and 26 iterations.

Figure 6. Comparison of original volume (a) and
reconstructed volume (b) using the dynamic reference
alignment method in three dimensions.

Radon transforms which allows for the cal cul ation of real -
space variance measures.
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Discussion with Reviewers

G. Harauz: To what extent has it proven possible, in the
author’s experience, to “mix” reconstructions from
negatively-stained SECReT preparations and from frozen-
hydrated randomly oriented ones?

Author: | have not “mixed” data from negatively stained
specimensand frozen hydrated specimens. In my opinion it
may be possible to use the envelope information obtained
from a negatively stained specimen as a reference for
alignment of frozen hydrated data. However, negatively
stained and dried specimens can be severely flattened, which
will show in a reconstruction from random conical data
Only if a reasonable assumption can be made on how to
correct for thisflattening may avalid referencefor alignment
be created. These effects can be severe as shown e.g., in
[20]. Theflattening hereisassociated with atwisting of the
upper part of the molecule.
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