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Abstract

Since their inception, three-dimensional reconstruc-
tion techniques have been based on the theory of Radon
transforms. Only much later were Radon transforms
recognized as powerful tools for image processing and
pattern recognition. Techniques like the common lines
technique for finding the orientation of projections of highly
symmetrical particles can easily be translated into a
technique that uses Radon transforms. Radon transforms
have the advantage of being real valued which simplifies
many interpolation steps. Correlation  techniques have been
developed for alignment of a single noisy projection relative
to a three-dimensional model and many ideas originally set
forward in  previous work by the author have been realized.
These include simultaneous rotational-translational
alignments, iterative refinements of three-dimensional
reconstructions and a Two-step Radon Inversion Procedure
(TRIP).
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Introduction

For a three-dimensional reconstruction from projec-
tions the orientation of the projections in relation to a
common coordinate system must be known. In tomographic
reconstructions of single objects - e.g., centrosomes in thick
sections or individual macromolecules - from single-axis or
conical tilt series, the orientation of the projections is known
from the microscope’s goniometer reading. Here, the main
alignment problem is a translational alignment relative to a
common origin [7]. In a reconstruction from projections of
multiple copies of the same macromolecule, the orientation
cannot be determined solely from the goniometer reading.
The method of reconstruction from a random conical tilt
series [13, 15] still takes advantage of the fact that most
macromolecules attach to the carbon support of the
specimen in a preferred orientation, which again relates one
angle to the goniometer tilt. The second angle here can be
found through rotational alignment techniques applied to a
0° image of the specimen. If a tilt series is not available and
the molecule does not exhibit preferred orientation, then
the orientation of a particle in any given projection must be
found by information contained in the image. The common
lines method developed by Crowther et al. [3] solved this
problem for particles with a high degree of symmetry. For
icosahedral symmetry the Fourier transform of one
projection intersects with up to 59 symmetry-related
projections. The pattern of common lines can be found in
one projection as each projection also represents all
symmetry related images. This pattern determines the
orientation of the projection. Projections of
asymmetrical particles do not contain common lines within
one image. However, the Fourier transforms of any two
projections of the same object share at least one line, which
lies along the direction of the common tilt axis. If three non-
colinear common lines among three projections can be
found, then these three lines determine uniquely - aside
from a mirror operation - the orientation of these three
projections in space [5, 6, 18].

Whereas the original method for finding common
lines had been developed using Fourier techniques, there
are advantages in replacing some of the analysis by
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Figure 1. Simultaneous translational/rotational alignment
of an image series relative to a fixed reference. Both reference
and image series (a) are Radon transformed (b), followed by
a one-dimensional Fourier transform (c) along p (Eqn. 2).
The Fourier Radon transform of the image is multiplied with
the Fourier Radon transform of the reference (d) followed
by a one-dimensional inverse Fourier transform (e). A series
of cross-correlation coefficients is calculated by summation
over sine curves (f). Their amplitudes correspond to the
size of the shift and their phases to the shift direction. These
cross-correlation coefficients are stored in the cross-
correlation file (g) (see Figure 2). The lines in the Fourier
Radon transform of the image are then permutated and the
calculations repeated for the next orientation, starting at
step (d).

operations on Radon transforms [12, 16].

Theory

The three-dimensional Radon transform is defined
as

( ) ( ) ( ) rd r-p  r f=p,f
��

�

�

�

•ξδ∫ξˆ

where δ(p-ξ ⋅ r) specifies a plane over which the integration
is carried out and ξ is the unit vector that determines the
direction of this plane. For the two-dimensional Radon
transform, ξ and r are replaced by two-dimensional vectors
and the integration becomes a line integration instead of an
integration over planes.

Radon transforms and Fourier transforms are closely
related. The two- or three-dimensional Fourier transform
can be calculated from the two- or three-dimensional Radon
transform by a one-dimensional radial Fourier transform
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with F(sξ) being the two- or three-dimensional Fourier
transform of f(r) in polar coordinates. The projection theorem
known from Fourier theory is also valid for Radon transforms
[4].

A further theorem is the shifting property of Radon
transforms. If f(r-a) is the function f shifted by a, then its
Radon transform is
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Many convolutions that have kernels of two or three
dimensions when applied to a real space object become
one-dimensional kernels when applied to Radon transforms.

Alignment

The rotational and translational alignment between
two images can be found from the cross-correlation of their

Radon transforms. Let   (p,ξ), with ξ = (cos (ε), sin(ε)), be
the the Radon transform of a reference image and let  (p,ξ)
be the Radon transform of the image that is to be aligned

with respect to . Let  be rotated relative to  by an angle α
0

and shifted by r
0
 = (r

0
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0
), r

0
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0
)). The cross-

correlation function

c(α, r, η)=
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then has its maximum at (α
0
, r

0
, η

0
).

The alignment procedure can be directly extended
to an alignment of projections relative to a three-dimensional
reference. The cross-correlation function then becomes

c(φ, θ, α, r, η) =

∫ ∫ ′φ,θ(p, ) (p-r⋅sin(ε+η),ε+α) dp dε

′φθ is the cross-section through the three-dimensional

(1)

(2)

(3)

(4)
(5)
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Radon transform at angles (φ, θ).
For higher computational efficiency the Radon

transform of the reference as well as those of all projections
are Fourier transformed (Fig. 1). The cross-correlation is
calculated by line-by-line multiplication of Fourier-Radon
transforms followed by inverse radial Fourier transformation.
The integration over ε is done as a summation across the
lines along curves c(ε) = r⋅sin(ε+η).

The rotation of the projections can be applied to
their Fourier-Radon transforms by a commutation of lines.
Shifts can also be applied to the Fourier-Radon transforms
by phase multiplication. If the Radon transform is calculated
with an angular increment of ∆φ, the number of sampling
points per line is K, and the shift vector is  r⋅(cos(η),sin(η)),
then the phase factor P for the Fourier coefficient k in line n
is

P =exp [2⋅π⋅i⋅r⋅cos((n-1)⋅∆φ-η)⋅k/K]

Like the traditional rotational and translational
alignment algorithm the new algorithm can also be
implemented either as alignment algorithm relative to a fixed
reference or as an iterative algorithm with a dynamic
reference. (Note: Originally this method had been called
reference free alignment [11]). In the latter case one image is
chosen as the first reference and the next image is aligned
to this reference and added to create a new reference for the
following image. Alternatively an average in two dimensions
or a three-dimensional Radon transform is created as a first
reference from the projection series with randomly assigned
angles. Whereas in two dimensions the number of
measurements averaged is the same for each point, in the
three-dimensional Radon transform this number varies from
one line to the next. Here, each radial line in the Radon
transform has an averaging index that keeps track of the
number of projection lines used for each line in three

dimensions.
In three dimensions the alignment with dynamic

reference is done in the following way: The lines that form
the intersection of the projection through the three-
dimensional Radon transform are determined. Each line is
multiplied by its averaging index. The corresponding line of
the current projection is subtracted, the index reduced by 1,
and the result divided by the new averaging index. The
orientation and relative position of the Radon transform of
the projection is determined according to equation (5) and
is averaged back into the three-dimensional Radon
transform using the reverse of the procedure for subtraction.
Lines that have an averaging index of 0 are skipped in the
calculation of the cross-correlation.

For three-dimensional alignment relative to a fixed
reference, only the cross-correlation function (eqn. 5) is
used.

The alignment procedures that use a dynamic
reference are iterated. As stated earlier, for higher
computational efficiency each image is Radon transformed,
followed by a radial Fourier transform before the alignment.
Averaging in two and three dimensions is then done in
Fourier space.

The translational alignment is implemented with a
fixed accuracy, currently 1 pixel. The shift coordinates are
determined in polar coordinates.  For a 1 pixel shift, 8 cross-
correlation coefficients are calculated for angles η (eqn. 2)
with values of 0°, 45°, 90°, 135°, 180°, 225° and 270°. For a

2 pixels shift the 360° angular range is divided into 16

intervals, and for an n-pixel shift into n⋅8 intervals. Figure 2
shows a cross-correlation function of a two-dimensional
simultaneous translational/rotational alignment with a
maximum at an angle of 78° and a shift of 9⋅(cos 70°, sin

70°).

Table 1. Comparison of average residual shifts, rotations and resolution limits.

Comparison of average residual shifts (in pixels), rotations (in degrees) and resolution limits of the resulting average images
after a traditional rotational/translational alignment versus a simultaneous rotational/translational alignment (DPR: Differential
Phase Residual; FRC: Fourier Ring Correlation). Test 1 shows the residuals after several steps of alignment, i.e., centering,
dynamic reference alignment followed by fixed reference alignment. Test 2 shows residuals after a single fixed reference
alignment.

(6)
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Three-dimensional reconstruction

To observe the progress of the alignment in three
dimensions, a fast Two-step Radon Inversion Procedure
(TRIP) has been developed. The three-dimensional Radon
transform as implemented is sampled on a polar grid.
Whereas this sampling scheme uses more points than
necessary according to Shannon’s sampling theorem, the
regular grid simplifies many calculations. The three-
dimensional Radon transform is calculated in two steps. In
step one, a series of projections forming a single-axis tilt
series is calculated from the three-dimensional real space
volume. In step two, each projection is then Radon
transformed in two dimensions.  As a result, each two-
dimensional Radon transform then forms a θ-slice (z-
direction) in the three-dimensional transform. The radial
coordinate increases along the line of each slice (x-direction)
and the angle φ varies with y.  For the inversion an r*-
weighted back-projection algorithm has been written. The
inversion follows the opposite sequence of the forward
Radon transform. First, two-dimensional reconstructions are
calculated for each θ-slice, which recreates the “single-axis
tilt series”. From this series  the three-dimensional volume
is calculated by a second two-dimensional inversion in slices
perpendicular to the y-axis.  This procedure is very fast and
can take as little as three minutes for a 64x64x64 reconstruc-
tion done on a VAX alphastation.

The r*-weighted back-projection can easily be
replaced with other two-dimensional inversion algorithms,
e.g., a moving window Shannon interpolation [9, 10] or a
Fourier Bessel inversion [3].

The reconstruction algorithm can be used indepen-
dently of the alignment procedure for a reconstruction from
random projections. A part of the dynamic reference
alignment procedure is averaging of projections into the
three-dimensional Radon transform at given angles. Thus a
series of projections with known angles can be averaged
into a three-dimensional Radon transform, which can then
be inverted. Like the averaging algorithm, the inversion
algorithm works for real space Radon transforms and for
Fourier space Radon transforms.

If the sampling of the three-dimensional Radon
transform is complete (i.e., there are no empty lines), the
algorithm works essentially with the same accuracy as other
algorithms specifically written for arbitrary tilt geometry
(discrepancy (e.g., [1, 2]) ~12% for general geometry
weighting versus ~8% for the current algorithm). However,
when large angular sampling gaps are present, the weighted
back-projection for arbitrary geometry works better. The
difference in performance can be easily explained. A true
three-dimensional reconstruction algorithm is able to
interpolate between measurements coming from all
directions, whereas the measurements available to the
current algorithm either need all be in the same θ-plane (in

step 1) or all in the same y-z-plane (step 2).
The reconstruction algorithm is an averaging method

in three dimensions. Thus, a number of the same error
measures can be calculated as in other averaging proce-
dures. Among them are a determination of the standard
deviation of every point in the three-dimensional Radon
transform, which when inverted leads to an error estimate
for every pixel in the three-dimensional reconstruction.
Because the averaging step can be done in real or in Fourier
space, calculations like three-dimensional Q-factors [8, 19]
and spectral signal to noise ratios [17] are possible.

Test Calculations and Applications

Alignment in two dimensions

Simultaneous translational and rotational alignment
has been applied to a series of 448 images of the 50S
ribosomal subunit prepared in vitreous ice.

The new simultaneous alignment algorithm and the
traditional separate translational/rotational alignment
methods were compared in two series of test calculations.
The first test (test 1 in Table 1) consisted of three steps:

First, all images were centered, as is traditionally done,
by cross-correlation to the image of a low-pass filtered disk
with the approximate size of the particle [13]. Second, a
dynamic reference alignment was done, followed in the third
step by a fixed-reference alignment. The reference used was
the average that was obtained in the previous step. Residual
shifts and translations were then determined by another
fixed reference alignment.

In a second test (test 2 in Table 1) both alignment
procedures were applied directly to the non-centered original
images using a fixed reference. This was again followed by
a second alignment step to determine residual shifts and
rotations.

In test 1 the residual shifts turned out to be approxi-
mately the same, less than 1 pixel. One pixel was the accuracy
to which the simultaneous alignment determined the
translation. The differences are larger for the rotational
alignment, where the simultaneous alignment was more
accurate. As expected, the difference in performance of the
two algorithms is much larger in test 2, where the
simultaneous alignment produces average residual shifts
and rotations that are smaller by a factor of about 20. There
are two advantages to the simultaneous alignment algorithm.
One advantage is a simple time factor: an alignment  with
the new  algorithm takes approximately the same amount of
time as a single iteration of the non-simultaneous alignment
algorithm. The faster performance results from not needing
multiple iterations. A second advantage is that the
simultaneous alignment algorithm when applied to a fixed
reference will find the best global maximum in the rotational/
translational cross-correlation function, whereas the
traditional algorithm is more prone to finding a local
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maximum.

Three-dimensional alignment and reconstruction

As a test object a volume was created containing
eleven spheres in random positions (Fig. 3). Two hundred
projections were calculated from this volume with random
angles. A different set of random angles was assigned to
these projections and a reconstruction was calculated that
essentially, because of the arbitrary angle assignment,
showed no significant features. The three-dimensional
alignment procedure with dynamic reference was then
applied. In sequence each projection was subtracted from
the volume, the cross-correlation function (Eqn. 5) was
calculated, and the projection was averaged back into the
volume with the angles found.  Figures 4, 5 and 6 show the
results of this calculation. Features already appear after the
first iteration and the pattern of spheres appears after
iteration 7. TRIP was used in the calculation of all
reconstructions shown.

This example uses a noise-free data set, and it is
clear that the three-dimensional dynamic reference alignment
algorithm will not perform as well with real data. The signal-
to-noise ratio of Radon transforms of images of frozen
hydrated samples is on the order of 0.3, and trials with raw
data thus far have not yielded convincing  results. The
current implementation can still be improved to make better
use of the information present, and the noise limit of the
algorithm will be determined once these improvements have
been implemented. It has been shown earlier [14], however,
that the alignment algorithm works for a fixed-reference
alignment down to a signal to noise ratio of less than 1. The
dynamic reference alignment algorithm is the first

Figure 2. Cross-correlation function from a two-dimensional
simultaneous translational/rotational alignment. The
function shows bands of increasing width. The width of
each band corresponds to the number of directions searched
for each value r. In each band the horizontal axis is the
direction of the shift vector, and the vertical axis is the
rotation of the image.

Figure 3. Test of three-dimensional dynamic reference
alignment. (a) Surface representations of the model volume,
(b) Slices through the volume, perpendicular to z near the
center, (c) Projections of the volume, (d) Selected cross-
sections through the three-dimensional Radon transform.
The angles correspond to the angles of the projections
shown in (c), (e) Sections through the three-dimensional
Radon transform that was created from the projections with
arbitrarily assigned angles. Slices correspond to the same
θ-angles as the cross-sections shown in (d); (f) Slices
through the reconstruction calculated from (e). The surface
representation of this volume is shown in Figure 4, panel 0.
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Figure 4. Surface views of the volume during iteration of
the dynamic reference alignment in three dimensions.
Numbers indicate iteration. Iteration 0 is the start volume
created from projections with arbitrarily assigned angles.
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Discussion with Reviewers

G. Harauz: To what extent has it proven possible, in the
author’s experience, to “mix” reconstructions from
negatively-stained SECReT preparations and from frozen-
hydrated randomly oriented ones?
Author: I have not “mixed” data from negatively stained
specimens and frozen hydrated specimens. In my opinion it
may be possible to use the envelope information obtained
from a negatively stained specimen as a reference for
alignment of frozen hydrated data. However, negatively
stained and dried specimens can be severely flattened, which
will show in a reconstruction from random conical data.
Only if a reasonable assumption can be made on how to
correct for this flattening may a valid reference for alignment
be created. These effects can be severe as shown e.g., in
[20]. The flattening here is associated with a twisting of the
upper part of the molecule.
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