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Abstract 
 
As a first step towards more absolute quantitative 

procedures for evaluating images, new and better ways 
are presented of estimating the spacings and complex 
amplitudes present in the image of a crystalline specimen 
by examining the peaks in its calculated transform.  So 
that the expected performance of different estimators can 
be compared, the statistical properties of the noise in 
calculated Fourier transforms are established in some 
detail, and related to those of the noise in the image 
itself: the variance is found at each pixel, the covariance 
between pixels, and the actual distribution of the 
transform noise.  The role of image windowing in 
minimising systematic errors due to interference between 
different Fourier components is made clear, and the 
properties of three different windows evaluated; the half-
cosine window is recommended as a useful compromise 
between the (trivial) unit window and the von Hann 
window recommended previously.  An alternative 
approach involving image resampling is shown to have 
excellent properties for low frequency components, and 
the degradation of high frequencies arising on re-
interpolation is characterised quantitatively. 
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Introduction 

 
It is testimony to the potency of visual images that 

high resolution transmission electron microscope (HR 
TEM) images have been analysed by purely visual 
comparison with theoretical images for more than two 
decades with very little attempt to verify the match 
quantitatively.  It has however become clear gradually 
over the last decade that there is often a substantial 
mismatch in absolute contrast levels even when a 
reasonable visual match is achieved between observed 
and predicted images (e.g., Hÿtch and Stobbs, 1994); 
reliable ways of quantifying the degree of match 
between the two are essential if the reason for the 
mismatch is to be found. 

Independently of this general concern, the possibility 
of making finer distinctions between structures on the 
basis of their observed images depends on more accurate 
ways of estimating parameters such spacings, Fourier 
component amplitudes, and atomic site intensities from 
images. 

This paper addresses some of the most basic of these 
questions, dealing particularly with the statistics of noise 
in calculated image transforms, including the effect of 
‘windowing’. 

The transform noise distribution is derived, as this 
does not appear to be widely familiar; so also are the 
distributions of its modulus and intensity. 

In the light of these statistics, better estimators of 
both the spacing and the amplitude of the image 
components are presented, and their performance is 
evaluated relative to various alternatives.  Although this 
discussion is concerned with periodic specimens, partly 
for simplicity and partly for clarity, some of the findings 
− and all the results about transform noise statistics − can 
be extended to the much more important general case. 

Finally, the alternative approach of estimating 
component amplitudes by re-sampling the image to 
contain whole numbers of unit cells in each direction is 
examined, and found to be attractive in many respects. 

 
The Problem of Fourier Component Estimation 
 
The image of a crystalline specimen may be reduced 

to a few numbers only, specifying the spatial frequency 
and complex amplitude of its components.  The 
frequencies should of course form a lattice, the reciprocal 
lattice, and are estimated essentially from the positions 
of the peaks in the calculated image transform, while the 
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amplitudes are estimated from the value of the transform 
at the peak positions.  Neither is however trivial to 
determine accurately from an experimental image: if no 
particular precautions are taken, the calculated transform 
normally exhibits marked horizontal and vertical 
streaking around peaks, confusing both positions and 
values; the phenomenon is obvious in the top row of 
Figure 1. 

The difficulty arises from the fact that the field of 
view from which the transform is calculated does not 
normally hold a whole number of unit cells.  A 
component with (h,k) cycles across the image field in the 
two directions gives rise to a transform peak (h,k) pixels 
from the origin, and these numbers are not normally 
integers.  The effect is seen clearly in the transform of a 
field containing a single component, which can be 
calculated analytically. 

An image array 
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i.e. comprising a single component with (complex) 
amplitude c and frequency (ho,ko) cycles per field, has a 
discrete Fourier transform (DFT) that can be evaluated 
easily and is closely approximated by 
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provided only that M,N are much greater than 1.  This 
has a profile that is the product of two 1-D factors of the 
form 
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centred at ho,ko − the transform in fact of the rectangle 
function bounding the image field.  [See Appendix 1 for 
a definition of continuous and discrete Fourier 
transforms, as used here, and the relationship between 
these.] 

The transform values thus sample ‘sinc’ functions in 
both directions; the effect of the sampling is shown 
clearly in the top row of Figure 2.  When ho and ko are 
integers, the samples are all zero except for being one at 
the position (ho,ko) itself - the expected isolated peak or 
‘delta function’.  Generally however, the peak region 
exhibits a cross with arms along the h and k directions, 
oscillating and decaying no faster than inversely with 
distance from the peak position.  In an image with many 
Fourier components, one peak may be significantly 
distorted by the overlapping tails of neighbouring peaks 
(De Ruijter, 1994).  

 
 

Table 1: Window transform samples W/M in 1-D 
 
 W0 W0.25 W0.5 W0.75 W1 W2 W3 

Unit 1 0.900 0.637 0.300 0 0 0 
½cosine 1 0.943 0.785 0.566 0.333 -0.067 0.029
v.Hann 1 0.960 0.849 0.686 0.5 0 0 

__________________ 
 

Image Window Functions and Their Transforms 
 
The transform peak profile is greatly improved, and 

the overlap accordingly diminished, if the image is 
multiplied before transformation by a suitable window 
function that decays slowly to zero at the outside of the 
field: the peak profile is smoothed, and the oscillation 
diminished, by convolution with the window transform.  
While many different forms of window functions have 
been used, we will consider only three in detail.  For 
each, we set out the window function itself wp, its DFT 
Wh (the transform peak profile1, which determines the 
signal level in DFT pixels), and the DFT Uh of t. 

The squared window (which we shall see below 
determines the noise level in DFT pixels, and the 
correlation between these).  As two-dimensional (2-D) 
windows – the case of practical interest – all are  
separable as products of 1-D functions so that wpq = 
wpwq, Whk = WhWk. and Uhk = UhUk. 

The first is the trivial case of the unit window 
effectively considered in the previous section 
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The second is the half-cosine window: 
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1  The transform is given approximately only in each 
case; for example, the exact transform for the unit 

window case is exp( ) sin
sin( / )

π π
π

ih
M

h
h M

.  The 

approximation error may need considering if parameters 
are estimated from a small region only of an image, so 
that M is not very large. 
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Figure 1. Image of an Al-Mn quasicrystal (left), and calculated transform intensity logarithm (right), with unit, half-
cosine and von Hann windows applied, from top to bottom.  

_______________________________________
Finally, De Ruijter (1994) has recommended the von 
Hann or raised cosine window2. 
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The effect of all three windows on an image and the 
calculated transform is illustrated in Figure 1, while 
Figure 2 shows the three peak profiles, and the effect of 
sampling them.  Figure 3 shows the three windows wp 
and their transforms Wh as line graphs. 
 

                                                           
2  This is named after Julius von Hann, to whose 
original work I have not unfortunately been able to find 
a reference.  The widespread designation ‘hanning’ 
window is unfortunate in encouraging confusion with 
the subtly different ‘hamming’ window 
1 08 0 92 2. . cos( )+ π p

M , named after R W Hamming 

(1977), which achieves a lower first sidelobe in the 
transform at the expense of a slower decay at large 
distances. 

Table 2: Squared window transform samples U/M in 1-
D 
 

Window U0 U1 U2 U3 
Unit 1 0 0 0 

½cosine 1.234 0.617 0 0 
v.Hann  1.5 1 0.25 0 

 
The peak profile W has a central value M in each case; 
the distance from the centre to the first zero is 1, 1.5 and 
2 pixels respectively; and the profile decays inversely as 
the first, second, and third power of the distance 
respectively.  The last is clearly the most effective in 
suppressing overlaps between transform peaks; however 
we shall see below that the others are preferable in other 
respects, and the half-cosine window may indeed be the 
most useful generally. 

The 1-D profiles are tabulated for useful values of h 
in Table 1; only the half-cosine window has non-
vanishing samples outside the central maximum.  The 2-
D profiles are obtained by multiplying together 1-D 
profiles in each direction, e.g., Whk = WhWk. The squared 
window transforms are tabulated at similar integer 
values of h in Table 2; the samples vanish outside the 
“central” maximum in all three cases. 

While they are not examined further below, it is 
probably useful here to note two other common but non- 
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Figure 2. Theoretical peak profiles for unit, half-cosine and von Hann windows, from top to bottom; (left) in continuous 
form, and (right) as sampled at the positions marked left. 

_______________________________________
 

separable window functions.  A simple circular mask 
(unity within, and zero outside, a ccntral circle of radius 
po pixels), gives a transform peak with a profile of the 
form 2MJ1(πh)/(πh), decaying inversely as the three-
halves power of the distance, not much better than the 
unit window.  However, the same mask extended by a 
gaussian edge is virtually the same as the mask 
convolved with a gaussian, so that its transform peak 
profile, being multiplied by a gaussian, decays very 
rapidly indeed. 

A note is necessary on the treatment of the 
background level of the image (its spatial mean), which 
may need subtracting before windowing is applied. 
Without windowing, this level affects only the central 
pixel of the transform; windowing without background 
subtraction -- the simplest expedient -- causes that pixel 
to be replaced by the appropriate peak profile however; 
as it is commonly orders of magnitude higher than the 
other transform peaks, significant overlap can arise in 
spite of a rapid profile decay.  Subtracting the 
background level before windowing eliminates the 
central peak completely; if desired (e.g., to avoid 
negative pixels), the original image data range can be 
maintained by adding the background again after 
windowing, which affects the central pixel only. 

 
 
 

 

 
Transform Signal and Noise Statistics 

 
We now present systematically a number of results 

about the signal and noise levels in the transform of a 
noisy image with the three different windows applied; 
these are used subsequently to establish the expected 
standard deviation (SD) or its square (the variance) of 
various parameter estimators, and are in any case 
essential ground-work for later investigations to be 
reported elsewhere.  Appendix 2 explains the 
generalisation of statistical parameters such as variance 
to complex variables in general, Appendix 3 derives the 
expectation (signal level), variance (squared noise level), 
and covariance (interdependence) of windowed image 
transform pixels; the results are summarised here. The 
signal level in transform pixels near a peak depends 
critically, as noted above, on the exact distance (u,v) = 
(h−h0,k−k0), from pixel to peak.  For a Fourier 
component with complex) amplitude c, the pixel 
expectation is 

 
F cW u vhk = ( , )                               (7) 

 
and is in general increased by windowing.  At one 
extreme, when u = v = 0, W(u,v) is MN for all three 
windows; at the other extreme, when u = v = 0.5, W(u,v) 
is 0.405MN, 0.617MN and 0.721MN for the three cases. 

If the image pixels all have a standard deviation (SD) 
σ, and the noise in different pixels is uncorrelated, then 
the noise in all transform pixels has the same variance 
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Figure 3. 1-D profiles through the unit, half-cosine and von Hann windows (above) and their transforms (below), 
shown solid, broken, and dashed respectively. 

_______________________________________ 
var{u}= σ2

00U                              (8) 
where Uhk is the DFT of the squared window function 
wpq

2 , as given in Equations (4-6) and Table 2.  This is also 
increased by windowing; U00 is MN, 1.52MN and 2.25MN 
respectively for the unit, half-cosine and von Hann 
windows. 

When (u,v) are small, the signal-to-noise (s/n) ratio in 
individual transform pixels, measured as the ratio of the 
signal to the noise SD, thus deteriorates by a factor 
1/√1.522 = 0.811 on application of the half-cosine window, 
and by 1/√2.25 = 0.667 with the von Hann window; 
however at the other extreme, when u = v = 0.5, there is a 
slight improvement on windowing: the s/n ratio changes by 
0.617/(0.405√1.522) = 1.235 on application of the half-
cosine window and by 0.721/(.405√2.25) = 1.170 with the 
von Hann window. 

If the image pixels all have a SD σ, and the noise in 
different pixels is uncorrelated, the covariance between two 
transform pixels separated by (h,k) is 

 
σ2Uhk                                                            (9) 

with Uhk obtainable from Table 2 again, for nearest that 
although neighbouring pixels are uncorrelated for 
neighbour and for diagonal neighbour pixels.  We note 
the unit window, nearest neighbours are correlated for 
the half-cosine window, and neighbours up to two pixels 
away are correlated for the von Hann window. 

The way in which windowing introduces correlation 
between neighbouring transform pixels may be 
understood simply.  The windows are simple 
superpositions of slowly varying linear phase factors, 
multiplication by any one of which results in a small 
displacement of the transform; multiplication by the 
superposition of the phase factors thus results in a 
superposition of mutually displaced transforms, so that 
each pixel involves a superposition of its original close 
neighbours. 

The real and imaginary parts of a transform pixel each 
have a variance half that in the complex value (Equation 
8), and are uncorrelated with each other (so that their 
variances simply add to give that in the complex value).  
For two transform pixels separated by (h,k), the 
covariance between the two real parts, and also between 
the two imaginary parts, is half that given in Equation 9, 
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while the real part of one is also uncorrelated with the 
imaginary part of the other. 

The modulus of a transform pixel has a variance once 
again half that in the complex value (Equation 8), and the 
phase has the same variance too apart from division by 
the signal intensity; the modulus and the phase are not 
correlated.  For two transform pixels separated by (h,k) 
the covariance between the moduli is a factor β of half of 
that in Equation 9, with β depending on the relative 
phases of the two pixel signals, being the cosine of the 
phase difference. 

 
Transform Noise Distributions 

 
The previous section has given simple expressions for 

the common statistical parameters measuring the noise in 
DFT pixels, independent of the particular distribution of 
the noise in image or transform.  This section notes that 
the transform noise has a gaussian distribution, with 
independent real and imaginary parts, regardless of the 
image noise distribution.  It also sets out the distributions 
of the modulus and the intensity of the  noise transform; 
and the distributions of the modulus and phase of a 
transform pixel comprising both signal and noise. 

Appendix 4 shows that if an image fpq has uncorrelated 
pixels, with zero expectation and variance σ2 everywhere, 
the probability distribution of the real and imaginary parts 
Ghk+iHhk of its DFT Fhk are independent, with a joint 
gaussian distribution 
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which is illustrated in Figure 4.  As noted in the previous 
section, each part has a variance 
 

var{ } var{ }G H U= = 1
2

2
00σ                   (11) 

 
To find the distribution of |F|, we integrate p(G,H) 

over annular elements at a given |F|; this gives 
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which is illustrated in Figure 5; and has an expectation 
and  variance 
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The distribution of the intensity I = |F|2 is obtained 

from this via 
 

p F d F p I dI(| | ) | | ( )=                         (14) 
 

 
 

 
 
 
 
 
 
 

Figure 4. Probability distribution of real and imaginary 
parts of calculated transform pixel F = G+iH.  Left: with 
zero expectation (i.e. transform of pure noise); right: with 
non-zero expectation. 

__________________ 
which gives a negative exponential distribution for the 
noise intensity 
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also illustrated in Figure 5; this has an expectation and 
variance 

E I U I U{ } ; var{ }= =σ σ2
00
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If the image does not have a zero expectation, the only 

change in p(G,H) is displacement to the expected position 
( , )G H .  Provided the noise is small compared with the 
signal, Appendix 4 shows that the modulus of the pixel |F| 
also has the same gaussian distribution 
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with a variance 
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The argument (phase) θ of F is also similarly distributed 
apart from a scaling factor: 
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with a variance 
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Spatial Frequency (Spacing) Estimation 
 
Essentially, the spatial frequency of a given Fourier 

component is of course estimated by the position of the 
peak; the transform sampling is however often rather 
coarse, and it is important to estimate this position with 
sub-pixel accuracy. De Ruijter (1994) has pointed out that  
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Figure 5. Probability distributions of modulus and intensity (left and right) of noise in calculated transform pixel. 
 

 
this can be estimated conveniently from the relative 
values of pixels adjacent to the highest; we give here the 
estimators appropriate to each of the three windows 
above, and improve their accuracy by using more of the 
transform data. 

Consider the 2×2 block of pixels around the ideal 
transform peak position, found by locating the largest 
modulus pixel3, and including the larger of the two 
neighbours horizontally and vertically; for brevity 
subsequently we call the pixels p00, p10, p01 and p11. We 
seek estimators for the fractional distances (u,v) across 
this block from p00 to the ideal peak position; in fact we 
only consider u explicitly, as v is equivalent with rows 
and columns interchanged. 

The pixels have expectations 
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The simplest estimators for u relies on p00 and p10.  For the 
unit window, these have the expected form 
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since sin ( ) sinπ π1− =u u , u is easily extracted from the 
ratio p00/p10 to give the estimator 
 

                                                           
3  When the transform signal-to-noise ratio is poor, it is 
of course possible that this procedure does not correctly 
identify the pixel nearest h0,k0; the expressions given 
subsequently for the accuracy must thus be considered 
optimistic. 
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in which the modulus of the pixels is used in preference to 
the complex values themselves to ensure the estimate is 
real4. 

In the same way, we can find estimators for the half-
cosine and von Hann windows respectively (the last being 
De Ruijter’s recommendation): 
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These estimators rely on one row only of the 2×2 

block; however, the ratio |p01/p11| between pixels in the 
other row is expected to be the same as |p00/p10|, and we 
expect estimators based on the average of the two rows to 
be more accurate.  Accordingly, the estimators we now 
examine in detail are obtained from weighted averages of 
the two rows, with weighting depending on the true peak 
position. 

If the original and the second row are given weights x 
and (1−x), the estimators for the three windows become 
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4  The variance of |p10+p00| is in fact the same as that of 
|p10|+|p00|, so it does not matter which form is used. 
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Figure 6. An image fringe system parallel to the sampling 
lattice, and sampled near its zeros. 

 
The choice x = 1 is equivalent to the two-point 

estimators in (22-24) above; x = 0.5 gives all four points 
equal weight. 
The SD in these estimators is not simple to obtain 
unfortunately (because of the interdependence of 
neighbouring transform pixels), and is derived in 
Appendix 5.  The four-pixel estimator (x = 0.5) is found 
to have about half the variance of the two-pixel estimator 
(x = 1) when v is 0.5, i.e. when the peak lies mid-way 
between the two rows, but the relative performance is 
reversed when v is 0 and the peak lies in the first row.  
This is essentially because when the peak lies near the 
first row, the data in the second row are small and 
contribute more noise than signal to an equally weighted 
estimator. 

The optimum weighting of the two rows would ideally 
be found by minimising the resulting SD with respect to x, 
for each combination of (u,v) values.  However, a little 
manual exploration shows that weighting 

 
x v x v x v= − = − = −1 1 2 1 22 2; ;        (28) 

 
is certainly not far from optimal for the three cases, and 
this approximation is proposed accordingly; the resulting 
variance, tabulated in appendix 5 for a range of (u,v) 
values, is at least as good everywhere as the better of the 
two limiting cases x = 1 and x = 0.5.  The actual value of v 
must be estimated by a preliminary calculation using a 
fixed weighting such as x = 1. 

A reasonable summary of the variance expected in the 
peak position (Fourier component spacing) is now 
possible as follows.  The SD in the each component of the 
estimated spacing (in cycles per field) is 

 

SD u
MN c

{ }
| |

′ =
α σ                           (29) 

 
with the multiplier a having a value around 0.5 (actually 
varying from 0.15 to 1.4 depending on the value of (u,v) 
and the window function used).  Applying the half-cosine 
and von Hann windows increases the SD by factors of 
around 1.3 and 1.8 respectively; this is the cost of 

eliminating the systematic error arising when one peak is 
overlapped by the tails of another. 
 

Fourier Component Amplitude Estimation 
 

Essentially, the complex amplitude of an image 
Fourier component is estimated from the value of the 
transform pixel p00 nearest the estimated peak position 
h0,k0, .  This section examines several particular 
estimators, establishing the variance of each. 

The transform pixels have the expectations (signal) 
given in  Equation 7 above, and variance (noise power) 
given in Equation 8; the correlation between pixels, when 
image windowing is employed, is given in  Equation 9. 

 
F cW Nhk hk hk= +                            (30) 

 
The simplest estimator considered is based on the 

single pixel p00, with the peak profile divided out: 
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This clearly has an expectation c, and so is unbiassed; its 
variance is simply 

 

var{ }′ =c
U

Whk

σ2
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While this is always about σ2/(MN), the actual multiplier 
depends on the actual values of (u,v) as well as on the 
window function used; tables A6.1-3 give some 
representative values for the three windows, with 
multipliers between 1 and 6.  In all cases, the accuracy is 
best for (u,v) = 0,0, where Whk takes its maximum value of 
MN, and worst for (u,v) = ½,½ − the opposite pattern to 
that for the spacing estimators; the unit window is the 
most variable, being the best of the three for (u,v) near 
(0,0), but easily the worst for (u,v) near (½,½). 

Estimators based on more than one pixel may be 
expected to be more accurate.  Accordingly, we consider 
next the estimator achieving a least-squares fit to several 
pixels around the peak (though we shall see below this is 
not in fact optimal): 

 

′ =c
W p
V

ij ij ijΣ *
, with V = ΣijWij

2            (33) 
 

specifically, this achieves a minimum summed squared 
difference between observed and predicted pixel values 
 

Σ ij ij ijc W p| |′ − 2                              (34)  
 
This estimator is also easily seen to have an unbiassed 
expectation c.  Its variance is not easily calculated 
however because of the correlation between neighbouring 



Transform noise and Fourier component estimation 

 265

pixels.  Appendix 6 calculates the variance for a four-
point estimator in which the sum extends over the four 
pixels p00, p10, p01 and p11. 

Tables A6.4-6 give some representative values of the 
variance for the three windows.  The result depends again 
on the actual values of (u,v) as well as on the window 
function used; however, the dependence is not strong, and 
it is a reasonable summary to say that the variance is close 
to σ2/MN, 2 σ2/MN and 3σ2/MN for the unit, half-cosine 
and von Hann windows respectively. 

Thirdly, if the sum in (33) is extended over all 
transform pixels, it is possible to calculate the variance of 
the resulting estimator by a different method, also given in 
appendix 6, and it proves to be independent of the values 
of (u,v): 
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                    (35) 

 
The value of this no longer depends on the actual peak 
position (u,v); for the unit, half-cosine and von Hann 
windows respectively, its value is σ2/MN, 2.25σ2/MN and 
3.78σ2/MN, i.e. slightly greater than that of the four-point 
estimator. 

For practical purposes, such an estimator would of 
course need to be approximated by one in which the sum 
was truncated so as to exclude other transform peaks 
(which might introduce bias); the point of practical 
interest is that it does not matter much exactly how large 
the area is over which the sum in (33) is extended. 

Fourthly, we set out the optimal estimate possible 
from a given set of transform pixels.  When the transform 
data are correlated, as here, a least-squares fit is not in fact 
the best possible, in the sense that a different choice of the 
coefficients in (33) achieves a lower variance in c′.  A 
statement of the best estimator demands a more formal 
vector/matrix notation: given a set of pixels pi near a 
transform peak, with expectations cWi, and a variance-
covariance matrix cij = cov(pi,pj), the optimal estimator of 
c is 

 
′ =c r pi i iΣ                                  (36) 

 
with a coefficient vector given by 
 

r c W
W c W

i
ik k

i ik k
= =

−

−

−

−

1

1

1

1

*

*
*

. *
C W

W C W
                  (37) 

 
and a variance 
 

var{ }
. *′ = −c 1

1W C W
                      (38) 

 
Appendix 7 proves these results, illustrating them for a 

four-pixel estimator.  For the unit window, the results are 
exactly the same as for the least-square estimator 

(Equation 33); however tables A7.1 and A7.2 list 
representative values of the variance for the half-cosine 
and von Hann windows, which can be seen to be up to a 
third lower than the variance of the corresponding least-
squares estimator. 

Finally, we consider a paradox that may underline the 
significance of the results set out above.  It is a familiar 
fact that the samples values obtained from an image fringe 
system parallel to the sampling lattice and with a period 
close to two pixels sometimes reflect the full fringe 
amplitude (when the samples fall near the fringe extrema) 
but are also sometimes close to zero (when they fall mid-
way between these).  Over large distances, the relative 
phase of fringes and sample positions change, ensuring 
the fringes are detected; but within a given image field 
they may hardly be registered at all, as in Figure  6.  How 
is this to be reconciled with the statements in this section 
that the fringe amplitude can be estimated without bias 
regardless of the spacing and the size of the field of view? 

The explanation of the paradox lies in the possibility 
of overlap between different transform peaks.  A peak 
near the limit of either transform axis will be accompanied 
by a conjugate peak at the opposite limit; the periodic 
nature of  DFTs means that each is overlaid by a repeat of 
the other just outside the field of view.  Depending on 
their relative phase (i.e. on the relative position of fringes 
and samples) they may interfere constructively or 
destructively.  No such problem arises if the fringe system 
is not parallel to the sampling lattice as the transform peak 
is not then near the repeat of its conjugate. 

 
Refinement of Lattice Spacings 

 
It will frequently, though not invariably, be possible to 

measure the positions of many independent transform 
peaks, and to refine the reciprocal lattice base vectors 
deduced from any pair by a least-squares fit to all 
positions.  The details of the minimisation are given, for 
example, by Saxton (1992); initial estimates for the base 
vectors are needed sufficiently accurate to index positions 
correctly.  Clearly, the highest order peaks will define the 
base vectors most closely; a very rough estimate, based on 
the usual pattern of error reduction by a factor of √n when 
n independent values are averaged, is that a total of n high 
order peak positions measured, with an error σh in each 
component,  results in a standard error around 

 
σh√(2/n)                                   (39) 

 
in the fitted base vector components. 

It is of course also possible to determine (real-space) 
lattice vectors directly in real space, by least-squares 
fitting the peak positions in the auto-correlation function 
of the image, or its cross-correlation function with a 
smaller subregion (Saxton and Baumeister, 1982). While 
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the real-space approach appears likely to be more accurate 
when the unit cell is large so that the transform peaks are 
all near the origin and therefore coarsely sampled, the 
question has still not been examined carefully, and 
remains open. 

Apart from its possible use in identifying small 
included phases from their lattice spacings, the main 
reason for seeking high accuracy in measured spacings is 
only their effect on the component amplitude estimates; 
this is considered in the next section. 
 

Amplitude Estimation in Real Space 
 
It is easy to estimate Fourier component amplitudes 

(though not spacings) directly from the image, and their 
are some advantages in doing so, which we will note in 
this section.  The principal drawback is that, although 
simple, the amplitude estimators require more 
computation than their Fourier-space counterparts. 

As elsewhere, we ignore initially all but a single 
component of the image, with ho,ko cycles across the field: 
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pq pq pq= + + = +exp{ ( )}2π  (40) 
 

in which the first term is the image signal (expectation) 
f pq , and the second term the image noise npq, with zero 

mean and variance σ2
pq.  We examine the amplitude 

estimator 
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which involves a summation over the entire image; wpq is 
a window functions such as those discussed earlier (and 
introduced with the same objective of reducing systematic 
bias arising from other components with similar 
frequencies, as becomes clear below).  Firstly, the 
estimator is unbiassed, since according to (A2.5), the 
expectation of the estimator (41) is 
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Secondly, according to (A2.7), its variance, for 
uncorrelated pixels with variance σ2 everywhere, is 
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being σ2/MN, 1.52 σ2/MN and 2.25 σ2/MN for the three 
windows, and as good as the best of the Fourier-space 
estimators in each case, no matter where the transform 

peak lies relative to the DFT pixels; this is one of the 
virtues of the real-space estimator. 

The cross-talk between the signal in different Fourier 
components − the reason for introducing image window 
functions above − manifests itself to exactly the same 
degree in real space.  If the image contains a further 
component with amplitude chk and with (h,k) cycles across 
the field, then the expectation of  Equation 41 contains an 
additional term 
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equivalent to the contribution to the DFT at ho,ko from 
another transform peak at (h,k).  Window functions thus 
have exactly the same role in reducing cross-talk between 
components, as they do in Fourier-space amplitude 
estimation. 

The other virtue apparent in the real-space amplitude 
estimator (Equation 41) is a lower sensitivity to systematic 
error arising from a mis-estimated spacing.  If the 
estimator (Equation 41) is calculated with an incorrect 
value (h,k) for the spacing, its expectation is the 
expression in  Equation 44 rather than c, the result is  
Equation 44 rather than Equation 42.  Since the function 
W passes through a maximum around ho,ko however, the 
errors caused in the amplitude estimate are very small 
(second error small for first order errors in the spacing).  
The same is not true of the Fourier-space estimates: 
although the effect is less simply summarised, the fact that 
in Fourier space W is usually sampled at points other than 
its maximum, where it is changing comparatively rapidly, 
means that errors in the estimated spacing cause larger 
(first order) errors in the amplitude estimate.  In either 
case, windowing reduces the sensitivity of the amplitude 
estimate to errors in the spacing estimate, by making W 
vary more slowly. 

 
Amplitude Estimation by Image Resampling 

 
A final option to be considered is the resampling of 

the image on a (non-cartesian) lattice with base vectors 
parallel to those of the crystal lattice, and a whole number 
of unit cells contained within the field in both directions 
(e.g., Aebi et al., 1973). 

The distinctive advantage of this approach is the 
complete elimination of cross-talk between peaks and 
direct amplitude estimation without windowing or 
transform peak profile fitting.  Once the image has been 
resampled in this way, all the components present have an 
integral number of cycles in each direction across the 
field; this results in transform peaks restricted to single 
points only, with no possibility of overlap by other 
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components (cf. the section on the Problem of Fourier 
Component Estimation).  The component amplitudes are 
obtainable directly from the DFT pixels: the amplitude of 
the component with (h,k) cycles across the (interpolated) 
field is simply 

 

c
F
MN

hk=                                  (45) 
 

which has a variance σ2/MN under the assumptions made 
elsewhere about the image noise. 

Computationally, this is clearly the most efficient way 
of determining the Fourier component amplitudes.  There 
are other less important virtues in the approach also: unit 
cells may be extracted individually and averaged before 
transformation, or transformed individually and averaged 
in Fourier space; in either case, the (h,k) pixel of the 
resulting transform immediately gives the amplitude of 
the component with (h,k) cycles across the unit cell.  This 
local approach (e.g., Saxton and Baumeister, 1982) makes 
it possible to exploit irregularly shaped regions of crystal 
that do not fill a rectangular field (or a parallelogram 
before interpolation) efficiently.  If the squared unit cells 
are averaged too, the noise level can be measured directly 
in real and Fourier space, via Equation A2.2.  Moreover, 
very modest resources are sufficient, as only small arrays 
need to be transformed. 

These benefits are offset by one serious drawback 
however: most forms of interpolation smooth the image, 
and so reduce the amplitude of high frequency 
components.  Loosely, this means that image components 
with periods shorter than four pixels may be seriously 
underestimated. 

The effect of interpolation defies precise description, 
as it depends on the relative positions of original and final 
samples, which vary in an irregular way across the field.  
However, its effect can be roughly modelled, for any 
particular interpolation method, by assuming an average 
over a uniform random distribution of relative placements 
between original and final samples; we illustrate this for 
two simple forms of interpolation in 1-D. 

The value obtained by bilinear interpolation between 
two given pixels fp and fp+1 at a fractional distance x from 
the first is 

 
′ = − ++ +f x f xfp x p p( )1 1                      (46) 

 
Accordingly, a sample value of a continuous function f(p) 
obtained by bilinear interpolation from two samples x′ 
below it and 1−x′ beyond it is 
 

′ = − ′ − ′ + ′ + − ′f p x f p x x f p x( ) ( ) ( ) ( )1 1         (47) 
 
We now model the effect of repeating such an 

interpolation for many equivalent values of p (i.e., 
positions connected by the image periodicity) by 

averaging over a uniform probability distribution for x′ 
from 0 to 1: 
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This is a convolution with a triangle function extending 
from -1 to 1, with maximum value 1; its effect is 
accordingly to multiply the Fourier transform by the 
transform, i.e. 
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The effect on the highest spatial frequency present, h = 

M/2, corresponding to a two-pixel period, is thus 
attenuation by a factor of 0.41 (and the square of this in 2-
D, i.e. 0.16); at half this maximum frequency (i.e. a four-
pixel period, the attenuation is by a factor of 0.81 (0.66 in 
2-D). 

Curiously, nearest-neighbour interpolation, in which 
the value at the required position is simply replaced by the 
nearest available sample, while producing a markedly less 
uniform image appearance, causes less attenuation of the 
transform components than bilinear interpolation.  This 
can be modelled by convolution with a simple rectangle 
function extending 0.5 pixels in each direction, i.e. by less 
than the kernel modelling bilinear interpolation, which has 
a transform 

 

M
h

h
Msin( )π

π
                                 (50) 

 
The attenuation at the highest spatial frequency present is 
by a factor 0.64 (0.41 in 2-D), and at half this frequency 
by a factor of 0.90 (0.81 in 2-D).  Simple numerical 
simulation confirms these expressions, suggesting that it 
may be possible substantially to compensate for the 
attenuation by division by (49) or (50) as appropriate; 
simulation also shows that bicubic interpolation performs 
much better than either. 

The real-space resampling approach remains useful for 
the lower spatial frequencies, where all the advantages 
listed above are available at no cost.  It is perhaps curious 
that the problems of the earlier approach of transform 
peak profile fitting are completely independent of spatial 
frequency: while they are no worse for the very high 
frequencies, they are equally no better for the low 
frequencies. 

 
Summary of Findings 

 
After so many particular statements, it may be helpful 

to summarise the more important conclusions. 
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Transform peak profiles, from which the precise 
frequency and complex amplitude of image Fourier 
components are most commonly estimated, can be 
seriously distorted by the overlapping tails of 
neighbouring peaks. 

As pointed out previously by De Ruijter (1994), these 
tails may be greatly reduced by applying window 
functions in real space before transformation; however, 
windowing also causes degradation of the transform 
signal-to-noise ratio, and introduces correlation between 
the noise in neighbouring transform pixels (which greatly 
complicates the theoretical comparison of different 
estimators). 

The more rapidly the tail decays with distance from 
the peak, the worse the signal-to-noise degradation: 
roughly speaking, windows with inverse square and cube 
decays lead to estimates with roughly two and three times 
the variance of those with no window and a consequent 
simple inverse decay. 

The half-cosine window (inverse square decay) may 
be a better practical compromise than the von Hann 
window recommended by De Ruijter. 

The familiar tools of means, variances and covariances 
are easily generalised to accommodate complex values 
such as occur in calculated image transforms. 

The distribution of calculated transform pixels in the 
presence of random image noise does not appear to be 
widely familiar; the distribution is fact normal under very 
general conditions, even when the image is windowed.  
The real and imaginary parts are distributed normally, 
independently of each other; the same applies to the 
modulus and phase where the signal-to-noise ratio is 
good.  The intensity in the transform of the image noise 
has a negative exponential distribution. 

The position of a transform peak can be more closely 
estimated (by factors between 1.2 and 2) from four pixels 
than from two as recommended by De Ruijter. 

The complex amplitude of a transform peak can be 
more closely estimated (by factors between 1.1 and 2) 
from four pixels than from one as recommended by De 
Ruijter.  Several estimators for this are available, one with 
statistically optimal properties. 

The complex amplitude of a Fourier component can 
also be estimated in real space.  One approach, involving 
component-by-component summation over the entire 
image, and still requiring windowing to eliminate overlap 
by other components,  provides an estimate as good as 
any Fourier space estimator, with lower sensitivity to 
errors in the frequency estimate – attractive in all respects 
except computational efficiency.  An alternative, 
involving commensurate image resampling, solves the 
overlap problem completely without windowing and 
provides better estimates accordingly; however, high 
frequencies are underestimated (by 10-20% in a 
component with a 4-pixel period). 

Acknowledgements 
 
I am grateful to the Leverhulme Trust for research 

support, to my Department for laboratory facilities, and to 
the reviewers of this article for comments and careful 
proof-reading. 

 
Appendix 1: Continuous and Discrete Transforms 
 
To be explicit, we define the Fourier transform here by 
 

F f i d( ) ( ) exp( . )k x k x x= −∫∫ 2 2π              (A1.1) 
 

so  that the spatial frequency k measures cycles per unit 
distance, and the discrete Fourier transform (DFT) of an 
array of (M,N) pixels by 
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so that (p,q) measure cycles per field, i.e. per M or N 
pixels.  [We take (M,N) to be even for simplicity, and the 
origin to be at the centre of the array rather than at one 
corner, in contrast to the unfortunate choice still made by 
most DFT subroutines].  While the inverse transform only 
requires Fhk at integer values of (h,k), the expression in 
Equation A1.2 defines it for other values too, and we 
assume such definition in this paper. 

The relationship between continuous and discrete 
transforms has two aspects: sampling and aliassing.  If a 
continuous image f(x) is sampled on a lattice with base 
vectors (a,b) so that 

 
f f p qpq = +( )a b                         (A1.3) 

 
then the DFT provides samples of its transform F(k) 
sampled on a reciprocal lattice spanned by base vectors 
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      (A1.4) 

 
where n is a unit vector normal to the plane of the image, 
so that  
 

F F h khk = +( * *)a b                           (A1.5) 
 
In the common case of a square image field (M = N) 

sampled at an interval a in both directions, the transform 
samples are provided at intervals of 1/(Ma) in both 
directions. 

Aliassing is repetition and superposition at all sites of 
a lattice.  The samples fpq above are in fact taken from the 
image f(x) aliassed on a lattice spanned by (Ma,Nb), and 
the transform samples Fhk from F(k) aliassed on the 
reciprocal lattice (Ma*,Nb*).  The effect is most obvious 
near edges, where features extending beyond one edge 
reappear “wrapped round” into the field at the opposite 
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edge.  It is also indirectly apparent in the transform of 
images where − as is normally the case − opposite edges 
do not match exactly: the abrupt transition generated at 
the edge in the aliassed image gives rise to strong high 
frequency components normal to the edge, i.e. “streaking” 
along both transform directions. 

For more information, see Saxton (1978), where these 
results are proved and explained. 

 
Appendix 2: Statistics of Random Complex Variables 

 
As noise in complex numbers is less familiar than 

noise in real numbers, it may be useful to note the main 
properties of their statistics - all of which are simply 
obtainable by treating the real and imaginary parts 
independently. 

Definitions.  The distribution of a random complex 
variable z = x+iy is described by a probability distribution 
dependent on its real and imaginary parts p(x,y); its mean 
(or expectation) is defined by 

 
E{ } ( , )z z zp x y dxdy= = ∫∫                   (A2.1) 

 
and its variance (the mean squared modulus of the 
deviation from the mean) by 
 

var{ } E{| | } E{| | } | |z z z z z= − = −2 2 2            (A2.2) 
 
The standard deviation (SD), or RMS deviation, is 

simply the square root of the variance.  Two variables are 
said to be independent if their probability distribution has 
the form 
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Interdependence (correlation) between two variables is 

measured by the covariance, defined by 
 

cov{ , } E{ }* *z z z z z z1 2 1 1 22
= −                 (A2.4) 

 
which is zero for independent, or simply uncorrelated, 
variables, and equals the variance when the two variables 
are identical. 

Theorems.  For any random variables z, zi, z1i and z2i, 
and fixed (complex) numbers a, ai, a1i, a2i, and b, the 
following basic results apply: 
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Several simpler results are included in these, amongst 
them 
 

var {Σiaizi} = Σi|ai|2 var {zi} 
+ Re [ΣiΣjaiaj* cov{zi,zj}]               (A2.7) 

 
cov{ , } cov{ , }a z a z z z1 1 2 2 1 2+ + =            (A2.8) 

var{ } var{ }a z z+ =                        (A2.9) 
 

 
Appendix 3: Signal and Noise Statistics in Windowed 

Image Transforms 
 
This appendix presents a substantial number of 

detailed results about the statistics of DFT pixels, viewed 
as complex numbers, as real and imaginary parts, and as 
modulus and phase values.  If the image consists of a 
single Fourier component with complex amplitude c, or 
more realistically if we ignore the contribution of other 
Fourier components to one peak neighbourhood, then the 
image may be separated without loss of generality into 
two additive terms 
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in which the first term is the image signal (expectation) 
f pq , and the second term the image noise npq, with zero 

mean and variance σ pq
2 .  Its DFT, after multiplication by 

a window function wpq, is 
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this appendix establishes the expectation and variance of 
this transform, and the covariance between any two 
transform pixels.  

Firstly, the expectation of Equation A3.2, according to 
Equation A2.5, is 
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or simply 
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where W(h,k) = Whk is the DFT of the window function 
wpq, if (h,k) are taken to be continuous variables. 

Secondly, if the image noise is uncorrelated from point 
to point so that cov( , ) ,n npq p q pq p p q q′ ′ − ′ − ′= σ δ2 , the 

transform variance is, according to Equation A2.7 
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If in addition the image variance has the same value σ2 
everywhere, the transform variance is simply 
 

var{ } ,F w Uhk p q pq= =σ σ2 2 2
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where Uhk is the DFT of the squared window function 
wpq

2 . 

Thirdly, Equation A2.6 shows that the covariance 
between two transform pixels Fhk  and Fh k′ ′  is 
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If the image noise is uncorrelated from point to point as 
before, this is 
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If in addition the noise variance has the same value σ2 
everywhere, the covariance is simply 
 

cov{ , } ,Fhk Fh k Uh h k k′ ′ = − ′ − ′σ2           (A3.9) 
 
Next, we establish the corresponding statistics for the 

real and imaginary parts of transform pixels, writing Fhk = 
Ghk+iHhk. These prove to be slightly more complicated. 
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from which 
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If the image variance is σ2 everywhere, this simplifies to 
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Except when |h| is near 0 or M/2, and |k| is near 0 or N/2 
(i.e., except only for pixels at the transform centre, its 
corners, or the middle of an edge), Uhk is zero for the 
windows considered (cf. Table 2), permitting the 
simplification 
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In the same way, var{Hhk} is found to be the same as 

var{Ghk} under the same assumptions about (h,k); and we 
note that each is exactly half of the previously obtained 
variance in the complex value (Equation A3.5), (Equation 
A3.6). 

The covariance cov{Ghk,Hhk} is found to be zero under 
the same assumptions about (h,k); and indeed without 

restriction on (h,k) if the image window is centro-
symmetric. 

Similar arguments also show the following exact 
results about the covariance between the real and 
imaginary parts of different pixels. 

 
cov{ , } [

]
,

,

G G U

U
hk h k h h k k

h h k k

′ ′ − ′ − ′

+ ′ + ′

=

+

1
2

2σ
 

cov{ , } [

]
,

,

H H U

U
hk h k h h k k

h h k k

′ ′ − ′ − ′

+ ′ + ′

=

−

1
2

2σ
 

cov{ , } cov{ , }G H H Ghk h k hk h k′ ′ ′ ′= = 0        (A3.14) 
 

These expressions imply correlation between opposite 
pixels (h′,k′≈−h,−k) as well as neighbouring pixels 
(h′,k′≈h,k) − unsurprising given the conjugate symmetry 
of the transform.  However, if we are concerned only with 
correlation between neighbouring pixels, Uh h k k+ ′ + ′,  is 
zero under the same assumptions about (h,k) as cited 
above, and the term can be discarded leaving 
 

cov{ , } ,G G Uhk h k h h k k′ ′ − ′ − ′= 1
2

2σ  

cov{ , } ,H H Uhk h k h h k k′ ′ − ′ − ′= 1
2

2σ  

cov{ , } cov{ , }G H H Ghk h k hk h k′ ′ ′ ′= = 0       (A3.15) 
 

and we note that the first two of these are exactly half of 
the previously obtained covariance between the complex 
values (A3.9). 

Finally, we obtain the corresponding statistics for the 
modulus of the transform pixels; further approximation is 
necessary for this purpose, with an assumption that its SD 
is much smaller than the modulus of its expectation, i.e. 
that the noise is much smaller than the signal. 

Under this assumption, we can obtain an 
approximation to a change in the modulus |Fhk| in the form 
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| | | |
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G
F
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H
F
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hk
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hk

hk

hk
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by differentiation.  In view of (A2.7), (A3.13) and 
(A3.15), the variance of this is given by 
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being the same as the variance of the real and imaginary 
parts.  The variance of the phase θhk = arg(Fhk) is similarly 
obtained from 
 

δθ δ δhk
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hk
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H
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as 
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var{ }
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while the covariance between the two, according to 
(A2.6), is zero. 

Within the scope of the same low noise 
approximation, the covariance between the moduli of two 
different pixels is   
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which in view of (A2.6) and (A3.15) may be simplified to 
give 
 

cov {|Fhk|,|Fh’k’|} = ½ βσ Uh-h’,k-k’             (A3.21) 
 

in which the parameter β is 
 

β θ θ= = −′ ′

′ ′
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Re{ }
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F F
hk h k
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showing that the covariance vanishes when the pixels 
have phase differing by π/2. 

Finally, the covariance between the phases of two 
different pixels is 

 

cov{ , }
| | ,θ θ β
σ

hk h k h h k kF
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2
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Appendix 4: Noise Distributions in Windowed Image 

Transforms 
 
This appendix establishes first the distribution of the 

real and imaginary parts of the DFT Fhk of a windowed 
image fpq, by showing that central sections through the 
distribution have the same gaussian profile regardless of 
the section direction.  A section in a direction at an angle 
φ to the real axis can be considered as the real part of the 
transform multiplied by an arbitrary phase-shifting factor 
exp{−iφ}: 
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The first step in the argument is to show that this has a 
gaussian (normal) distribution, regardless of the value of 
φ.  This follows immediately from the well-known central 
limit theorem, which asserts that the sum (or weighted 

sum) of a large number of random variables has a near-
gaussian distribution, regardless of the distribution of the 
individual variables summed. 

The second step is to show that the expectation and 
variance are also independent of φ.  If the image has zero 
expectation (as is the case for noise images), the 
expectation of ′Ghk  is zero.  If the image pixels are 
uncorrelated, and their variance is σ2 everywhere, the 
variance of ′Ghk  is 
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This can be re-expressed in the form 
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and so as 
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Now except when |h| is near 0 or M/2, and |k| is near 0 or 
N/2 (i.e., except only for pixels at the transform centre, its 
corners, or the middle of an edge), Uhk is zero for the 
windows considered (cf. Table 2), permitting the 
simplification 
 

var{ }′ =G Uhk
1
2

2
00σ                         (A4.5) 

 
regardless of φ. 

The distribution p(G,H) thus has the same zero-mean 
gaussian section in all directions, and must be the 2-D 
gaussian distribution5: 

 

p G H A G H
U

( , ) exp( )= −
+2 2

2
00σ

                (A4.6) 

                                                           
5  In the absence of windowing, the exceptional cases 
F00, F−M/2,0 , F0,−N/2 and F−M/2,−N/2 are the few transform 
pixels with distributions restricted to being real; with 
windowing, the distribution at neighbouring pixels is 
also affected. 
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The separability of this shows that G,H are uncorrelated 
(and indeed independent). 

Next we establish the distribution of the modulus and 
phase of a transform pixel when the expectation is not 
zero.  We write F=G+iH again, but taking G,H to have 
non-zero expectations.  Provided their variation is a small 
fraction of their mean, we can obtain an approximation to 
the change in the modulus |I|in the form 

 

δ δ δ| |
| | | |

F G
F

G H
F

H= +                       (A4.7) 
 

by differentiation.  As the sum of two independent 
gaussian variables, this also has a gaussian distribution; its 
variance is given in (A3.17) above.  We note that the 
distribution is simply that of any section through the 
complex pixel distribution6. 

The distribution of the phase θ = arg(F) is obtained in 
the same way from 

 

δθ δ δ= − +
H
F

G G
F

H
| | | |2 2                    (A4.8) 

 
being once again gaussian; its variance is given in (A3.19) 
above. 
 

Appendix 5:  Variance of Spacing Estimators 
 
Exact calculation of the expected SD in the spacing 

estimators is complicated by the correlation introduced by 
windowing the image. 

For small changes at least in |p00|, |p10|, |p01| and |p11|, 
an approximation to the change in the estimator u can be 
obtained in the form 
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by differentiation.  For the unit window and the estimator 
(13), the coefficients are 
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and they happen to be exactly twice and thrice these 
expressions for the half-cosine and von Hann windows.  
Under the assumption of small changes, we treat these 

                                                           
6  This is arguably obvious geometrically, as is the 
corresponding result for the distribution of the phase. 

coefficients subsequently as constants, equal to their 
expectations, approximated in turn by the values of the 
coefficients when the pixels p00 etc. take their expected 
values as given in (9). 

The variance of (A5.1) can be evaluated using (A2.7) 
to reduce it to a sum of variances in and covariances 
between the transform pixel increments δ|p00| etc., which 
according to (A2.8) and (A2.9) are equal to those in and 
between the pixel moduli themselves.  For image noise 
uncorrelated from point to point, and with the same 
variance σ2 everywhere, these are in turn given by 
(A3.17) and (A3.21); the parameter β in (A3.21) is here 1, 
as the pixel expectations all have the same phase.  In this 
way, we obtain 
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The variance for the simpler two-point estimators (10-

12) is of course simply the value of this when x = 1; 
algebraically the result is 
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with coefficients given, for the unit window, by the 
simpler expressions 
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                 (A5.5) 

The value of the variance depends (via the pixels p00 
etc.) on the actual value of (h,k) (i.e., where the true peak 
lies) as well as on the relative weight given to the two 
rows.  Tables A5.1 gives values for u,v = 0, 0.25 and 0.5 
for the unit window, and those following give them for 
the half-cosine and von Hann windows, in each case with 
the approximate optimum weighting proposed in (28). 

 
Table A5.1.  Spacing estimator variance: unit window 
| c|2MNvar{u}/σ2 for weighting factor x = 1-v 

 u=0 u=0.25 u=0.5 
v=0 0.5 0.22 0.15 

v=0.25 0.56 0.24 0.17 
v=0.5 0.62 0.27 0.19 
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Table A5.2.  Spacing estimator variance: half-cosine 
window 
| c|2MNvar{u}/σ2 for weighting factor x = 1-2v2 

 u=0 u=0.25 u=0.5 
v=0 0.75 0.40 0.31 

v=0.25 0.83 0.44 0.34 
v=0.5 0.91 0.48 0.38 

 
Table A5.3. Spacing estimator variance: von Hann 
window 
| c|2MNvar{u}/σ2 for weighting factor x = 1-2v2 

 u=0 u=0.25 u=0.5 
v=0 1.17 0.71 0.59 

v=0.25 1.26 0.77 0.63 
v=0.5 1.35 0.82 0.68 

 
Table A6.1. One-pixel amplitude estimator variance: unit 
window 
MNvar{c′}/σ2 

 u=0 u=0.25 u=0.5 
v=0 1 1.23 2.47 

v=0.25 1.23 1.52 3.04 
v=0.5 2.47 3.04 6.09 

 
Table A6.2. One-pixel amplitude estimator variance: half-
cosine window 
MNvar{c′}/σ2 

 u=0 u=0.25 u=0.5 
v=0 1.52 1.71 2.47 

v=0.25 1.71 1.93 2.78 
v=0.5 2.47 2.78 4.00 

 
Table A6.3. One-pixel amplitude estimator variance: von 
Hann window 
MNvar{c′}/σ2 

 u=0 u=0.25 u=0.5 
v=0 2.25 2.44 3.12 

v=0.25 2.44 2.64 3.39 
v=0.5 3.12 3.39 4.33 

 
 
Appendix 6: Variance of Amplitude Estimators 
 
This appendix collects various results about amplitude 

estimators.  Firstly, table A6.1 gives values of the 
variance  

Table A6.4. Four-pixel LS amplitude estimator variance: 
unit window 
MNvar{c′}/σ2 

 u=0 u=0.25 u=0.5 
v=0 1 1.11 1.23 

v=0.25 1.11 1.23 1.37 
v=0.5 1.23 1.37 1.52 

 
Table A6.5. Four-pixel LS amplitude estimator variance: 
half-cosine window 
MNvar{c′}/σ2 

 u=0 u=0.25 u=0.5 
v=0 2.08 2.12 2.17 

v=0.25 2.12 2.16 2.21 
v=0.5 2.17 2.21 2.25 

 
Table A6.6. Four-pixel LS amplitude estimator variance: 
von Hann window 
MNvar{c′}/σ2 

 u=0 u=0.25 u=0.5 
v=0 3.39 3.23 3.19 

v=0.25 3.23 3.08 3.05 
v=0.5 3.19 3.05 3.01 

 
 
(32) of the one-pixel amplitude estimator (31) for u,v = 0, 
0.25 and 0.5 for the unit window, and the two following 
give values for the half cosine and von Hann windows 
respectively. 

Secondly, the estimator achieving a least-squares fit to 
an arbitrary set of transform pixels pi with expectations 
cWi is established.  We seek the c′ that minimises the 
summed squared difference between observed and 
predicted pixels, i.e. 

 
Σi i i i ic W p c W p( )( )* * *′ − ′ −                   (A6.1) 

 
setting the derivative of this w.r.t. ′c *  equal to zero gives 
 

Σi i i ic W p W( ) *′ − = 0                         (A6.2) 
 

from which we obtain the estimator in (33), namely 
 

′ =c W p
V

i i iΣ *
, with V Wi i= Σ | |2              (A6.3) 

 
We now calculate the variance of the particular 

estimator involving the four pixels p00, p10, p01 and p11 
surrounding the transform peak.  If the image pixels are 
uncorrelated, and their variance is σ2 everywhere, this is 
given, according to (A2.7), (A3.6) and (A3.9) by 
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Table A6.4 gives values of this for u,v = 0, 0.25 and 

0.5 for the unit window, and the two following give 
values for the half cosine and von Hann windows 
respectively. 

Appendix 7 gives a more general form of the variance 
applicable to least-squares estimators as in (A6.3) for 
arbitrary sets of pixels; here we give the result when the 
set is extended to embrace the entire transform field.  For 
this purpose, we write transform pixels in the form 

 
p F cW Nhk hk hk hk= = +                      (A6.5) 

 
where Nhk is the DFT of the windowed image noise wpqnpq,  
so that the estimator takes the form 
 

′ = +c
V
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V

W Nh k hk hk h k hk hk
1 1Σ Σ,

*
,

*         (A6.6) 
 

in which the signal and noise terms are separated.  We 
seek the variance of the latter. 

We avoid extending the double sum of cross terms 
appearing in (A6.4) to the entire transform field, by 
transferring the sum to real space, using Parseval’s 
theorem, 

 
Σ Σh k hk hk p q pq pq pqW N MN w w n,

*
, .=         (A6.7) 

 
This re-expresses the noise term in the form 
 

MN
V

w np q pq pqΣ ,
2                        (A6.8) 

 
in which (on the same assumptions that image pixels are 
uncorrelated) the terms are no longer correlated.  In 
addition, the same theorem allows us re-express V as a 
real-space sum: 
 

V W MN wh k hk p q pq= =Σ Σ,
*

,| |2 2               (A6.9) 
 

Thus, if the image pixels have the same variance σ2 
everywhere, the variance in the amplitude estimator, 
according to (A2.7), can finally be seen to be 
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Appendix 7:  Optimal Amplitude Estimators 

 
This appendix derives the optimal linear estimate of a 
transform component amplitude from a set of transform 
pixels, allowing for their inter-correlation, and illustrating 

the general results by the particular case of an estimate 
based on the four pixels in a 2×2 block around the peak. 

We define a 4-component coefficient vector ri with a 
data vector 
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a similar vector Wi whose elements are the corresponding 
peak profile values (20), and a (real symmetric) variance-
covariance matrix whose elements are, according to (9), 
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We consider a linear estimator 
 

′ = + + + =c r p r p r p r p r pi i1 00 2 10 3 01 4 11         (A7.3) 
 

if we adopt the usual summation convention (summation 
over repeated suffices), which has a variance, according 
to (A2.6)  
 

var{ } *′ =c r r ci j ij                            (A7.4) 
 

The constraint that the expectation of (A7.3) is c becomes 
 

E c r E p crW c
rW

i i i i
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                 (A7.5) 

 
The minimisation of (A7.4) subject to (A7.5) is equivalent 
to the minimisation of 
 

r r c rW r Wi j ij i i i i
* * *( ) ( )+ − + −λ µ1 1              (A7.6) 

 
(with real multipliers λ,µ) simultaneous with (A7.5)7; 
setting the derivative w.r.t. rk  equal to zero gives 
 

c r Wkj j k
* + =λ 0                           (A7.7) 

 
Applying the inverse matrix cik

−1  (for which c cik kj ij
− =1 δ ) 

elicits the solution 
 

r c Wi ik k= − −λ 1 *                              (A7.8) 
 

                                                           
7  Although a fully complex minimisation has been 
performed for generality, the problem considered here 
actually involves real values only. 
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Table A7.1. Four-pixel optimal amplitude estimator 
variance: half-cosine window 
MNvar{c′}/σ2 

 u=0 u=0.25 u=0.5 
v=0 1.42 1.63 1.78 

V=0.25 1.63 1.88 2.05 
V=0.5 1.78 2.05 2.25 

 
 
and the multiplier λ is chosen as λ = −1/(riWi) to satisfy 
(A7.5): thus the required coefficients for the optimal 
estimator are 
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in which we have switched finally to a conventional 
vector/matrix notation.  The variance is given by 
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When the data pi are uncorrelated (e.g. for the unit 

window), the matrix cij is diagonal, and if the pixels all 
have the same variance the inverse is also diagonal with 
equal elements; in these circumstances, (A7.9) reduces to 

 

r W
WW

i
i

i i i
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*

*Σ
                          (A7.11) 

 
as in the least-squares estimate (33).  When other 
windows are employed however, the estimator (A7.9) has 
different coefficients from those of (33).  For example, 
with the half-cosine window, the least-squares estimator 
at (u,v) = (0,0) is 

′ = + + +c p p p p081 0 27 0 27 0 0900 10 01 11. . . . , 
with variance 2.08σ2/MN, while the optimal estimator is 

′ = − − +c p p p p115 0 23 0 23 0 0500 10 01 11. . . . , 
with variance 1.42σ2/MN. 

Values of the variance (A7.10) in the optimal 
estimators for u,v = 0, 0.25 and 0.5 are given in tables 
A7.1 and A7.2 for the half-cosine and von Hann windows 
respectively; these may be compared with tables A6.5 and 
A6.6 for the least-squares estimator. 

 
Table A7.2. Four-pixel optimal amplitude estimator 
variance: von Hann window 
MNvar{c′}/σ2 

 u=0 u=0.25 u=0.5 
v=0 2.04 2.31 2.48 

V=0.25 2.31 2.62 2.81 
V=0.5 2.48 2.81 3.01 
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Discussion with Reviewers 

 
M.J. Hÿtch:  It is implicitly assumed that the image 
intensity in a pixel fpq takes the value of the electron 
density function Ipq sampled at position (p,q).  In the case 
of a CCD, for example, the intensity collected in each 
pixel is in fact the electron density function integrated 
over the area covered by the pixel.  It is not strictly 
speaking Ipq.  Evidently, for slowly varying functions this 
will not matter much, but for fringes having wavelengths 
of the order of 4 pixels or less this must become 
important.  Has this problem been addressed and if so, 
what effect does this have on our measurement of Fhk? 
Author: In the case of a CCD at least, the sole effect is 
attenuation of measured amplitudes by convolution of the 
true image intensity with the CCD pixel shape; the 
reduction is by 10% for 4-pixel periods parallel to either 
axes and 36% for 2-pixel periods.  More serious problems 
arise with other forms of digitisation and pre-processing 
however which can invalidate the assumption that noise is 
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uncorrelated between neighbouring pixels; some of these 
are taken up in Saxton (1998). 
 
M.J. Hÿtch:  Fringe spacings and phases can be measured 
in real-space (and not just the amplitudes) using the 
methods of holographic reconstruction; this will be 
something to look into. 
Author: I agree. 
 
H. Kohl:  Further references to textbooks or review 
articles dealing with the statistical properties of images 
would probably help the non-specialist reader to follow 
the discussion.  One article coming to mind is Slump and 
Ferwerda (1986). 
Author:  The area is not well written up; see however 
Dainty and Shaw (1974) or Rosenfeld and Kak (1976); 
and some of the ideas appear in textbooks on basic 
statistics 
. 
L.D. Marks:  There are other methods of determining a 
power spectrum rather than simply taking a discrete FFT, 
for instance the maximum entropy or all-poles method 
(see for instance Press et al. (1992).  Are there any 
advantages in using these methods, particularly for noisy 
data? 
Author: That approach has indeed been little used in 
electron microscopy so far (but see Anderson et al., 
1989), and I cannot comment usefully except to say I 
believe it almost certainly deserves proper examination. 
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