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Abstract 
 

Quantitative analysis of high-angle, annular, dark-
field images formed in a scanning transmission electron 
microscope requires simulation of the elastic and 
thermal diffuse scattering of the electron probe. We 
have implemented two methods for carrying out 
simulations under the assumption that atomic vibrations 
are not correlated (the Einstein model).  The first 
method is to determine the average scattering from a 
number of random configurations of the atoms (the 
frozen phonon method).  The second method calculates 
thermal diffuse scattering from each atom in turn using a 
set of atomic scattering functions.  The intensity of the 
scattering from each atom is expressed as a sum of 
contributions from thermal scattering processes of all 
orders, each contribution depending on some power of 
the mean-square atomic displacement of the atom. The 
purpose of our simulations is to estimate the fraction of 
Al in the alloy AlxGa1-xAs as a function of distance from 
an interface between this alloy and GaAs.  We compare 
the amount of computing involved in using  the two 
methods and discuss the accuracies of several 
approximations. The computations indicate that it 
should be possible to estimate aluminium fractions with 
an accuracy of better than 0.1, given a typical signal to 
noise ratio obtainable in a modern scanning transmission 
electron microscope. 
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Introduction 
 
The scanning transmission electron microscope 

(STEM) has been used to study the atomic structure of a 
number of interfaces in crystals.  Forming images with 
electrons which are scattered out to high angles gives a 
much clearer indication of the abruptness of the 
interface and mean atomic number of atomic columns 
than can be obtained through conventional high-
resolution microscopy.   This approach is known as 
high-angle, annular dark-field (HAADF) imaging and 
has been used, for example, by Browning et al. (1993) 
to examine {111} interfaces between CoSi2 and Si, by 
Jesson et al. (1991, 1994) who found unexpected atomic 
arrange-ments at interfaces in a Si4Ge8 ultrathin 
superlattice and by Jesson et al. (1994) who 
demonstrated that Ge marker layers show up clearly 
when imaging SixGe1-x alloys. The STEM can also be 
used to carry out high-resolution chemical analysis near 
the interface by electron energy-loss spectroscopy 
(Browning et al., 1993; Brydson et al., 1995).  

Computer simulations of the scattering processes 
leading to image contrast can be employed to obtain 
quantitative information on the mean atomic number of 
atomic columns.  One detailed study on single crystal 
InP was undertaken by Hillyard and Silcox (1993).   
Using a VG HB601UX STEM, we have undertaken a 
quantitative analysis of an interface between GaAs and 
Al0.6Ga0.4As and obtained an estimate of the 
concentration of Al as a function of distance from the 
interface at a spatial resolution of one monolayer 
(Anderson et al., 1997). 

Several approaches have been developed for 
simulating image contrast.  Wang and Cowley (1990) 
recognised the importance of thermal diffuse scattering 
and calculated image intensities using a thermal diffuse 
scattering function which included first order scattering 
processes.  Pennycook and Jesson (1991) pointed out 
that contributions from higher order processes are also 
important and introduced a function which has 
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contributions from all orders of thermal diffuse 
scattering.  In their study, it is assumed that the atomic 
scattering function for generating the thermal diffuse 
scattering is much narrower than the probe.  In both 
works it is assumed that there is no further scattering of 
diffuse scattering after it has been generated and that 
each atom vibrates independently of all other atoms 
(Einstein model).   Wang (1995a,b) has shown how his 
original work can be generalised to include higher-order 
processes and he has also set out the procedure for 
including multiple diffuse scattering. 

Another approach to simulating scattering is to 
perform a number of calculations for various static 
configurations of atoms which are slightly displaced 
from their mean positions, the amount of displacement 
depending on the appropriate temperature parameters of 
the atoms (Loane et al., 1991).  The dark-field image 
intensity is then calculated from the average of all the 
calculations (Xu et al., 1991).   The scattering is cal-
culated by the Cowley-Moodie multi-slice approach 
(Cowley, 1981).  If Fourier methods are employed, the 
calculation is for an atomic arrangement that is periodic 
in the plane perpendicular to the direction of the incident 
electron beam.  The repeat unit (supercell) is chosen to 
be large enough that all significant intensity of the 
electron probe is well within the repeat unit.  This 
method of calculating thermal diffuse scattering includes 
contributions due to elastic scattering of diffuse 
scattering as well as multiple diffuse scattering.  It may 
be considered the most accurate method of calculating 
the high-angle scattering, although many computations 
may have to be carried out to obtain low statistical error.  
This Monte Carlo approach to calculating the diffuse 
scattering is often called the frozen phonon method. 

Dinges et al. (1995) describe an approach which 
uses a modified transmission function for each atom but 
also makes use of the Monte Carlo method.  The 
transmission function depends on the temperature 
parameter of the atom and on a phase factor which can 
vary at random.  Multi-slice calculations are performed 
for a number of different values of the phase factor for 
each atom in the supercell and from the average of 
calculated intensities, an estimate of thermal diffuse 
scattering is obtained.  These calculations assume that 
multiple diffuse scattering is negligible. 

All of the work described above is based on a model 
of independent atomic vibrations.  This assumption may 
not, however, always be adequate for predicting image 
contrast.  Jesson and Pennycook (1995) showed, by 
using a model of correlated atomic vibrations due to 
Warren (1990), that 20% of the effective atomic 
scattering power of silicon atoms may be due to 
correlated motion within a column.  Treacy and Gibson 
(1993) have also pointed out the importance of this 
effect. 

In addition to the elastic and thermal diffuse 
scattering acquired by a high-angle detector, there is the 

possibility that electrons interacting with a single atomic 
electron make up a significant proportion of electrons 
used to form a dark-field image (Bleloch et al., 1994). 

The present paper investigates the accuracy of a 
number of approximations to the full calculation of 
elastic and thermal diffuse scattering and the resulting 
HAADF image contrast.  The full calculations are 
carried out using two methods, the frozen phonon 
approach and an approach, described in detail in the 
next section, based on atomic scattering functions.  
Since we are interested in high-resolution imaging we 
confine our studies to thin foils and in particular, 
because of its relevance to our experimental work 
(Anderson et al., 1997), to (110) foils of AlxGa1-xAs less 
than 25 nm thick. All of our calculations assume that 
each atom in the crystal vibrates independently of the 
other atoms and that the vibrational motion is isotropic.  
The calculations do not include any inelastic scattering 
due to excitation of electrons in the foil, since, based on 
an analysis in the final section of the paper, it is not 
significant for thin foils.  The approximate methods we 
consider are much faster than the full calculations and 
we show that they are sufficiently accurate to be useful 
for estimating the fraction of aluminium within an 
atomic column from experimental HAADF images. 

Our paper is arranged as follows.  In the next section 
we describe two methods for calculating the amount of 
thermal diffuse scattering.  The first method is to apply 
the frozen phonon approach in conjunction with a slight 
modification of the Cowley-Moodie multi-slice method.  
The modification enables efficient generation of the thin 
phase grating scattering function for each slice of a 
disordered structure and so speeds up the calculations.  
The second method is to calculate atomic scattering 
functions for thermal diffuse scattering.  To each atom is 
associated an infinite set of diffuse scattering functions.  
These functions are the spatial derivatives of the atomic 
scattering function and the scattering associated with 
each function is incoherent with respect to the scattering 
associated with all the other functions.  The total 
intensity of thermal diffuse scattering is the sum of 
intensities associated with each type of scattering 
process.  

In the third section we apply these two methods, the 
frozen phonon method and the use of the scattering 
functions for the independent thermal diffuse scattering 
processes, to the calculation of the intensities of  
HAADF images of  AlxGa1-xAs.  We first show that the 
two methods lead to similar results and that multiple 
diffuse scattering is not significant.  Then we compare 
the amount of computing time required for each method.  
The approach of using a set of atomic scattering 
functions for thermal diffuse scattering leads to very 
large calculations since each atom in the foil generates a 
set of independent waves, each of which propagates to 
the exit face of the foil and in doing so undergoes both 
elastic and thermal diffuse scattering. 
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In the fourth section we investigate the usefulness of 
a number of approximations for shortening the time for 
calculations. An important approximation, which is 
made in most studies using scattering functions, is that 
there is negligible diffuse scattering if the foil is 
sufficiently thin.  Another approximation is that elastic 
scattering of diffuse scattering is unimportant if the 
inner radius of the detector is sufficiently great.  Other 
approximations we investigate are based on calculating 
the elastic scattering alone or on using the elastic 
calculation with only one calculation of thermal diffuse 
scattering.  For AlxGa1-xAs we find that intensities can 
be estimated to within about 5% using some of these 
approximations. 

The final section discusses the relevance of our 
calculations for estimating the fraction of Al contained 
within a column of atoms lying along the direction of 
the incident electrons.  We estimate that it should be 
possible to distinguish fractions differing by 0.1 
provided the signal to noise ratio in the image is that 
achieved under typical operating conditions of a modern 
STEM.  We also briefly discuss why there is no need to 
consider inelastic scattering from single electrons when 
estimating the absolute fraction of aluminium. 

 
Calculation of Thermal Diffuse Scattering 

 
In this section we present the theoretical basis for the 

calculations.  Consider a wave travelling in the positive 
z direction.  At the entrance face of a foil the wave 
function is ψ0(R),  R being a position vector in the plane 
perpendicular to the z axis.  The wave function is 
determined by the parameters characterising the 
objective lens of the scanning microscope.  These are Cs 
(the coefficient of spherical aberration), ε  (the amount 
of defocus), α  (the semi-angle of the probe) and 
parameters characterising fluctuations in source 
position, electron energy and lens current. 

When an electron interacts with an atom the 
scattered wave can, to a good approximation, be 
calculated by multiplying the incident wave by the 
function (Cowley, 1981) 

 

( )exp[i , ]σ ϕ R z dz
−∞

∞

∫                            (1) 

 
In this equation ϕ(R,z) is the electrostatic potential 

due to an atom and 
 

σ π= 2 2me h kz/ ( )                              (2) 
 
is the interaction constant for high-energy electrons.  

σ depends on the relativistic mass m and on the z-
component of the wave vector k, the magnitude of 
which is the reciprocal of the relativistic wavelength λ.  

We write 

 

( ) ( )ϕ ϕR R=
−∞

∞

∫ , z dz                          (3) 

 
for the projected atomic potential. 

Consider now an assembly of atoms at positions 
(Rn

(j),zn) ≡ (xn
(j),yn

(j),zn).  zn is the z-coordinate of the nth 
layer and zn <  zn+1.  The wave function ψn(R) on a plane 
between zn and zn+1 may be calculated using an approach 
similar to the multi-slice algorithm of Cowley and 
Moodie (Cowley, 1981).  Given the wave function on a 
plane before the nth plane, the potential due to the nth 
plane and the free-electron propagator pn(R) which 
describes the propagation of a wave through a distance 
zn-zn-1, we may write 
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(4) 
 

The propagator is given by 
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and the potential function due to the nth plane of atoms 
is 

 
vn

j
n

j( ) ( )( )R R R= −∑ϕ                   (6) 

The exact multi-slice algorithm of Cowley and 
Moodie requires that the potential be divided into slices 
of thickness ∆z.  The wave function is found by 
calculating the scattering due to a potential slice 
followed by propagation to the next slice and then 
scattering by that slice and so on.  The exact wave 
function is obtained by allowing the slice thickness to 
approach zero.  The calculation described by eqation (5) 
is an approximation to the exact multi-slice algorithm 
since it does not involve taking the limit of zero slice 
thickness.  However, it is expected to be adequate 
provided that the range of the atomic potentials in the z-
direction is sufficiently small so that the potential 
between the atomic planes is effectively zero. 

It is useful to note that we may write the scattering 
function for the nth layer in terms of the atomic 
scattering functions as follows. 

 
exp[ ( )] exp[ ( )]i v in n n

j

j

σ σϕR R R= −∏ ( )           (7) 

We use this property to calculate the total scattering 
due to an atomic layer.  The atomic scattering functions 
are stored in arrays.  For each different configuration of 
atoms within a layer, the elements of the arrays are 
shifted according to the positions of the atoms and the 
arrays are multiplied together.  Thus to generate a 
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scattering function for a layer with m atoms requires m 
multiplications of the arrays. 

If the foil through which the electrons pass consists 
of N planes of atoms, the wave function ψN(R) can be 
used to calculate the intensity reaching the detector.  If 
we label points within the diffraction pattern by two-
dimensional reciprocal space vectors U, the intensity of 
the diffracted wave at U is obtained from the Fourier 
transform of the wave function ψn(R)  

 

I dN( ) exp[2 . ] ( )U U R R R= ∫ π ψi
2

                 (8)       

 
and the intensity on the detector is found by summing 
I(U) over an appropriate range of values of U. 

The observed intensities are weighted averages of 
intensities arising from all possible positions of the 
atoms.  The weightings depend on the amplitudes of 
atomic vibrations which in turn depend on the 
temperature.  It will be assumed that each atom vibrates 
independently of all other atoms and that the distribution 
of deviations in position from the mean is given by the 
gaussian distribution 

 
d r r( ) / ( ) exp( / )/= −1 2 22 3 2 2 2π∆ ∆              (9) 

 
where r is a three-dimensional radial coordinate and ∆ is 
the mean squared displacement of an atom in any given 
direction. 

The observed intensity may be found by calculating 
the intensities for many positions of atoms.  This 
“frozen phonon” model of the interaction of the fast 
electron with a vibrating lattice can be justified from the 
fact that the time for the electron to pass through a thin 
foil is very much less than the periods of vibration of the 
atoms.  The number of configurations of atoms that are 
required to achieve a given precision in the estimate of 
image intensities depends on the amplitude of thermal 
vibrations and on the thickness of the foil. 

An alternative approach to calculating observed 
intensities is to carry out the averaging procedure 
analytically as far as possible.  One calculates average 
atomic scattering functions, one of which is the elastic 
scattering function, and the others are thermal scattering 
functions which involve changes to the vibrational state 
of the lattice.  We now proceed to derive these scattering 
functions. 

 Using the distribution of Equation (9) we can 
calculate the average of the atomic scattering function 
given in equation (1) for all values of R n

j( ) .  We work 
with Fourier transforms. 

     Let Φ(U) be the Fourier transform of 
exp[ iσϕ ( )R ] (i.e. the atomic scattering function for a 
stationary atom) and let exp(-¼Bu2) be the Fourier 
transform of the distribution function d(r). u is a three-
dimensional reciprocal space vector and  

 
B = 8 2 2π ∆                                     (10) 

 
is the standard thermal parameter of crystallography. 

We can now calculate an average atomic scattering 
function which we write as 

 
exp[i ( ) exp[ . ] ( )exp( )σϕ πR U U R= − −∫ d U BU2 1

4
2i Φ

  
(11) 

 
This thermally-averaged atomic scattering function 

can be expressed in terms of <ϕ ( )R >, the thermal 
average of the projected atomic potential, by introducing 
a correction potential iµ(R) (Cowley, 1981). 

 
exp[i ( )] exp[i { ( ) ( )}]σϕ σ ϕ µR R R= < > +i       

(12) 
 
To calculate the scattering due to a layer containing 

atoms at mean positions R eq
j( )  it is necessary to centre 

the scattering function on each atomic position.  The 
scattering due to a layer, viz. 

 
exp[i ( )]( )σϕ R R−∏ eq

j

j

                         (13) 

 
is then the input into a standard multi-slice algorithm for 
the scattering.  Note that the average scattering function 
includes an absorption function due to thermal diffuse 
scattering so there is no need to use a separate program 
for calculating corrections to the real potential (Anstis, 
1996). 

We now consider how thermal diffuse scattering is 
calculated.  With details given in the appendix, we find 
that atom j in layer  n contributes a term  

 
exp[ ( ' ' ' ) ]exp[2 '. ] ( ' )

exp[ ' '. ] ( ' ' )

( )

( ) *

− −

× −

1
4

2

2

B eq
j

eq
j

V V V R V

V R V

π

π

i

i

Φ

Φ
    (14) 

 
to the complete multi-slice expression for the intensity at 
position U in the detector plane. V' and V'' are integra-
tion variables and there is a pair of such variables for 
each atom in the foil. 

In order to be able to use the multi-slice algorithm 
we need to be able to work with wave functions only, 
obtaining intensities by calculating the modulus squared 
of the wave function that results at the end of the 
calculation.  To achieve this end, we would like to be 
able to express Equation (14) as a product of a function 
of V' and a function of V''.  One approach is to write 
Equation (14) as a sum of such products.   Dinges et al. 
(1995) have developed an alternative approach for 
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achieving this factorisation which is based on a 
combination of analytical and numerical calculations. 

The first exponential term in Equation (14) can be 
written as the product of three terms: an exponential 
term with argument depending on V', an exponential 
term with argument in V'' and  exp(½BV'.V'').  The last 
term can be expanded as a power series in B.  Retaining 
only the first term in this power series, namely 1, we 
obtain the contribution to the total intensity from the 
wave which is coherent with the incident beam (elastic 
scattering).  The second term in the series expansion, 
with B raised to the power one, represents the 
contribution from single thermal diffuse scattering. This 
can be seen by noting that in this term factors such as 
V'Φ(V') occur.  This factor is the Fourier transform of 
the gradient of the atomic scattering function and is 
related to first-order thermal scattering processes.  The 
term in which B is raised to the power two involves 
second-order thermal diffuse scattering.  Each term in 
the power series in B corresponds to an independent 
scattering process, i.e., the different scattering processes 
are mutually incoherent. 

Each independent thermal scattering process can be 
labelled by two numbers, t and s, with s t≤ .  The 
Fourier transform of the scattering function for this 
process is given by 

 

T
B
s t s

U U BUs t

t

x
s

y
t s

,

/

( )
( / )

!( )!
( )exp( )U U=

−
−−2 2

1
4

2Φ    

(15) 
 

where Ux and Uy are the x and y components of U. 
The complete calculation of thermal diffuse 

scattering then involves considering all scattering 
processes, labelled by t and s, for all atoms in the foil.  
The calculation of elastic scattering involves only the 
functions T0,0(U) and, as discussed above, it includes the 
effects of absorption due to thermal diffuse scattering.  
The scattering functions related to thermal scattering are 
products of powers of Ux and Uy and the elastic 
scattering function.  Multiplication of a function by 
powers of U produces a function with significant high-
order Fourier components and leads to high-angle 
scattering of electrons.  The larger the value of B the 
greater is the number of thermal scattering functions that 
contribute to the intensity of electrons collected by the 
dark-field detector.  Etheridge (1999) has also described 
how the thermal diffuse scattering can be expressed as a 
sum of contributions from scattering processes of 
different orders. 

Comparison of Computational Methods 
 
In this section we show that the two methods of 

calculating high-angle scattering described above 
produce the same results when used to calculate 
intensities from [110] foils of AlxGa1-xAs.  We also 
consider the amount of computing time required by 
these methods.  In the following section we investigate 
the usefulness of some approximations to the full 
scattering calculation, in order to obtain a method for 
the rapid simulation of dark-field image intensities.  
Particular interest lies in whether or not good estimates 
can be obtained from a knowledge of the elastic 
scattering alone. 

A <110> projection of AlxGa1-xAs contains pairs of 
columns separated by 0.14 nm, one column containing 
As atoms and the other column containing the other 
atom types (Fig.1).  A rectangular unit cell with two 
column pairs per cell can be selected.  Our calculations 
use a supercell consisting of 2 x 2 of these unit cells 
with the potential and wave function sampled at 256 x 
256 points.  (Calculations which are to be used for the 
interpretation of experimental images should use a 
supercell of larger dimensions to accurately model the 
probe.)  Thus for 100 keV electrons all scattering out to 
200 mrad is included.  The interlayer spacing is 0.3997 
nm.  The parameters defining the incident probe were: 
Cs = 1.3 mm (the coefficient of spherical aberration of 
the VG HB601UX STEM), α = 13.1 mrad, ε = -85.7 nm 
and a parameter, corresponding to a spread of 20 nm in 
the focal plane of the objective lens.  The introduction 
of this parameter produces a probe without any rapidly 
varying oscillations away from the centre.  The 
parameter may be considered as arising from vibrations 
of the field-emission tip.  The value used in these 
calculations is much greater than for normal operation 
of a high-resolution microscope.  It was chosen to 
ensure that the probe intensity is zero at the boundary of 
the supercell.  The value of ε  used in the calculations 
gives the sharpest probe for the supercell used.  A larger 
supercell results in an optimum focus close to the 
theoretical optimum defocus (-69 nm) but the shape is 
almost the same as that used in our calculations. 

Temperature parameters of BAs = 0.006853 nm2 and 
BGa  = BAl  = 0.006373 nm2 were used. 

Calculations were performed for a number of 
positions within a unit cell.  In this paper we concentrate 
on the 3 points labelled A, B and C in Figure 1.  The 
inner and outer limits of the annular, dark-field aperture 
were 54 mrad and 150 mrad respectively, these being 
the values for the VG  HB601UX STEM. 

Using the Monte Carlo approach, 10 different 
configurations of the lattice were considered for each 
position of the probe.  This number leads to estimates of 
the intensity with an uncertainty of less than 4%.  Using 
the atomic scattering function method, convergence was  
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Ga/Al atomic columns

As atomic columns

4.0 Å

5.6 Å

[100]B

A

C

 
 
Figure 1.  [110] projection of the (Al)GaAs unit cell.  

Three points A, B and C indicate the probe positions 
considered in this paper. 
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Figure 2.  Maximum image intensity and intensities 

at points A and B (point of minimum intensity) in the 
unit cell as a function of aluminium concentration for a 
20-atom layer foil. 

 
obtained by including all terms up to t = 6 in the series 
expansion of Equation (14).  (The t = 6 terms contribute 
about 2% to the total intensity.)  It was found to be 
unnecessary to include double diffuse scattering in these 
calculations.  The results from the two methods agree 
for a foil thickness of  20 atomic layers (8 nm) for a 
range of values of the Al fraction x between 0.0 and 0.6.  
Figure 2 shows intensities at positions A and B and the 
maximum intensity (which occurs near the As column). 
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Figure 3.  Contribution of each As atom in a column 

to the total diffuse scattering.  The probe is at position A 
and the column is the closest As column. 

 
We finish this section with a brief discussion of the 

amount of computing required by each of the two 
methods.   To achieve an accuracy of 1% with the 
Monte Carlo approach about 25 configurations of atoms 
are necessary.  Thus the computational time  required  is  
thetime to run 25 standard multi-slice calculations plus 
some small additional time to generate the scattering 
function for each slice.  As indicated in the discussion 
following equation (7) the scattering function can be 
generated efficiently by shifting and multiplying arrays 
of atomic scattering functions for elastic scattering.  On 
the other hand the approach of using thermal scattering 
functions, using all terms up to t = 6, requires, for each 
atom in the cell, 28 multi-slice calculations from the 
layer containing the atom to the exit face of the foil.  
Assuming that on average the number of layers per 
calculations is half the number of layers making up the 
foil, 14 standard multi-slice calculations are required per 
atom in the foil.  For a foil consisting of 20 layers with 
16 atoms per layer around 9000 multi-slice calculations 
are required, considerably more than required by the 
Monte Carlo method, to produce the intensity at just one 
point within the unit cell. 

 
Approximations 

 
     We have investigated some ways of reducing the 

times of carrying out computations which use atomic 
thermal scattering functions.  To begin with we 
considered that it may be sufficient to calculate the 
diffuse scattering from atoms in only a few layers and to 
determine the contributions from atoms in the other 
layers by interpolation.   

Figure 3 shows that this approach should give good 
accuracy.  It shows the contributions to the total dark-
field intensity due to each atom in the As column when 
the probe is at position A. The contribution of an atom 
depends on the probe intensity which varies with  depth 
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in the foil and on the amount of rescattering of diffuse 
scattering to angles outside the acceptance angles of the 
detector.  While the calculation time is reduced by using 
interpolation, it is still, however, considerable. 

     Another approximation is to consider that the 
total scattering can be calculated by assuming that once 
thermal diffuse scattering has occurred no further 
scattering of the diffuse scattering takes place 
(Pennycook and Jesson, 1991; Wang, 1995a).   We 
found that this approximation gives an accuracy of 
better than 5% for a foil consisting of 20- atom-layers.  
The amount of computing using this approximation is 
relatively small. It requires only one multi-slice 
calculation and 20 x 28 complex multiplications to 
generate the diffuse scattering (taking t = 6 as in the 
example of the previous section). 

     We consider next two approximations based on 
the assumption that the total scattering can be estimated 
from calculations based on the theory of elastic 
scattering so that no calculation of thermal diffuse 
scattering is required.  It is assumed that the total 
scattering into the detector is proportional to the elastic 
scattering into the detector and that the elastic scattering 
is calculated: (1) with absorption due to atomic 
vibrations taken into account and (2) without absorption. 

     Figure 4 shows how the intensity of elastic 
scattering into the detector expressed as a fraction of the 
total scattering into the detector, calculated with the 
effects of thermal diffuse scattering included, varies as a 
function of number of atomic layers.  In Figure 4a the 
elastic scattering is calculated assuming there is 
absorption due to atomic vibrations.  It shows that most 
of the electrons reaching the high-angle detector have 
undergone thermal diffuse scattering. 

     In Figure 4b the elastic scattering is calculated 
without absorption, i.e. atoms are assumed to be 
stationary while the total scattering is calculated without 
any approximations.  A fraction less than 1 shows that 
the angular distribution of thermal diffuse scattering, 
being dependent on the spatial derivatives of the atomic 
scattering function, is different from the scattering due 
to a single atom. 

     The calculations summarised in these figures 
show that the image intensity can be calculated from the 
elastic scattering alone to an accuracy of about 10% 
when absorption is included and to about 5% when no 
absorption is included in the calculation of the elastic 
scattering. 

     Another approximation is to assume that the total 
scattering into the detector is proportional to a fraction 
of the total amount of thermal diffuse scattering plus the 
elastic scattering into the detector.  This assumption can 
be stated as 

 
I I IDF DF

elastic
TOTAL
elastic= + −β( )1                  (16) 
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Figure 4. (a) The contributions to the intensities at 
points A, B and C due to elastically scattered electrons 
for different numbers of atomic layers.  The 
contributions are expressed as fractions of the dark-field 
intensities calculated without approximation and are 
made assuming vibrating atoms. (b)  The dark-field 
image intensities at points A, B and C, calculated 
assuming stationary atoms, expressed as a fraction of the 
intensity calculated using a full calculation. 

 
where 1− ITOTAL

elastic  is the total thermal diffuse scattering. 
     Figure 5 shows the predictions of the value of β 

based on equation (16).  The error bars are a con-
sequence of using the frozen phonon method with a 
finite number of atomic configurations.  We observe that 
if β is estimated from the intensity at point A of an 
image of a thin foil, we can predict intensities at other 
points in the unit cell with an accuracy better than 5% 
for foils of thickness 10 layers to 60 layers.  
Calculations performed by Anderson et al. (1997) using 
the scattering function method to estimate diffuse 
scattering show that for a foil consisting of 20-atom 
layers, estimating β  from one point of the image 
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 Figure 5.  The parameter β for three positions in the 
unit cell as a function of the number of atomic layers. 
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Figure 6.  The intensities at points B and C expressed as 
fractions of the intensity at point A for different numbers 
of atomic layers. 

 
can be used to find the intensities at other points with an 
accuracy of 1%.  This figure is not inconsistent with the 
results of Figure 5 when  allowance is made  for the 
statistical errors associated with the Monte Carlo 
method. 

The last approximation for reducing calculation 
times that we considered in detail is that relative 
intensities of an image of a thick foil can be calculated 
from a knowledge of the relative intensities of an image 
of a thin foil.  

     From Figure 6, which shows how the fractions 
IB/IA and IC/IA change with the number of atomic layers, 
it is seen that the relative intensities change by no more 
than 10% for foils less than 20 layers thick, but for 
thicker foils the fractions are greater which corresponds 
to reduced image contrast.   This reduction is due to the 
strong attenuation of a probe, centred on a column of 
atoms, after it has interacted with several atoms.  Thus 

the rate of scattering through high angles, being 
approximately proportional to the intensity of the probe, 
is reduced in thicker regions of the foil.      

     There are some other approximate methods which 
we have not investigated.  One is to use incoherent 
imaging theory which states that the image intensity is 
the convolution of a probe intensity function with an 
object scattering function which depends on the 
thickness of the foil.  Loane et al. (1992) showed that 
this theory correctly predicts the variation of the 
intensities of fringes in images of InP due to changes in 
the focussing of the objective lens. Incoherent imaging 
theory provides no advantage in computing time for a 
single value of objective lens defocus, since to find the 
object scattering function requires calculation of the 
thermal diffuse scattering.   

     Another approximate method of calculating 
image contrast, which should be assessed, is to assume 
that the atomic scattering functions for thermal 
scattering are much more localised in real space than is 
the wave function for the atom probe (Pennycook and 
Jesson, 1991).  Then, assuming there is no further 
scattering of thermal diffuse scattering, the intensity of 
scattering to position U in reciprocal space due to an 
atom centred at position xn is 
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(17) 
 
where I(xn) is the intensity of the probe at the 

position of the atom.  In this expression the elastic 
scattering is calculated according to coherent imaging 
theory.  The dark-field intensity is determined from this 
equation by integrating over all values of U 
corresponding to the angular range of the detector.  
Typically the contribution of the elastic scattering to the 
total intensity is small and so is not included in 
estimating the dark-field intensity  (Pennycook and 
Jesson, 1991).  Use of this approxi-mation will lead to a 
small decrease in computing time compared with 
calculations based on using a finite set of the scattering 
functions given by equation (15) since in both methods 
most of the computation involves calculating the wave 
function for an elastically scattered electron.  The 
approximation does have the advantage of requiring less 
computer memory because only the elastic scattering 
function needs to be stored. 

     There are also approximations to the full Monte 
Carlo calculations which could be considered.  If the 
assumption that diffuse scattering is not significantly 
rescattered is applicable, the image intensity can be 
found by calculating the elastic scattering, with 
absorption due to thermal diffuse scattering taken into 
account, to a certain depth within the foil and then 
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generating thermal diffuse scattering by averaging the 
scattering due to random configurations of atoms within 
one slice.  This approximation would result in 
significant reductions in computing time since only one 
multi-slice calculation is required for each position of 
the probe.  Based on the results presented above, this 
approximation should have an accuracy of about  5%. 

 
Estimating the Al Fraction 

 
     Figure 2 indicates that image contrast, defined by  
 

C
I I
I I

B

B

=
−
+

max

max

                              (18) 

 
changes from 0.50 to 0.54 as x changes from 0.0 to 

0.6.   Imax/IB changes from 3.0 to 3.3 with the same 
change in x.  These are changes of about 10%.  On the 
other hand, the absolute intensity at any given point 
within the unit cell decreases by approximately 20% in 
going from x = 0 to x = 0.6.  A consideration of the 
maximum intensity is one of the methods used by 
Anderson et al. (1997) to estimate the Al fraction across 
an interface between GaAs and Al0.6Ga0.4As.  They also 
considered the distribution of intensities (i.e., the shape) 
within an image of a unit cell, since this depends on x.  
Figure 2 shows how the difference in the maximum 
intensity and the intensity between a pair of closely 
spaced columns (point A) varies with x.  As the 
aluminium fraction increases from 0, the position of the 
maximum intensity moves away from point A towards 
the As column.   

     To obtain an indication of the precision with 
which x can be measured using HAADF images, 
consider the method of estimation based on measuring 
the maximum intensity in the image.  In order to 
distinguish regions differing in the Al fraction by an 
amount 0.1, the maximum intensity in the unit cell must 
be estimated with a precision of better than about one 
sixth of 20%, i.e. 3%.  Variations in intensity in an 
experimental HAADF image are around 25% (Anderson 
et al., 1997).  This estimate comes from considering the 
digitally recorded intensities at equivalent points in a 
row of unit cells parallel to the interface. The variation 
is greater than that expected from shot noise alone so 
factors such as surface contamination, radiation damage 
and charging effects must be involved.  The resolution 
of the VG HB601UX STEM is about 0.3 nm so that the 
intensity in a noise-free image should not vary 
significantly in an area 0.05 nm x 0.05 nm.  If an 
experimental digitised image of this area consists of 9 x 
9 pixels and there is a variation in intensity of 25% 
among the pixels, the mean intensity should be an 
estimate of the noise-free intensity with a precision of 
about 3%, assuming that the precision is inversely 
proportional to the square root of the number of 

measurements and that the intensity variations are 
uncorrelated.  In the experimental work of Anderson et 
al. (1997), each pixel corresponds to a region of 
dimensions 0.017 nm x 0.017 nm which is an 
insufficient frequency of sampling for estimating x to 
within 0.1 for a single cell.  Given this limitation, these 
authors used the maximum intensity to estimate an 
average value of x for a number of cells lying parallel to 
the interface and in this way were able to obtain 
estimates of x for varying distances from the interface 
which have a precision better than 0.1. 

     If instead of the maximum intensity, the mean 
intensity of an image of a unit cell is used to estimate the 
fraction of aluminium, the change in intensity is only 
10% over the range of values of x but many more pixels 
per unit cell are available.  With 33 x 24 pixels per unit 
cell and with the amount of intensity variation as before, 
it should be possible to estimate the mean intensity with 
a precision of 1%, which is sufficient to estimate the 
aluminium fraction in any unit cell with a precision of 
0.1.  This analysis assumes that errors in the measured 
experimental intensities are not correlated, an 
assumption which may not be true and requires further 
investigation. 

     Both of these methods, being based on one 
number for each unit cell to estimate x, are susceptible 
to errors due to unknown variations in the thickness of 
the foil.  A method which uses the shape of the image is 
more reliable and is discussed in detail by Anderson et 
al. (1997). 

     The above considerations show that image 
simulations play an important role in experimental 
design and in the quantitative analysis of images. 

     The methods of calculating intensity which are 
described in the earlier sections are based on the 
assumption that only elastic and thermal diffuse 
scattering is significant.  Bleloch et al. (1994) suggested 
that inelastic scattering by single electrons may be 
important.  We now provide a rough estimate of the 
significance to HAADF intensities of this scattering 
mechanism. 

     A simple model of inelastic scattering through 
large angles holds that the ratio of inelastic to elastic 
scattering equals the inverse of the atomic number of the 
atom.  (Reimer, 1984).  Under this assumption high-
angle, inelastic scattering for both As and Ga is about 
1/30 th the elastic scattering for these atoms while for Al 
the fraction is 1/13.  Since for a 20-atom-layer foil the 
elastic scattering contributes only about 3% to the total 
flux onto the annular detector, the effects of inelastic 
scattering should be insignificant. 

     In conclusion we have shown that the theoretical 
tools for quantitative analysis of HAADF images of 
simple structures are available.  For the system 
considered in this paper, it does not appear to be 
necessary to carry out the full calculation of  thermal 
diffuse scattering by, for example, using Monte Carlo 
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methods, since good approximations to the full 
calculations are available.  The assumption that elastic 
scattering of thermal diffuse scattering produces only a 
rearrangement of the diffuse scattering within the 
angular range accepted by the dark-field detector is 
adequate.  A numerical method for calculating the 
diffuse scattering based on this assumption has been 
given.  It is equivalent to methods proposed by other 
authors and requires similar computing times to these 
methods.  Some other equally suitable approximations 
have been given.  In this paper the Einstein model of 
independent atomic vibrations has been used. It may be 
difficult to generalise the method employed in this paper 
to include correlated atomic motions since the thermal 
scattering functions for individual atoms are derived 
assuming vibrational independence.  The methods of 
Jesson and Pennycook (1995) and Wang (1995b) may 
be more suitable for investigating the importance of this 
effect.  

 
Appendix 

 
Equation (14) is derived from equations (4) and (7).   

Equation(4) implies 
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     Using equation (7) and retaining only those terms 

involving Rn
(j) and zn we are led to consider 
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     Introducing Φ(U), the Fourier transform of 
exp[ iσϕ ( )R ], we can express equation (20) as 
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where 
  

P U z zn n n( ) exp[ ( )]U = − − −iπλ 2
1           (22) 

 
is the Fourier transform of the propagator. 
     The integration with respect to R' produces a 

delta function δ(U' - V' - W').  Integration with respect 
to U' and using equation (22) gives 
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(23)     

 
     We are interested in determining the intensity of 

the electron wave and so we multiply the above 
expression by a similar one involving complex 
conjugates.  There are two new integration variables V'' 
and W'' in the resulting expression.  The weighted 
average of this expression, considered as a function of 
R n

j( ) and zn, is obtained by performing a convolution 
with the distribution equation (9), which gives the 
probability of an atom being displaced a certain distance 
from its equilibrium position.  Averaging first over the 
values of R n

j( )  we obtain the terms 
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where Req
(j) is the mean position of atom j in layer n. 

     Then, averaging over all values of zn, we obtain  
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(25)      

In this equation terms such as Pn(W') are calculated 
assuming the average value of zn. 

     Equation (14) consists of those terms in equation 
(25) related to scattering by atom j in layer n but does 
not include terms relating to the propagation of the wave 
between slices.  When the multi-slice calculation is 
carried out the propagators are included but the last 
exponential in the above equation is approximated by 1.  
The absolute error in making this approximation is not 
large for a value of the argument which is typical for 
high-energy scattering.  The processes neglected by 
making this approximation are related to the effects on 
the thermal diffuse scattering due to the variations in the 
separations of layers. 
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Discussion with Reviewers 

 
Z.L. Wang:  The paper by Pennycook and Jesson 

(1991) considers that the image contrast in HAADF is 
simply a convolution of the probe shape with an object 
scattering function, and they concluded that no 
simulation is needed for image interpretation.  This 
theory does not consider any beam broadening and 
dynamical scattering in HAADF STEM imaging.  From 
your calculation how important is the dynamical 
scattering in HAADF imaging?  How important do you 
think the calculation is for quantitative HAADF image 
analysis?  Does the conclusion still hold for grain 
boundary imaging? 

M. Hÿtch:  For the measurement of the aluminium 
concentration, have the authors considered the non-local 
effects, i.e., the probe spreading onto neighbouring 
columns thus averaging the measure? 

Authors: Dynamical scattering is important since it 
determines how the intensity within the probe is 
redistributed by the atomic columns.  We investigated 
the effects of beam broadening and found that even for 
foils 20 atoms thick the contribution to the thermal 
diffuse scattering from columns away from the centre of 
the probe increases with increasing thickness. We have 
not attempted a comparison between a calculation which 
assumes the probe is not modified by the atoms and the 
full calculation so we cannot say how accurate the 
simpler calculations may be for estimating aluminium 
concentrations.  Our calculations are based on perfect 
crystals with a given fraction of aluminium.  Thus if 
beam spreading is important our calculations may be in 
error when the probe is very close to the interface.  

 
Z. L. Wang:  Diffuse scattering can be generated 

either by TDS or by short-range ordering of point 
defects (i.e., static displacement), such as point 
vacancies, differences in atomic sizes, lattice relaxation 
and strain.  The last, however, was not included in your 
calculations.  In analysis of AlxGa1-xAs using HAADF 
STEM images, how much contrast can the lattice 
introduce as a result of atom substitution of Ga by Al? 

J. M. Gibson:  What is the role of static 
displacements in the contrast, especially in the accuracy 
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of composition method?  I am thinking particularly of 
the old work of Hall and Hirsch on these effects. 

Authors:  We have not investigated the issue of 
strain directly.  If the effect of point defects can be 
modelled by introducing an effective Debye-Waller 
factor then we believe our results are not much affected 
since the temperature parameters for the atomic species 
in the alloy are not known and it was necessary to show 
that the estimated atomic fractions did not change 
significantly for a range of atomic thermal parameters. 

 
Z. L. Wang:  I am not quite ready to accept the 

argument described at the end of the paper about the 
contribution of single electron excitation to HAADF 
images (Bleloch et al., 1994).  The fine atomic-scale 
details in HAADF images may not be affected by 
Compton scattering, because the width of the Compton 
peak observed in EELS spectra is usually more than 50-
100 eV, and the fine details, if any, from Compton 
scattering may be washed out.  Thus this scattering 
process may only introduce a background in the image.  
If the image background is set digitally in STEM, this 
process eventually does not affect the displayed image 
contrast. 

Authors:  Thank you for these comments. 
 
Z. L. Wang:  What are the advantages and 

disadvantages of your methods compared with those 
reported in the literature? 

Authors:  The advantage of the series approach 
outlined in this paper is that the accuracies of certain 
approximations can be checked.  On the other hand if no 
approximations are possible, the approach leads to 
extremely long calculations compared with the Monte-
Carlo approach.  The method also has the disadvantage 
that correlated atomic vibrations are not easily 
incorporated into the formalism.  

 
P. D. Nellist:  To what extent do the authors 

consider the accuracy of the determined composition to 
be limited by the independent oscillator model of the 
phonons?  Would a more physical phonon model with 
vibrational correlations between neighbouring atoms 
give a different result? 

Authors: The results of Jesson and Pennycook 
(1996) using the Debye model suggest that differences 
in absolute image intensities are as large as 20%.  If 
relative intensities are not so dependent on the degree of 
vibrational correlations, and this should be further 
investigated, then the present calculations can be used to 
estimate composition from an analysis of experimental 
images. 

 
A. Howie:  If intensities are to be compared at 

various points in the unit cell, it might have seemed 
more obvious to compare the intensity on the Al/Ga 

column with that on the As column.  Does this require 
better spatial resolution than the authors have available? 

Authors:  The experimental images, shown in our 
companion paper, show that there is a difference in 
intensities at the positions of the two atomic columns 
although the two columns are not resolved.  Thus 
comparing intensities at two points within the image of a 
pair of columns gives a better estimation of the 
aluminium concentration than does the intensity at the 
midpoint between the columns.  In this paper, which is 
more concerned with numerical methods, we have 
chosen to examine the intensity at just a few points. 

 
A Howie:  Provided the local specimen thickness is 

known (e.g., from plasmon losses), the HAADF signal 
averaged over the unit cell would give a simple measure 
of the Al content.  Are the authors able to make any 
comment about this low resolution approach compared 
with their methods, the high resolution method 
mentioned in the previous question or some of the other 
methods used to address this problem (e.g., 
measurement of 002 dark field image intensities)?  
Might there not be some merit in trying as many as 
possible of these methods for comparison on a single 
specimen? 

Authors:  We agree that reliance should not be 
placed on one technique and we discuss some other 
techniques in the companion paper.  The average 
intensity will give an estimate of aluminium content but 
this method is sensitive to local thickness which is 
difficult to determine to an accuracy of one or two unit 
cells. 

 
A Howie:  It is not entirely clear how absorption has 

been treated in these computations.  Am I correct in 
assuming that the absorption potential used has a TDS 
part which serves to normalise the "elastic" scattering in 
the frozen phonon model, i.e., to keep the total intensity 
unity in the absence of inelastic scattering and an 
inelastic part, due to electronic excitations (including 
plasmons?), which generates the term multiplying β in 
equation (16)? 

Authors:  We hope that our revised paper has 
cleared up how absorption is treated.  The computations 
include only absorption due to thermal diffuse scattering 
while we make a comment on inelastic scattering due to 
single electron excitation at the end.  Plasmons are not 
included.  It is expected that electrons that have lost 
energy due to plasmon excitation make contributions to 
the image which are similar to those electrons which 
have not lost energy since the angles of scattering 
associated with the energy loss are very small. 

 
A. Howie:  In the single, large angle scattering 

approximation, integration over the detector acceptance 
angles produced substantial cancellation of the 
interference between pairs of atoms unless they share 
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the same rather small coherence volume.  It is this effect 
which incidentally probably makes HAADF imaging 
more sensitive than other imaging modes to the 
correlated thermal motion of neighbouring atoms.  
When, as in the authors' work, multiple large angle 
scattering events are considered there might be an even 
greater advantage in not leaving all of the angular 
integrations until the last stage of the computation.  Do 
the authors think that this might be possible? 

S. J. Pennycook:  At large thicknesses the 
convergent beam discs contain fine scale interference 
details which must be accurately integrated to give the 
detected signal.  Since these individual interference 
features do not contribute to the integrated intensity, 
could a further gain in computational efficiency be 
obtained by taking the intensity at real space at each 
atomic site and summing over sites?  One might 
anticipate that provided the inner radius of the detector 
was reasonably large, one could simply assign an 
effective scattering cross section to each atom.  This 
would also build in the Einstein model of thermal 
vibrations that is simulated by the frozen lattice model.  
It might also prove necessary only to include the number 
of Fourier components sufficient to represent the 
thermally smeared atomic potential. 

Authors:  One could, for instance, assign to each 
atom a scattering function which depends on the 
parameters of the detector.  The total intensity would 
then be found by summing over all scattering functions 
multiplied by the local intensity of the elastic wave.  
This is an approximation which can be readily tested 
and represents an extension of the work of Pennycook 
and Jesson (1991) who assumed the scattering functions 
are delta functions.  The atomic scattering function 
could be obtained by computing intensity of an image of 
a single atom.  While not delta functions, these 
scattering functions would still be sharply peaked and 
thus have a large number of Fourier components.   

 
C. Dinges and H. Rose:  The authors should 

compare the result for the image intensity obtained by 
the use of equations 13 and 14 assuming a single atom, 
the Einstein model and ideal lens.  Do they really obtain 
the same results?  If not, what is different and how can 
the differences be explained? 

Authors:  We would expect to obtain the same 
results.  We chose to test our method by comparing the 
intensities it predicts with those using the Monte Carlo 
approach. 

 
C. Dinges and H. Rose:  The authors performed 

their calculations on a 256 x 256 matrix assuming a 
small supercell.  Hillyard and Silcox (1995) use a 512 x 
512 matrix and a large supercell.  Results published by 
Dinges et al.  in these proceedings are based on the same 
matrix size and supercell size.  The reason for choosing 
large supercells is to suppress periodic effects stemming 

from the FFT.  The explanation of the authors to justify 
their small supercells should be more detailed. 

Authors:  We agree that the large supercell is more 
appropriate for analysing experimental images.  We 
believe that the small supercell used in this paper is 
adequate for comparing different numerical methods.  
We have calculated how the value of the defocus which 
gives the sharpest probe depends on the size of the 
calculation and we found that for a 4 x 4 supercell it is  -
55 nm, for a 6 x 6 supercell it is -65 nm and for a 8 x 8 
supercell it is -68 nm, close to the Scherzer value.   

 
C. Dinges and H. Rose:  It is not clear what is new 

in the theory given in the paper.  Where is the difference 
between the multislice theory in this paper and the 
theories of Wang and of Dinges and Rose? 

J. M. Gibson:  If the frozen phonon method is more 
efficient and accurate than the alternative method 
proposed here, why bother to try it at all? 

Authors:  While all of these formulations are 
equivalent in a mathematical sense they differ somewhat 
in their derivations and hence one approach may bring 
out more clearly certain aspects of the underlying 
principles on which they are based.  From the point of 
view of numerical calculations, the aim of formulating 
the problem of calculating thermal diffuse scattering in 
terms of a set of scattering functions is to provide a basis 
for generating a variety of approximations which 
involve substantially less computation but are 
sufficiently accurate. 

 
J. M. Gibson:  Could the authors be more clear 

about the complications of varying thickness in 
measuring composition?  This is certainly an issue with 
HREM techniques. 

Authors: The shape of the image does not change 
significantly over a change of thickness of a few unit 
cells so it is possible to obtain estimates of composition 
in foils which vary in thickness.  Calculations by 
Anderson (1997) indicate that, to within 5%, the image 
intensity of a foil 0.8 nm thick is a constant fraction of 
the image intensity of a  8 nm-thick foil, which in turn is 
a constant fraction of a 16 nm thick foil to within 5%.  

 
M. Hÿtch:  The most critical test for the various 

simulation methods seems to be in the prediction of 
absolute intensities.  Is it possible to calibrate 
experimental HAADF images, i.e. with respect to the 
incident intensity?  The proposed method of estimating 
β from point A in an experimental image of a thin foil 
would also seem to rely on such a calibration. 

Authors:  β is a parameter used for comparing the 
results of computations because it involves the intensity 
due to elastic scattering.  Since energy filters cannot 
remove thermal diffuse scattering, β is not accessible to 
experiment.  The calibration of experimental intensities 
is complicated by the processing carried out by the 
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microscope's image acquisition system which is adjusted 
to obtain high contrast.  The use of annular detectors for  
quantitative measurements is discussed by Kirkland and 
Thomas (1996). 

 
Additional References 

 
Anderson SC (1997) Electron Optical Approaches to 

Quantitative Compositional Measurement at High 
Spatial Resolution. Doctoral Thesis, The University of 
Sydney. 

Hillyard S,  Silcox J (1995) Detector geometry, 
thermal diffuse scattering and strain effects in ADF 
STEM imaging. Ultramicroscopy 58: 6-17. 

Kirkland EJ, Thomas MG (1996) A high efficiency 
annular dark field detector for STEM. Ultramicroscopy 
62: 79-88. 


