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Abstract

Electron crystallography of 2-dimensional protein
crystals combines electron diffraction with high resolution
imaging of the crystals to calculate an electron density map.
However, high resolution imaging is still associated with
many technical problems whereas the registration of
diffraction patterns to high resolution is less demanding.
The ability to retrieve phase information from diffraction
patterns with heavy atoms, as in X-ray crystallography,
would therefore open up new vistas. Thus we have
investigated both theoretically and experimentally the use
of heavy atom labelling. Model calculations show that
substituted heavy atoms affect electron diffraction
intensities and that anomalous dispersion and multiple
isomorphous replacement (MIR) are indeed potential
techniques for phase determination. Since the expected
changes are small the intensities of electron diffraction
patterns have to be measured with sufficient accuracy. For
thin catalase micro crystals we find that significant difference
Patterson maps can be obtained if sensitive electron
detectors and zero-loss energy filtering are used. Heavy
atom derivative diffraction patterns have been recorded
which show significant changes from native protein
diffraction patterns.
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Introduction

Although electrons are much more suitable than X-
rays for structure determination of very small protein crystals
(Henderson, 1995; Appendix), the standard method for
protein structure determination at near atomic resolution
still is X-ray crystallography. Only three membrane proteins
have been structurally described at molecular level by
electron microscopy (Henderson et al., 1990; Jap et al., 1991;
Kühlbrandt et al., 1994; Grigorieff et al., 1996). Electron
crystallography is hampered by fundamental methodological
problems such as: (i) the growth of suitable 2D crystals, (ii)
the determination of phase information at high resolution.
One possible solution to the latter problem is the adaptation
of X-ray crystallographic methods for phase determination
to electron crystallography, i.e., the application of the multiple
isomorphous replacement or anomalous dispersion. In these
approaches phase information is no longer obtained by
imaging but by the evaluation of differences in diffraction
patterns caused by substituted heavy atoms. Therefore,
the problem of imaging with near atomic resolution is
converted into the registration of diffraction patterns with
high accuracy. This should be advantageous since high
resolution diffraction patterns are more easily obtained than
comparable images.

This alternative method for phase determination has
been studied by Ceska and Henderson (1990) who came to
the conclusion that in their case data of sufficient accuracy
were not available. However, the use of new techniques
such as improved detection devices or the removal of the
inelastic background by energy filtering yields more
accurate data. Here we present a new evaluation of the limits
on signal detection set by the basic physical processes.
This is compared with new experimental data on the
detection of single heavy atoms in protein crystals to
demonstrate that phase determination by multiple
isomorphous replacement (MIR) is now feasible.

Scattering Theory and Physical Limits
 on Heavy Atom Effects

Electron diffraction

The interaction between electrons and the specimen
can be described in wave formalism as the modulation of
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the incident wave, i.e., the exit wave can be written as
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the Schrödinger equation, which, after Fourier transfor-
mation, may be written as a set of non linear equations (for
a derivation see, e.g., Cowley and Moody, 1957).

In principle, this set of equations has to be solved
for the scattering potential knowing the scattering
amplitudes and phases (dynamical scattering theory).
Unfortunately, in general this is not possible. However, if
the crystal is thin compared to the extinction length the
problem simplifies (kinematic approximation) and the
scattering potential can be calculated as the Fourier
synthesis of the complex diffraction pattern or vice versa.

In the case of electron diffraction from protein
crystals one records the diffraction pattern of the protein
crystal in order to calculate the electron density map of the
protein which is (for light atoms) approximately proportional
to the potential of the specimen. This procedure presumes
the validity of the kinematic approximation for the specimen
under investigation. For two-dimensional (2D) protein
crystals, only negligible deviations from the kinematic
approximation are observed. However, caution is necessary
for three-dimensional (3D) protein crystals. Specimen
thickness, specimen density, unit cell dimensions and crystal
mosaicity all influence the limiting thickness for the
kinematic approximation. Therefore from theory alone it is
almost impossible to predict the behaviour of a specimen if
its structure is unknown. For this reason an experimental
check is very helpful. Such a routine experimental procedure
has now been developed using energy filtering techniques
[described elsewhere (Burmester et al., in preparation)].
Relevant results are given below.

Electron scattering

For phase determination the Z-dependence of the
atomic scattering factors f(θ) is important. For electron
scattering, f(θ) of a Coulomb Potential is given by (cf.
quantum mechanical textbooks, e.g., Messiah, 1976)
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where θ describes the scattering angle, k the wave vector,
and σ

0
 the total scattering cross section (e and m denote

electron charge and mass, h denotes the Planck constant).
Note that f(θ) is complex and that  f(θ)  as well as the
phase of f(θ) depends on the atomic charge e*Z.
     Note that:
     (a) for electrons the atomic scattering factor f(θ) is not
simply proportional to the atomic number as it is for X-rays
since the screening effect reduces the increase of  f(θ)
with atomic number. Therefore, the average effect of a
substituted heavy atom on the structure factor is smaller
for electrons than for X-rays.
     (b) f(θ) is complex for all elements and for all wavelengths,
therefore one observes anomalous dispersion and deviation
from Friedel symmetry. For so called “weak phase objects”
(e.g., light atoms) it is possible to apply the Born
approximation and to obtain real atomic scattering factors.
Thus one does not observe anomalous dispersion for light
atoms. However, the Born approximation cannot be used
for atoms of high atomic numbers, instead other
approximations have been developed (WKB method,
Wentzel, Kramer, Brillouin; muffin tin model). From these
approaches as well as from experiments complex scattering
factors have been determined (Zeitler and Olsen, 1967; Raith,
1968; Reimer and Sommer, 1968; Haase, 1968; see also Ibers
and Vainstein, 1962).

Multiple Isomorphous Replacement (MIR) and
Anomalous Dispersion

     The phase problem can in general be solved by using
heavy atom derivatized crystals (see e.g., Watenpaugh,
1985). For each set of Bragg indices hkl the structure factor
of the native form F

p
 is compared with that from a heavy

atom derivative crystal F
ph

.
These (complex) structure factors are related to each

other by

F
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where F
h
 is the structure factor for the heavy atoms alone.

 F
ph
  and  F

p
  are available experimentally from difference

Patterson maps and the value of the (vector) F
p
 can be

calculated.
     In order to calculate F

h
 it is necessary to know the

positions of the heavy atoms, which may be found by
deconvoluting the heavy atom Patterson function
(autocorrelation function). An approximation to the
Patterson map of the heavy atoms alone is obtained by
calculating the Patterson map of the differences between
the amplitudes of the derivative crystal and the native crystal
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hkl
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Alternatively one can determine the coordinates of the heavy
atoms by using their anomalous scattering (Rossmann, 1961).
Assuming that only the heavy atoms have a complex
scattering factor and that all other atoms have real atomic
scattering factors, one can write the atomic scattering factor
as f(θ) = f′+if″. The structure factor can then be written as

∑ ∑+=
j j

jjjjh ihrfiihrfF )2(exp")2exp(' ππ

Now consider a structure with light atoms, which show a
negligible anomalous scatterering, giving rise to a structure
factor F

h
(N). In addition, there are a few heavy atoms with

strong anomalous scattering, with a non anomalous
component  and the anomalous component

F″
h
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The total structure factor will be F
h
. Then we get
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hence a Patterson map with coefficients ( F
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be equivalent to a Patterson map with coefficients  F″
h
(H) 2

which is proportional to  F
h
(H) 2. This will be a Patterson

map with vectors between all anomalous scatterers and can
thus be used to find the heavy atom positions. Knowing
the positions of the heavy atoms, the value of the (vector)
F

h
  can be calculated by triangulation in the complex plane

(Harker construction).
     However, one needs to be able to detect small effects.
Therefore we first estimate what the effect of heavy atoms
will be on the Friedel-symmetry (using the crystallographic
R-factor R

sym
) and on the diffraction intensities (R

merge
). For

the discussion of the anomalous dispersion one has in
addition to check first, whether the assumption that only
the heavy atoms can be treated as anomalous scatterers
and the light atoms as real scatterers is valid for electron
diffraction. As second point one has to estimate the effect
of heavy atoms on the Friedel symmetry R

sym
.

Model Calculations

To quantify the effects of MIR and anomalous
dispersion molecular structure factors have been calculated
using complex atomic structure factors (Rose, 1977) for both
the known atomic model of catalase tetramers in the case of
R

merge
 and a statistical model protein (625 C, 195 O, 175 N, 3

S, and 2P atoms; randomized atomic coordinates, see Table
2 and Figure 3 for details) in the case of R

sym
. Table 1 gives

the expected magnitudes of effects expressed in the crystal-
lographic R-factors R

merge
 as a measure of the similarity of

diffraction patterns.
The effect of heavy atom substitution on diffraction

intensities has been calculated by Crick deriving general
formulas for the intensity changes depending on the atomic
scattering factors (Crick and Magdoff, 1956). These relations
are applicable to electron diffraction, the expected effect is
for electrons about a third of that for X-rays (cf. atomic
scattering factors for electrons and X-rays, e.g., International
Tables). As is shown in Table 1 the same effect can be
observed in the crystallographic R-factor.

To estimate the effect of anomalous dispersion, the
molecular structure factors of a model protein with 1000
atoms have been calculated for X-rays and electrons. Table
2 gives the deviation from Friedel symmetry in terms of the
crystallographic R-factor R

sym
.

Note that the effect of the anomalous scattering for

(7)

(8)

Table 1. Comparison of the crystallographic R
merge

-factor for electron and X-ray scattering intensities  F 2 of simulated
diffraction data: N = native catalase tetramer, A = Hg-derivative at position ‘C’ (Murthy et al., 1981), B = Hg-derivative with
two heavy atoms bound at positions ‘A’ and ‘C’ (Murthy et al., 1981).

(6)
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electron diffraction is higher than in the case of isomor-
phous replacement (cf. Table 1). This is in contrast to X-
rays, which in general show a weaker multiple anomalous
diffraction signal compared to MIR. In fact, the nature of
the anomalous scattering is completely different for X-rays
and electrons. In the case of X-rays atoms show anomalous
dispersion only if the X-ray energy is close to that of
absorption edges. In contrast to that, in the case of electrons
all atoms show anomalous dispersion at all electron energies.
However, light atoms as weak scatterers have negligible
complex scattering factors, i.e., proteins composed of light
atoms only are well described by the Born approximation
leading to real scattering factors. Only when heavy atoms
are added - as for a possible phase determination -
anomalous dispersion will be observed (cf. Table 2, native
vs. Hg derivative).

Comparing R
merge

-factors between X-ray and electron
diffraction for MIR it is obvious that utilizing MIR in electron
diffraction will be more difficult than for X-rays. However,
to judge the feasability of this approach it is necessary to
take into account not only the average criteria R

sym
 and

R
merge

, but also the expected absolute and relative intensity
changes for X-ray and electron diffraction when adding
single heavy atoms. Corresponding results for the above
model calculations are shown in Figures 1 and 2: Adding
heavy atoms to a protein structure leads for both X-rays
and electrons to changes which are almost identical in their
characteristic behaviour. Note that in both cases the
changes show a wide spread of relative changes to more
than 200%, while the average behaviour in  R-factors (cf.
Table 1) gives only a change of about 4-6% [electron
microscopy (EM)] and 10-17% (X-ray). The expected
differences should be detectable in the EM case since
especially the weak Bragg intensities, which could cause
statistical problems in their accurate intensity measurement,

show the highest relative changes, whereas small relative
changes are more frequent for the well defined, high
intensity Bragg reflections.

Experimental Approach

In this section we present data from thin 3D catalase
crystals as model system. We are reporting data on the
limiting thickness for kinematic scattering, on detection
accuracy,  and on the need for classification of diffraction
patterns according to crystal absorption and isomorphism
to avoid systematic errors. Finally, the first results on the
detection of single heavy atoms are presented. The data are
presented in detail elsewhere (Burmester and Schröder, in
preparation; Burmester et al., in preparation).

Materials and Methods

A suspension of bovine liver catalase crystals (Serva,
Heidelberg, Germany; 61312 U/mg) was centrifuged and the
pellet then dissolved in 20% NaCl, 0.04% NaN

3
. The catalase

solution was dialyzed against a 30 mM phosphate-buffer at
pH 6.3. Every 12h a quarter of the buffer was replaced by
pure water.  After a few days crystals appeared, as judged
by the silkiness of the solution. After 4 days the dialysis
was stopped and the crystal suspension was stored at 4°C.

Heavy atom derivative crystals.  Crystals in the crystal
suspension were allowed to sediment, then the solvent was
removed and replaced by a 5 mM phosphate buffer at pH
6.3. The buffer contained 50 mM K

2
PtCl

4
 for the Pt derivatives

and 0.05 mM HgCl
2
 for the Hg derivative. The crystals were

soaked for 30 min (Pt derivative) or for 3 h (Hg derivatives),
then applied on a carbon film grid and flash-frozen in liquid
ethane.

Soaking conditions are similar to the conditions used
by Murthy et al. (1981) so that reproducable heavy atom
binding to the catalase tetramer can be assumed. The

Table 2. Friedel symmetry R
sym

-factor as calculated from simulated diffraction intensities  taking into account anomalous
scattering. As “protein” a typical distribution of C-, O-, N-, S-, and P-atoms  was used (1000 atoms using randomized position
coordinates in a 50x50 Å2 projection area; 625 C, 195 O, 175 N, 3 S, 2P).
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differences in soaking time follow from the higher
accessability of the potential binding sites by diffusion for
the thin microcrystals used here as compared to the thick
macroscopic crystals used for X-ray studies.

All electron diffraction patterns were recorded using
a LEO (Oberkochen, Germany) EM 912 Omega at 120keV
electron energy. Specimens were held at a temperature of -
170°C in the EM using an Oxford Instruments (Oxford, UK)
Cryo Transfer System CT3500Z.  In the case of zero loss
filtered images and diffraction patterns the energy width of
the filter was set to 25 eV.  The exposure was carried out

under low dose conditions with a dose of 2 e-/Å2. For
diffraction patterns the camera length was 2900 mm, using
an illumination aperture of 0.04 mrad. All diffraction patterns
were recorded on Fuji Imaging Plates (Fuji Photo Film Co.,
Osaka, Japan). The Imaging Plates were scanned at a pixel
resolution of 37.5 * 37.5 µm2 using the scanner described
by Burmester et al. (1994a).

All computer processing was done using a set of
new programs developed for a Convex C2 (Convex,
Richardson, TX) and Silicon Graphics (SGI, Mountain View,
CA) workstations.

Figure 1. Comparison of intensity change
distributions for electrons and X-ray
diffraction. For each hkl the expected
diffraction spot intensity was calculated
using the catalase tetramer coordinates as
“native” and the Hg-derivative at position
‘C’ (Murthy et al., 1981) as “derivative”
(grey bars). Adding a second Hg atom
leads to larger relative changes for both
X-ray and electron scattering (positions
‘A’ and ‘C’ of Murthy et al., 1981, black
bars).

Figure 2. Comparison of intensity change
distributions for electrons and X-ray
diffraction. As in Figure 1 diffraction spot
intensities were calculated using the native
protein and a single Hg-derivative. (a)
shows the absolute intensity changes vs
the diffraction spot intensities, (b) shows
the relative intensity changes vs the
diffraction spot intensities.  Note that the
overall characteristics of the heavy atom
effect is quite comparable. In the case of
X-rays the averaged effect is about 3 times
larger than for electrons.
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Crystal thickness

As has been discussed above, one prerequisite for
a quantitative evaluation of diffraction patterns is the
validity of kinematical scattering theory together with the
weak phase-object approximation, i.e., the typical sample
thickness has to be smaller than the extinction length.

To determine the validity range of the kinematic
approximation in a direct experiment one would have to vary
crystal thickness continuously and to determine the
thickness dependence of the intensities for each of the
Bragg reflections. In this case the kinematic approximation
is valid as long as all reflections show the same dependence
on changes in crystal thickness. This approach is very time
consuming and experimentally almost impossible, e.g., for
2D-crystals. Therefore, it is more appropriate to use an
indirect measure.

It is assumed that for a given biological object multiple
elastic scattering can be neglected if there is no measurable
contribution to the diffraction pattern from the more probable
inelastic-elastic plural scattering. This approximation is only
valid for light atoms where the inelastic cross sections are
much higher than the elastic cross sections (in the case of
ice-embedded biological objects, cf. Angert et al., 1996). To
show the applicability of the kinematic approximation for a
given specimen it is thus sufficient to show that multiple
inelastic scattering does not contribute substantially.
Fortunately, the effects of multiple scattering can be
detected spectroscopically, e.g., by the shift of the most
probable energy loss to higher energies, contributions to
Bragg intensities from inelastically scattered electrons
(inelastic-elastic multiple scattering, inelastically filtered
diffraction), or from the electron energy loss (EEL) spectrum
for each Bragg reflexion as observed in the energy dispersive

plane of an energy filtering transmission electron microscope
(EFTEM), thus giving an easy routine check to validate the
kinematic approximation (Burmester et al., in preperation).

All the above arguments are valid for weak phase
objects (e.g., thin protein crystals) but they are violated if
heavy atoms are added, since these atoms are strong
scattering objects. Therefore, it might be questionable to
use this approach to derivative crystals. However, model
calculations comparing conventional scattering factors and
the results of using a multi-slice algorithm (Dinges and Rose,
1995) show that the error in using the weak phase-object
approximation for derivative crystals is negligible. This is
illustrated in Figure 3 where difference Patterson maps of a
model protein (cf. Table 2) with and without a heavy atom
calculated in the two different approximations are compared.
Only minor differences can be detected.

The spectroscopic methods show that a shift of the
most likely energy loss in EEL spectra does not occur for
crystals with thickness < 70 nm but that a shift is detectable
for thicker specimens. This finding is in agreement with the
observation of Bragg reflection intensities in inelastically
filtered diffraction patterns (energy loss > 25 eV) for thick
specimens only. Moreover, the same result is obtained by
measuring the spectra of Bragg reflections which were
recorded in the energy dispersive plane of the LEO EM 912
Omega. These findings show that for crystals with a
thickness < 70 nm the kinematic approximation is valid.

We have used a further experimental approach to
substantiate these results. According to the above, a crystal
of thickness < 70 nm obeys the kinematic approximation
and thus can be described as thin. We now compare these
with crystals of 140-175 nm thickness, where dynamic
scattering effects could become visible. Classifying

Table 3. Diffraction intensities from thin and thick catalase crystals classified according to three significance levels (α=0.1,
0.05 and 0.025 in the t-test). Compared are the sums of significantly changed Bragg diffraction intensities and the intensity
changes as percentage of the total intensity. N: number of significantly changed diffraction spots, N

0
: total number of

diffraction spots in a complete pattern, I
0
: total intensity in a complete pattern. Comparison of the two columns shows that

stronger diffraction spots dominate the overall changes. This can be explained by the higher signal to noise/background ratio
of such spots leading to a higher significance in the t-test. However, at the 5% level for thick crystals (> 150nm), there is only
a few % change in intensity. (Number of diffraction patterns in the two classes was 13)
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diffraction patterns according to the crystal thickness and
averaging Bragg reflection intensities within each group,
one arrives at two average data sets, one for thin crystals
and one for thick crystals, which are then scaled with respect
to each other. Using these data sets, one can apply a t-test
between these two average data sets to find those reflections
which have significant changes in their intensities as a
function of crystal thickness. The results, given in Table 3,
show that crystal thickness does indeed affect the
intensities. However, only about 2% of the total number of
reflections (typically in the order of 5000) show a significant
change. As would be expected these reflections are in
general strong, as can be seen from the fact that their
intensities contribute to 6% of the total intensity. Thus the
overall change of the intensity between the thin and thick
crystal class contributes only to 3.5% of the overall intensity
in the diffraction pattern. Since the dynamic effects between
crystals of thickness < 70 nm and 140-175 nm is only 3.5%
of the overall intensity, the dynamic effect for crystal
thickness < 70 nm should be negligible. This result is in
good agreement with the spectroscopic measurements,
which indicated that one could treat crystals with a thickness
of < 70 nm as kinematic scatterers.

Detection accuracy

As has been discussed above the changes in the
Bragg intensities which need to be observed for MIR are
small and the application of the method necessitates high
detection accuracy. As is shown in Appendix 1 the
achievable accuracy of the intensities should be 0.2-0.3%
on average (standard deviation), which is more than
adequate. However, nobody has so far reported such a high
accuracy for protein crystals. The reasons for the lack of
accuracy are likely to include: the use of detectors with low
detection quantum efficiency; the difficulty of correcting
for background in the presence of the high inelastic
background; and the inherent variability of crystal packing,
crystal order, crystal thickness or absorption contrast
effects.

As is described in Burmester et al. (1994b) the use
of zero-loss energy filtering to remove the inelastic
background combined with imaging plates (IP) as a high
definition detection system (Burmester et al., 1994a)  allows
a significant improvement on the accuracy to which
diffraction patterns can be recorded. One measure for this
accuracy is the R

sym
 factor for zero-tilt catalase diffraction

patterns (h0l) which on account of being a centric projection
do not show anomalous diffraction. Overall factors of about
7% have been obtained. R

sym
 can drop to 5% for favorable

resolution shells, indicating the potential of the experimental
method.

The fact that at present the patterns were not
classified prior to averaging over patterns from different
crystals is readily observed in the R-factor for merging

different patterns. As is demonstrated in Table 5, the R
merge

factor of individual patterns is still very high. However, this
factor drops dramatically if classes of averages are merged,
indicating that the source of the difference between
individual patterns is not systematic error but arises from
statistical variability in the specimens as is indicated above.
This problem of variability has to be solved by improved
specimen preparation. Thus it will be necessary to increase
uniformity of crystals in the crystallization process. In
addition, embedding ice layers must be controlled to reduce
absorption effects. Finally, during data processing,
classification of crystals and diffraction patterns has to be
included.

Discussion:
Is It Possible to Retrieve Phase Information by MIR and

Anomalous Scattering Effects?

An answer can be given combining the physical
constraints and the experimental results described above.
One prerequisite for MIR is that heavy atoms are “heavy”,
i.e., that there is an increase of the scattering cross sections
with atomic number Z. It has been argued that screening
effects in the case of electron diffraction would reduce the
differences in cross sections. This is true, the effect of heavy
atoms on intensities are indeed 3 times smaller for electron
diffraction than for X-ray diffraction (cf. Table 1). However,
the remaining effect is  still  adequate. Furthermore, atoms
induce a phase shift of the scattered wave which also
increases with atomic number Z. Model calculations showed
that this phase shift gives no significant anomalous
dispersion for native protein crystals, but does induce a
significant anomalous component for heavy atom derivative
crystals (cf. Table 2).

From these results we conclude that it should be
possible to use MIR and anomalous scattering for phase
determination in electron diffraction. It is shown in appendix
1 that even for micro crystals the theoretical statistical limit
on accuracy is better than 1% (standard deviation). This
has to be compared with the expected changes from MIR
(Tables 1 and 2) of the order of 5 % - 10%. In an ideal
experimental setup with no noise and no background  MIR
should work well even for microcrystals. Thus, it is
necessary to consider the real experimental situation with
its sources of signal degradation.

Ceska and Henderson (1990) showed that there are
considerable problems in achieving an accuracy as high as
expected from Poisson statistics. Possible reasons for their
difficulties could have been limitations in the detection
process and the high background signal due to inelastically
scattered electrons. Recently, new detection techniques
have overcome the limitations of negative film as a detector.
Moreover, energy filtered microscopes now offer the
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possibility of removing the high background level due to
inelastically scattered electrons. Using a combination of
imaging plates and zero energy loss electron diffraction we
have obtained diffraction patterns with much higher
accuracy as measured by the statistical factors R

sym
 (Table

4) and R
merge

 (Table 5, last column). This accuracy should
already be sufficient to allow one to observe the effects of
added heavy atoms (cf. Tables 1 and 2) and indeed a first
result has been achieved: there are  significant changes in
the electron diffraction patterns between native catalase
crystals and Hg and Pt derivatives as shown in Figure 4.

As is described in detail elsewhere (Burmester et al.,
in preparation) the relative intensity changes seen in Figure
4 can be quantified and tested for their statistical
significance. In these tests it becomes clear that the intensity

Figure 3. Difference Patterson maps of a model protein (1000
atoms, 50x50 Å2 area, 1 Å thickness) with and without one
heavy atom (Hg) as calculated (a) using a multislice algorithm
without the assumption of weak phase scattering factors
(Dinges and Rose, 1995) and (b) using vector sums over
weak phase scattering factors. Shown is the unit cell
Patterson map P(± 0.5, ± 0.5, 0). Note that there are no
changes in the maxima positions indicating the validity of
the weak phase object approximation.

Figure 4. Details of catalase electron diffraction patterns
recorded from frozen hydrated samples at 120 keV electron
energy using Imaging Plates at a LEO EM 912 energy filtering
TEM (original data, no background subtraction or
averaging). (a) native crystals, (b) Hg-derivative, and (c) Pt-
derivative. The arrows indicate the (h00) direction, the
arrowhead points to the (14,0,l) order which corresponds
in the detail shown to ca 3.5Å resolution. Note the
differences in the diffraction patterns which prove to be
significant at 5 % t-test level.
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changes between native and derivative data are not
dominated by the observed variability of individual
diffraction patterns as revealed by relatively large R

merge

factors. Instead, comparing patterns classified as native,
Pt-derivative, or Hg-derivative within one class as well as
between different classes shows that differences between
native and derivative patterns are substantially stronger
than those of patterns within one class. Therefore an
unambiguous detection of heavy atom effects is shown.

However, the fact that individual diffraction patterns
do vary considerably shows that the situation is far from
ideal. This is reflected in the high R

merge
 factors of individual

patterns as shown in column 1 and 2 of Table 5. Fortunately
this variability is due to factors such as imperfect crystal
preparation, absorption and contrast effects. Another
potential problem could be small crystal tilting, which in
this study has been excluded by classifying patterns
according to systematic variations of the Friedel symmetry.
All these effects lead to increased R

merge
 factors between

individual diffraction patterns, nevertheless, the effects do
average out for very large data sets. The achievable accuracy
is within the needed range and can be further improved by
averaging over diffraction patterns from different crystals

(cf. columns 1, 2 and 3 in Table 5). Experimentally, the effects
of heavy atom derivatives are readily detectable (Fig. 3).
The next steps on the way to structure determination without
imaging will be the classification of diffraction patterns
according to crystal thickness, crystal quality, or crystal
preparation combined with the averaging of larger numbers
of patterns. Furthermore, recent results on the determina-
tion of pattern orientation in three dimensions (Dimmeler et
al., 1996) indicate that such averaging will be possible in 3
dimensions as well, using large numbers of patterns from
tilted crystals.

From the discussion above it is clear that now - as
for X-ray - new problems emerge. The possible usage of
crystallographic methods in electron diffraction sets new
constraints on the quality and reproducibility of protein
crystals (native and derivatives). Also it will be necessary
to collect very large numbers of data sets to allow
classifications and averaging. Furthermore - just as in X-
ray - not every heavy atom derivative can be used for phase
determination, its phasing power will depend, e.g., on the
actual protein binding sites. One more recent aspect of
electron diffraction studies includes direct phasing and
phase extension studies (Dorset, 1995). Here it could be

Table 4. Crystallographic R
sym

-factor of two typical diffraction patterns (frozen hydrated catalase crystals, experimental
details as described in text).

Table 5. Crystallographic R
merge

-factors for catalase diffraction patterns (frozen hydrated catalase crystals, experimental
details as described in text) for 2 arbitrary subgroups of patterns (number of patterns N=20) and the two averaged subgroups
(N=2). The relatively high R

merge
 for individual patterns (N=20) shows the high variability of individual patterns. However, the

small R
merge

-factor for averaged subgroups indicates that there are no systematic but statistical variations (see text) which can
be overcome by averaging larger numbers of diffraction patterns.
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advantageous to get better defined scattering factor
amplitudes and use the phases obtained by MIR as starting
phases for refinement steps. These problems have now to
be investigated further.
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Appendix: Comparison of the Necessary Number
of Crystal Unit Cells for EM and X-ray Studies

Radiation damage is caused by energy transfer due
to inelastic scattering. To obtain a high signal/noise ratio
the ratio between elastic and inelastic scattering cross
sections and the average energy transfer per inelastic
scattering event are relevant. For X-ray scattering, the ratio
inelastic/elastic scattering cross section is about 10 and the
average energy transfer per inelastic event is about 8000 eV,
which gives an energy deposition of 80 keV per elastic
scattering event. In contrast, in electron scattering the ratio
inelastic/elastic is about 3 and there is on average only 20
eV transferred in an inelastic scattering event, thus giving
only 60 eV energy deposition per elastic event (see also
Henderson, 1995).
     Let us assume that the crystal can tolerate a maximum
energy deposition of E

max
/nm3 which is equivalent to N

max
*V

scattering events each depositing an energy E
dep

 if V is the
volume of the crystal and N

max
 is the number of scattering

events per volume element with N
max

*E
dep

 = E
max

. If we want
to achieve a certain  signal to noise ratio SNR in a diffraction
pattern, we need to have an average of N = SNR2 elastic
scattering events per Bragg reflection (Poisson statistics).
A given N

max
 value defines the minimum crystal volume V

which is necessary to obtain the given signal to noise ratio.
From the numbers given above one finds that for electron
diffraction the volume of a crystal can be smaller by a factor
of approx. 1000 compared to X-ray (also see Henderson,
1995).

In the experiments discussed an illuminated area of
22.9 µm2 has been used, which was fully covered by the
catalase crystals.  Experiments have shown that for vitrified
catalase 3D micro-crystals the resolution of 2 Å is preserved
for a dose of 2 e-/Å2. With an illuminated area of 22.9 µm2 we
have a total dose of 4.6 * 109 electrons. With a crystal
thickness of at least 17.5 nm (unit cell thickness) and a mean
elastic scattering cross section of approx. 100 nm, approx.
16% of the electrons are scattered elastically. Having roughly
7000 Bragg reflections in a diffraction pattern image this

gives approx. 1.1*105 electrons per Bragg reflection, which
gives a standard deviation of 0.2-0.3 % on average. To give
an additional lower limit on the effect consider the weakest
spots which are typically in the order of 103 electrons leading
to a standard deviation of 2-3%. This will be the limit to
observe the discussed MIR effects (cf. Table 1). It should
be noted, however, that the weaker spots tend to show high
relative changes due to substituted heavy atoms.
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Discussion with Reviewers

Reviewer I: In the appendix you claim a detection accuracy
of 0.2-0.3 % should be achievable, but in the experimental
approach section you give the experimentally observed
accuracies, with your top quality detection system as high
as 5-7 %. What do you think are the main reasons for this
large discrepancy? Do you think you will be able to reach

an accuracy close to the expected theoretical limit?
Authors: From our experimental data we learned that the
most critical step for obtaining a uniform data distribution
was the preparation of crystals and microscope samples.
This includes crystal mosaicity, crystal thickness, the
removal of excess water layers around the crystal, and crystal
orientation (see below). One way to be very selective for
“good” data is the classification of diffraction patterns and
the rejection of any pattern showing deviations in intensities
deriving, e.g., from absorption effects. To finally reach very
high accuracy it will be necessary to improve the methods
for specimen preparation and data selection.

Reviewer II: The concept of anomalous scattering in electron
diffraction is not well known. Please comment.
Authors:  It has long been neglected that atoms do have
complex atomic scattering factors [cf. the references to Raith
(1968), Reimer and Sommer (1968) and Zeitler and Olson
(1967)]. In fact, for the normal biological sample consisting
of light atoms anomalous scattering is not a major effect, as
we demonstrate in Table 2. This situation changes drastically
if heavy atom labels are added to the protein. Comparison
of Tables 1 and 2 shows that the effect of anomalous
scattering on the crystallographic R-factor is at least
comparable if not stronger than the normal effect of the
stronger real scattering factor. From our experimental
experience it is much too early to give any final answer but
it might well prove that for electron diffraction evaluating
anomalous scattering will lead to a higher phasing power
than MIR.

Reviewer I: With regard to the crystallographic R factors,
do you think crystal orientation is also an important factor?
Authors:  Yes, we do. To test this we performed simulations
on modelled 2D and 3D crystals. These tests showed that
small deviations from the ideal zero tilt can not be detected
for monolayered crystals. For multilayered, 3D crystals even
tilt angles much smaller 1° show detectable effects in the
patterns. We did not elaborate on this so far, since for our
current experimental data crystal orientation seems not to
be the main error. This follows from a simple analysis of the
dependence of R

sym
 with resolution: in the model calculations

R
sym

 is strongly dependent on resolution, which is not
observed in this way for the experimental data (cf. Table 4).
We conclude that other errors - like crystal mosaicity etc -
still dominate our data. Nevertheless, for finally applying
our ideas to really solve unknown structures it will be crucial
to determine tilt angles very accurately and first steps in
this direction are done (cf. Dimmeler et al., 1997).

Additional Reference

Dimmeler E, Holmes KC, Schröder RR (1997)
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Determination of tilt parameters in electron diffraction
patterns of 3-D microcrystals. Proc 55th Ann Meeting
Microsc Soc America. Bailey GW (ed). Springer, New York.
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