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SIMULATIONS OF ELECTRON HOLOGRAMS OF LONG RANGE ELECTROSTATIC
FIELD

Abstract

The basic principles of off-axis image electron holog-
raphy applied to the investigation of long range electrostatic
fields are presented.  The effects of the perturbed reference
wave and of the boundary conditions on the reconstructed
holograms are illustrated by means of computer simulations
referring to the cases of charged dielectric spheres and
microtips.
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Introduction

The interest of our group in electron holography
was motivated by its peculiar capability to display useful
information in the investigation of magnetic (Matteucci et
al., 1984) and electric fields.  During the study of reverse-
biased p-n junctions (Frabboni et al., 1987), the problems
encountered in the reconstruction of the holograms
demonstrated unambiguously that the long range field
perturbed the so-called reference wave.  A basic assumption
of holography was thus manifestly violated and in order to
assess the consequences of this fact we started to
investigate other specimens with long range electric fields,
like charged dielectric particles (Chen et al., 1989; Matteucci
et al., 1991) or biased tips (Matteucci et al., 1992), having
with respect to p-n junctions the advantages of an easier
specimen preparation and of a simpler theoretical
description.  The main experimental results have been
reviewed in a recent paper (Matteucci et al., 1996).

The aim of this work is to mainly emphasize the
theoretical aspects, since the above mentioned investiga-
tions have evidenced that a good modelling is essential in
order to interpret some puzzling features of the reconstructed
holographic images, which at first sight seem to contradict
the naive expectations and whose explanation allows us to
extract the maximum information from the obtained
experimental results.  Therefore, the basic principles of the
method and the related equations are briefly recalled and
models for the electric field and the associated phase shift
arising from charged dielectric spheres and biased tips will
be presented.

It will be shown that by using the powerful software
package Mathematica (Wolfram, 1994), most of the calcu-
lations can be carried out by the program often in an
analytical way.  Moreover the software allows an easier and
quicker presentation of the results of the simulations in an
outstanding graphical form with respect to standard Fortran,
thus allowing the attention to be focussed on the physical
problems involved rather than on the programming.

Basic Theoretical Considerations

By considering only elastic scattering events, the
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interaction of the specimen with the electron beam can be
described through a complex transmission function (object
wave-function) Ψ(r) which represents the ratio between
the complex amplitudes of the out-going and the in-going
electron wave-functions; (r) = (x,y) is a bidimensional vector
perpendicular to the optic axis z which is parallel and in the
same direction as the electron beam.  In the standard phase-
object approximation:

ψ(r) = C(r) exp[iφ(r)]

where C(r) is the object amplitude and the phase term φ(r)
is given by:

φ(r) = (π/λE) ∫
l
V(r,z)dz

The integral is taken along a trajectory l parallel to the optical
axis z inside and outside the specimen to include stray fields,
V(r,z) is the electrostatic potential, E is a parameter linked to
the accelerating voltage and equal to it in the non-relativistic
approximation, and λ is the electron wavelength.

As the recorded signal in conventional imaging is
proportional to the square modulus of the image wave-
function, neglecting aberrations, it turns out that:

I(r) = | Ψ(r)|2 = | C(r)|2

showing that the phase information is completely lost in
the Gaussian image of the object.

Contrary to standard phase-contrast techniques
(Chapman, 1984), which only allow a partial recovering of
this information, electron holography is the unique method
by means of which it is possible to obtain the complete
retrieval of the two-dimensional image wave-function and
to display and evaluate its phase in a vivid and, more
important, a quantitative way.  This is accomplished in the
off-axis image scheme by superimposing, within the electron
microscope, a tilted coherent plane reference wave R = exp
[2πixu

c
] with carrier spatial frequency u

c
 on an image of the

object wave-function.
Both wave front and amplitude beam splitting de-

vices can be used for realizing this task (Missiroli et al.,
1981).  However, the most widely used and versatile type of
electron interferometer is the Möllenstedt and Düker (1956)
electron biprism which belongs to the class of wavefront
division interferometers.

Let us analyze first the ideal situation, reported in
Figure 1a, in which a plane wave (PW) illuminates a spec-
imen S.  Only that part of the wave which has passed through
S suffers a phase modulation.  The reference wave R travels
outside the specimen through a field free region and is not
affected by any field (Matteucci et al., 1991).  The biased
biprism provides the splitting of the incoming wave front

and the subsequent superposition of the object wave Ψ
and the reference wave R.

In these conditions the intensity recorded in the
interferogram, henceforth called hologram, is given by:

H =  R+Ψ 2 =  R 2+ Ψ 2+Ψ*R+ΨR*

= 1+C(r)2+2C(r)cos[2πu
c
x+φ(r)]

showing that both amplitude C and phase φ of the image
wave-function are encoded in the hologram, contrary to a
conventional recording whose intensity is given by Equation
(3).

The situation is completely different when the speci-
men gives rise to long range electric and/or magnetic fields
as sketched in Figure 1b.  A charged tip is shown which
generates a field extending all around it perturbing the
electron wave front.

The resulting reference wave is no longer given by
R = exp[2πixu

c
] but is multiplied by the phase factor

exp[iφ(r+D)], where D =(D,0) is the vector that connects
the points brought to interfere, D being defined as
“interference distance”.  Therefore, in this case, as can be
shown by a simple analysis (Matteucci et al., 1991), the
hologram stores the information due to a fictitious specimen
whose amplitude and phase are given by:

C(r) and ∆φ(r) = φ(r) - φ(r-D)

respectively.

(1)

(2)

(3)

Figure 1.  Sketch of electron hologram formation with: (a) a
reference plane wave and (b) a perturbed reference wave.
PW: incident plane wave; S: specimen; Ψ and R: object and
reference wave; and W: biprism wire.

(4)

(5)
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The apparently innocent correction of the basic
equation of holography described by Equation (5) has some
far reaching consequences both from the experimental and

theoretical points of view.  First of all, the fact that the whole
phase distribution in the hologram is affected by the field
through the perturbed reference wave results in the
impossibility of determining unambiguously the carrier
spatial frequency and hence the object phase starting from
a single hologram.  The experimental procedure to extract
the most reliable phase difference information (Matteucci
et al., 1988, 1991) is recalled in the next section.  Yet, it
should be borne in mind that, however, careful the hologram
processing may be, it will not be possible to avoid the
distortion of the recorded object phase which is caused by
the perturbation of the reference wave due to long range
fields unless experimental conditions are realized for which
the interference distance D is much larger than the typical
dimension of the field.  How large the interference distance
should be is a question which can be answered only by
computer simulation, as shown in the following.

Figure 2.  (a)  Double exposure electron hologram of
electrostatic charged spherical particles assembled near a
large hole H of a carbon film F.  The regions where the
interference fringes are blurred map the projected potential
distribution.  (b)  Optical reconstruction of the electron
hologram of the same region as Figure 2a.  (c) Four-time
phase difference amplified contour map of the same region
as Figure 2a.

Figure 3.  (a)  Double exposure hologram displaying lines
of equal phase difference near the apex of a charged microtip.
(b)  Enlarged view of the near apex region of Figure 3a.
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Experimental Results

The considerations outlined in the foregoing section
lead to the following procedure for the mapping and am-
plifying of the phase difference stored in the holograms.
When possible, it is worth taking a set of three electron
micrographs of the same specimen: (1) a single exposure
hologram; (2) an image of the interference field without the
object recorded after having withdrawn the specimen from
the microscope; this fringe system is used to generate the
interferometric wave to extract the phase difference; and (3)
a double exposure hologram obtained by recording on the
same plate both interferograms (1) and (2); this latter directly
furnishes the map of the phase difference between the object
and the perturbed reference wave and can be used also as a
“guide” hologram when optical phase amplification
methods are applied (Matteucci et al., 1991).

The experiments reported in this section were car-
ried out with a Philips EM400T transmission electron
microscope equipped with a field emission gun.  A coher-
ent beam illuminates the specimen placed off-axis so that
the reference beam travels within an empty space.
Condenser lenses are usually strongly excited, in order to
have the highest possible lateral coherence on the specimen
plane: this means that often it can be safely assumed that
the specimen is illuminated by a plane wave.  The objective
lens is switched off and the microscope operates in the
diffraction mode.  The electron biprism is inserted at the
selected area plane.  In this case, the biprism is negatively
biased (15 V), giving a virtual hologram on the specimen
plane, which becomes a real one in the image plane.  The
intermediate lens is used to focus the specimen in the
recording plane.  The final magnification is in the range of
1000-2500X.  Exposure times are of the order of 10 seconds.

Figure 2 shows the results of the foregoing proce-
dure applied to the case of charged latex spheres.  Figure 2a
shows a double exposure electron hologram of two groups
of 4 and 2 charged latex spheres respectively.  The spheres,
0.31 µm in diameter, are deposited near a large hole H of a
thin carbon film F.  The most interesting feature of this
micrograph is the contrast variation arising from the
overlapping of the two interference fringe systems.  The
regions of strongly reduced contrast (in the form of moire-
like bands) map the in-plane projected potential distribution
of the electric field without the need to reconstruct the
hologram (Matteucci et al., 1988, 1991; Chen et al., 1989).
Moreover, it can be noted that the phase shift introduced
by the carbon film F with respect to the wave passing
through the hole H of the foil is responsible of the step of
the phase lines when they cross the film rim.

If the double exposure hologram is inserted in an in-
line optical bench and is illuminated by a plane laser wave,
the carrier fringe system is removed in the reconstructed

image (Fig. 2b), thus leaving an optical interferogram which
displays the map of the phase difference whose trend is the
same as that of the foregoing bands, but with a higher
contrast.

Since in the reconstruction and processing of a
standard hologram taken with a perturbed reference wave
no objective criterion exists for the determination of the
correct phase difference map condition, i.e., for recovering
the object phase unambiguously, the double-exposure
hologram is an essential guide in the optical phase
amplification process.  Figure 2c shows a four times phase
difference amplified map of the same region as Figures 2a
and 2b.  It is interesting to note that the apparently flat
phase regions in Figure 2b are now crossed by optical
fringes, indicating that the phase indeed varies, although
slowly.

As a further example of the capability of electron
holography, we present an experimental result concerning
our investigations of the electrostatic field around a charged
microtip, prepared by thinning a tungsten wire by standard
electrochemical process and mounting it on a special
specimen holder equipped with electrical contacts
connected to an external voltage supply.  The tip could
then be biased and rotated in order to be perpendicular to
the biprism wire.

Figure 3a shows a double exposure hologram, taken
with the tip unbiased (reference hologram) and biased with
a voltage of about ten volts.  Figure 3b shows an enlarged
view of the central region.  The contrast bands in the double
exposure image demonstrate that the field extends over very
large distances and may substantially affect regions very
far away; thus unwanted long range electric fields out of
the field of view of a standard hologram may in fact influence
its phase.  Accurate measurements therefore require a check
of the absence of electric charges over a region much wider
than that displayed in the hologram.  Another interesting
feature of this image is the strong distortion of the biprism
wire edges, due to the electric field, when the tip is biased:
in particular, this effect introduces an off-set of the two
Fresnel fringe systems of the wire.  It follows that the Fresnel
phase shift cannot be compensated and becomes an
unavoidable artefact of the hologram (Frost et al., 1995)
which can be remedied only by taking the interference field
as large as possible.

Theoretical Simulations

In addition to easier specimen preparation with re-
spect to the case of p-n junctions, the two foregoing case
studies have the advantage that also theoretical modelling
can be carried out in an analytical form.

The field generated by a single dielectric sphere hav-
ing the total charge Q which lies on the carbon film can be,
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in fact, satisfactorily modelled by that of an equal point
charge located in front of an infinite conducting plane at a
distance equal to the radius of the sphere itself, as shown in
Figure 4.  This is fully justified if one makes the assumption
that the charge is isotropically distributed in the body of
the sphere and that the distance of the sphere from holes of
the supporting carbon film is large compared to the particle
size.  The thickness of the film can be considered
unimportant.

Therefore, for a particle whose center is positioned
at the point (x

0
, y

0
, -a), the potential in the half-space z < 0

can be calculated by means of the image charge method

(Feynman, 1967) and is given by the expression:

V(x,y,z) = (Q/4πε
0
) [{(x-x

0
)2 + (y-y

0
)2 + (z+a)2}-1/2

- {(x-x
0
)2 + (y-y

0
)2 + (z-a)2}-1/2]

while in the half-space z > 0, V(x,y,z) = 0.  The phase shift φ
can be calculated analytically by inserting Equation (6) into
Equation (2).  This task is also simply done by Mathematica
(Wolfram, 1994) by means of its symbolic computation
capabilities, using the built-in object Integrate.  The output
function can then be used for simulation, as shown in Figure
5 which reports a series of contour plots drawn by the built-
in object ContourPlot, with increasing values of the
interference distance.  The spherical particle is represented
by a black disk of radius a and the phase-difference images
are plotted over a square of side 10a.  Taking a as scale
distance, the interference distance is taken respectively as
5a (Fig. 5a), 10a (Fig. 5b), 20a (Fig. 5c) and infinity (Fig. 5d),
corresponding to the ideal contour map.  It can be ascer-
tained that the main effect of the modulated reference wave
is the breaking of the circular symmetry of the equiphase
lines.  The perturbation diminishes by increasing
interference distance, but it is still detectable even for large
interference distance D.

As the latex particle radius can vary from 0.1 µm up
to 3 µm, whereas the interference distance may range from
0.1 µm up to 10 µm depending on the objective lens excitation
(on, off or weakly excited), the figures have been plotted
without dimensions.  To give some numbers, the contour
lines in Figure 2 correspond to 2π intervals in a four-time
phase amplified image due to the charge of 600 electrons on
a spherical latex particle of radius 0.155 µm.

Also, the case of a charged particle on a copper grid,
modelled by a vertical conducting plane, can be treated in
the same way, as shown by Frost et al. (1995); it is only
necessary to exchange the x-component with the z-
component in Figure 4.  The results corresponding to Figure
5 for these different boundary conditions and for the same
values of the square side and interference distances are
reported in Figure 6.  The vertical conducting plane coincides
with the left side of each square (emphasized in bold).  In
this case, the main effect on the equiphase lines is due to
the boundary conditions which somewhat mask the effect
of the perturbed reference wave.

In both Figures 5 and 6, the trend of the equiphase
lines is very similar to the expected trend of the equipoten-
tial lines calculated in the plane of the charge.  From these
results, it could be inferred that the equiphase  lines,  actually
related  to the  projected potential distribution, Equation
(2), are also a good representation of the equipotential lines.

Owing to the linearity of the basic equations, the
foregoing results can be simply generalized to the case of
more spheres by adding up the phase shift associated with

Figure 4.  Coordinate system for the potential and phase
calculations of a single charged sphere of radius a on a
conducting plane, modelled by a point charge Q at its center.

Figure 5.  Simulation of the phase difference maps of a
charged sphere of radius a on a horizontal conducting plane
with increasing interference distance values.  (a) 5a; (b) 10a;
(c) 20a; and (d) infinity.

(6)
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each single sphere.  These simulations confirm satisfactorily
the experimental results (Matteucci et al., 1991; Frost et al.,
1995).

The second case study, which emphasizes the im-
portance of a theoretical model for the field is represented
by a biased tip.  Our theoretical analysis of the electrostatic
field around it (Matteucci et al., 1992) started by considering
(Fig. 7a) two linear charged segments of length L placed in
a symmetric position, at a distance a, with respect to a vertical
plane.  Each segment had a constant and opposite charge
density σ.  The analytical expression for the potential
distribution has been obtained, showing that near and

around the extremities of the two charged lines, the
equipotential surfaces behave approximately as a family of
hyperboloids of rotation.  Therefore, it was reasonably
assumed that this field represented, at least in a first
approximation, the field produced by a charged tip in front
of a conducting plane, as the shape of the tip closely
approximated a hyperboloid.  The corresponding phase shift
could be obtained analytically after lengthy calculations,
which required careful verifications (Matteucci et al., 1992).

These same calculations are carried out automati-
cally by Mathematica (Wolfram, 1994), which, starting from
the two boundary conditions considered for the charge in
front of the plane, by putting Q = σdt, allows the analysis of
the cases of a line segment in front of or parallel to a
conducting plane, provided the integral along t is made
perpendicularly, Figure 7a, or parallelly, Figure 7b, to the
plane.  Therefore, it is possible to investigate, also in this
case, the influence of the boundary conditions on the field
and the resulting phase shift.  Figures 8a and 8b report the
trend of the equipotential lines in the plane of the charged
line for the two boundary conditions of Figure 7a and 7b
respectively.  The square is 7a by 7a, the length L of the
charged lines has been taken equal to 5a and the vertical
plane of Figure 7a, perpendicular to the drawing plane of
Figure 8a, coincides with the upper side of the square
(emphasized in bold).  It can be ascertained that, over
distances comparable with a, the distance of the tip from
the plane, the boundary conditions affect the potential
distribution.

However, when the attention is focused around the
tip, over a square of side 0.2a, boundary conditions have
much less influence and the obtained results, reported in
Figure 9, are almost identical in the two cases.

Figure 9a reports the trend of the equipotential lines
in the plane of the tip: they are hyperboloids and the tip is
simulated by darkening the surface enclosed by an
equipotential line.

Figure 6.  Simulation of the phase difference maps of a
charged sphere on a vertical conducting plane with increas-
ing interference distance values.  (a) 5a; (b) 10a; (c) 20a; and
(d) infinity.

Figure 7.  Models for the calculation of the potential of
linear charged segment of length L perpendicular (a) or
parallel (b) to a conducting plane.  The distance of the apex
from the plane is a.  The image line charge is dashed.

Figure 8.  Simulations of the equipotential lines in the plane
of a tip (modelled as a linear charged segment) whose axis is
(a) perpendicular to a plane as sketched in Figure 7a; (b)
parallel to a plane as sketched in Figure 7b.
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Figure 9b shows the map of the equiphase lines.
Their trend is less intuitive than the bidimensional potential
distribution because the phase shift, suffered by electrons
along their trajectories, is related to the three dimensional
potential distribution around the tip integrated along the z
axis.

Figures 9c and 9d report the trend of the lines of
equal phase difference when the influence of a perturbed
reference wave is taken into  account.  The interference
distances are 0.1a and 0.2a for Figures 9c and 9d,
respectively.

Therefore, the case of the charged tip not only shows
that equiphase lines are not, in general, representative of
the projected equipotential surfaces, but also that it is very
cumbersome, if not impossible, to interpret the experimental
results without properly taking into account the effect of
the perturbed reference wave.

Conclusions

A short review has been given of the main theoreti-
cal and experimental problems encountered in the record-
ing and processing of electron holograms when long range
electrostatic fields are present.

From the experimental point of view, the importance
has been stressed of having two holograms in register

(double exposure) in order to avoid misrepresentation of
the field obtained with optical methods and phase
amplification techniques.

From the theoretical point of view, we have shown
that it is important to start with a good model of the field
under investigation in order to calculate, simulate and
disentangle the effects of the boundary conditions and of
the perturbed reference wave on the phase images.  These
tasks can be successfully and easily performed using the
software package Mathematica with its calculus and
graphical capabilities.

In particular, the two case studies investigated show
that, contrary to naive assumptions, the phase difference
lines in general do not represent directly the potential
distribution.  Moreover, the effect of the perturbed reference
wave must be taken into account, in order not to attribute to
the bare field under investigation image features due to its
long range tail.  While we pointed out the importance of
modelling, a recent study (Kou and Chen, 1995) is attempting
to cope with this problem in a more general way.
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