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fieldsare presented. Theeffectsof the perturbed reference
wave and of the boundary conditions on the reconstructed
hologramsareillustrated by means of computer smulations
referring to the cases of charged dielectric spheres and
microtips.

Key Words: Electron holography, electrostatic field
mapping, charged dielectric spheres, biased microtips.

* Address for correspondence:
Department of Physicsand Istituto Nazionale per laFisica
dellaMateria, University of Bologna
vialeB. Pichat 6/2, 40127 Bologna, Italy
Telephonenumber: +39-051-2095145
FAX number:+39-051-2095153
E-mail:mateucci @df.unibo.it

367

Introduction

The interest of our group in electron holography
was motivated by its peculiar capability to display useful
information in the investigation of magnetic (Matteucci et
al., 1984) and electric fields. During the study of reverse-
biased p-n junctions (Frabboni et al., 1987), the problems
encountered in the reconstruction of the holograms
demonstrated unambiguously that the long range field
perturbed the so-called referencewave. A basic assumption
of holography was thus manifestly violated and in order to
assess the consequences of this fact we started to
investigate other specimenswith long range electric fields,
like charged dielectric particles (Chen et al., 1989; Matteucci
et al., 1991) or biased tips (Matteucci et al., 1992), having
with respect to p-n junctions the advantages of an easier
specimen preparation and of a simpler theoretical
description. The main experimental results have been
reviewed in arecent paper (Matteucci et al., 1996).

The aim of this work is to mainly emphasize the
theoretical aspects, since the above mentioned investiga-
tions have evidenced that a good modelling is essentia in
order tointerpret some puzzling festures of the reconstructed
holographic images, which at first sight seem to contradict
the naive expectations and whose explanation alows usto
extract the maximum information from the obtained
experimental results. Therefore, the basic principlesof the
method and the related equations are briefly recalled and
models for the electric field and the associated phase shift
arising from charged diel ectric spheresand biased tipswill
be presented.

It will be shown that by using the powerful software
package Mathematica (Wolfram, 1994), most of the cal cu-
lations can be carried out by the program often in an
analytical way. Moreover the software alowsan easier and
quicker presentation of the results of the smulationsin an
outstanding graphical form with respect to standard Fortran,
thus allowing the attention to be focussed on the physical
problemsinvolved rather than on the programming.

Basic Theor etical Consider ations

By considering only elastic scattering events, the
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interaction of the specimen with the electron beam can be
described through acomplex transmission function (object
wave-function) W(r) which represents the ratio between
the complex amplitudes of the out-going and the in-going
electron wave-functions; (r) = (x,y) isabidimensiona vector
perpendicular to the optic axiszwhichisparallel andinthe
same direction asthe electron beam. Inthe standard phase-
object approximation:

W(r) =C(r) explio()] @
where C(r) isthe object amplitude and the phase term ¢(r)
isgiven by:

@) = (VAE) [ V(r,2)dz @
Theintegra istaken dong atrgjectory | parallel totheoptical
axiszinside and outside the specimento include stray fields,
V(r,z) istheelectrostatic potential, E isaparameter linked to
theaccelerating voltageand equal to it inthe non-relativistic
approximation, and A isthe electron wavel ength.

As the recorded signal in conventional imaging is
proportional to the square modulus of the image wave-
function, neglecting aberrations, it turns out that:

)= wm)k=|cof &)
showing that the phase information is completely lost in
the Gaussian image of the object.

Contrary to standard phase-contrast techniques
(Chapman, 1984), which only allow apartial recovering of
thisinformation, electron hol ography isthe unique method
by means of which it is possible to obtain the complete
retrieval of the two-dimensional image wave-function and
to display and evaluate its phase in a vivid and, more
important, aquantitative way. Thisisaccomplished inthe
off-axisimage scheme by superimposing, withintheelectron
microscope, atilted coherent planereference wave R=exp
[2rixu ] with carrier spatial frequency u, onanimage of the
object wave-function.

Both wave front and amplitude beam splitting de-
vices can be used for realizing this task (Missiroli et al.,
1981). However, themost widely used and versatile type of
electroninterferometer isthe M 6llenstedt and Duker (1956)
electron biprism which belongs to the class of wavefront
divisioninterferometers.

Let us analyze first the ideal situation, reported in
Figure 1a, in which aplane wave (PW) illuminates a spec-
imen S. Only that part of thewavewhich has passed through
Ssuffersaphase modulation. ThereferencewaveRtravels
outside the specimen through afield free region and is not
affected by any field (Matteucci et al., 1991). The biased
biprism provides the splitting of the incoming wave front
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Figurel. Sketch of electron hologram formation with: (a) a
reference plane wave and (b) a perturbed reference wave.
PW: incident planewave; S: specimen; W and R: object and
referencewave; and W: biprismwire.

and the subsequent superposition of the object wave W
and the referencewave R.

In these conditions the intensity recorded in the
interferogram, henceforth called hologram, isgiven by:

H=[R+W[P= R+ W[ P+W'R+WR @
= 1+C(r)>+2C(r )cod 2mu x+@(r)]

showing that both amplitude C and phase ¢ of the image
wave-function are encoded in the hologram, contrary to a
conventional recording whoseintensity isgiven by Equation
3.

Thesituationiscompletely different when the speci-
men givesriseto long range electric and/or magnetic fields
as sketched in Figure 1b. A charged tip is shown which
generates a field extending all around it perturbing the
electron wave front.

The resulting reference waveis no longer given by
R = exp[2mixu] but is multiplied by the phase factor
exp[ig(r+D)], where D =(D,0) is the vector that connects
the points brought to interfere, D being defined as
“interference distance”. Therefore, in this case, as can be
shown by a simple analysis (Matteucci et al., 1991), the
hologram storestheinformation dueto afictitious specimen
whose amplitude and phase are given by:

C(r) and AQ(r) = @(r) - ¢(r-D) ©®

respectively.
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Figure 2. (a) Double exposure electron hologram of
electrostatic charged spherical particles assembled near a
large hole H of a carbon film F. The regions where the
interference fringes are blurred map the projected potential
distribution. (b) Optical reconstruction of the electron
hologram of the same region as Figure 2a. (c) Four-time
phase difference amplified contour map of the sameregion
asFigure 2a.

The apparently innocent correction of the basic
equation of holography described by Equation (5) hassome
far reaching consequences both from the experimental and
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Figure 3. (a) Double exposure hologram displaying lines
of equal phasedifference near the apex of acharged microtip.
(b) Enlarged view of the near apex region of Figure 3a.

theoretical pointsof view. Firstof all, thefact that thewhole
phase distribution in the hologram is affected by the field
through the perturbed reference wave results in the
impossibility of determining unambiguously the carrier
spatial frequency and hence the object phase starting from
asingle hologram. The experimental procedure to extract
the most reliable phase difference information (Matteucci
et al., 1988, 1991) is recalled in the next section. Yet, it
should be bornein mind that, however, careful the hologram
processing may be, it will not be possible to avoid the
distortion of the recorded object phase which is caused by
the perturbation of the reference wave due to long range
fieldsunless experimental conditionsarerealized for which
the interference distance D is much larger than the typical
dimension of thefield. How largetheinterference distance
should be is a question which can be answered only by
computer simulation, as shown in the following.
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Experimental Results

The considerationsoutlined in theforegoing section
lead to the following procedure for the mapping and am-
plifying of the phase difference stored in the holograms.
When possible, it is worth taking a set of three electron
micrographs of the same specimen: (1) a single exposure
hologram; (2) animage of theinterferencefield without the
object recorded after having withdrawn the specimen from
the microscope; this fringe system is used to generate the
interferometric waveto extract the phase difference; and (3)
a double exposure hologram obtained by recording on the
same plate both interferograms (1) and (2); thislatter directly
furnishesthe map of the phase difference between the object
and the perturbed reference wave and can be used also asa
“guide” hologram when optical phase amplification
methods are applied (Matteucci et al., 1991).

The experiments reported in this section were car-
ried out with a Philips EM400T transmission electron
microscope equipped with afield emission gun. A coher-
ent beam illuminates the specimen placed off-axis so that
the reference beam travels within an empty space.
Condenser lenses are usually strongly excited, in order to
havethe highest possiblelateral coherence on the specimen
plane: this means that often it can be safely assumed that
the specimenisilluminated by aplanewave. The objective
lens is switched off and the microscope operates in the
diffraction mode. The electron biprism is inserted at the
selected area plane. Inthis case, the biprism is negatively
biased (15 V), giving avirtual hologram on the specimen
plane, which becomes areal onein the image plane. The
intermediate lens is used to focus the specimen in the
recording plane. Thefinal magnificationisin the range of
1000-2500X. Exposuretimesare of the order of 10 seconds.

Figure 2 shows the results of the foregoing proce-
dure applied to the case of charged latex spheres. Figure2a
shows a double exposure electron hologram of two groups
of 4 and 2 charged latex spheresrespectively. The spheres,
0.31 pmin diameter, are deposited near alarge holeH of a
thin carbon film F. The most interesting feature of this
micrograph is the contrast variation arising from the
overlapping of the two interference fringe systems. The
regions of strongly reduced contrast (in the form of moire-
like bands) map thein-plane projected potential distribution
of the electric field without the need to reconstruct the
hologram (Matteucci et al., 1988, 1991; Chenet al., 1989).
Moreover, it can be noted that the phase shift introduced
by the carbon film F with respect to the wave passing
through the hole H of the foil is responsible of the step of
the phase lines when they cross the film rim.

If the double exposure hologramisinsertedinanin-
line optical bench and isilluminated by aplanelaser wave,
the carrier fringe system is removed in the reconstructed
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image (Fig. 2b), thusleaving an optical interferogram which
displaysthe map of the phase difference whose trend isthe
same as that of the foregoing bands, but with a higher
contrast.

Since in the reconstruction and processing of a
standard hologram taken with a perturbed reference wave
no objective criterion exists for the determination of the
correct phase difference map condition, i.e., for recovering
the object phase unambiguously, the double-exposure
hologram is an essential guide in the optical phase
amplification process. Figure 2c showsafour times phase
difference amplified map of the same region as Figures 2a
and 2b. It is interesting to note that the apparently flat
phase regions in Figure 2b are now crossed by optical
fringes, indicating that the phase indeed varies, athough
Sowly.

As a further example of the capability of electron
holography, we present an experimental result concerning
our investigations of the el ectrostatic field around acharged
microtip, prepared by thinning atungsten wire by standard
electrochemical process and mounting it on a special
specimen holder equipped with electrical contacts
connected to an external voltage supply. The tip could
then be biased and rotated in order to be perpendicular to
thebiprismwire.

Figure 3ashowsadouble exposure hologram, taken
with thetip unbiased (reference hologram) and biased with
avoltage of about ten volts. Figure 3b shows an enlarged
view of the central region. The contrast bandsin the double
exposureimage demonstrate that thefield extendsover very
large distances and may substantially affect regions very
far away; thus unwanted long range electric fields out of
thefield of view of astandard hologram may infact influence
itsphase. Accurate measurementsthereforerequireacheck
of the absence of electric charges over aregion much wider
than that displayed in the hologram. Another interesting
feature of thisimage isthe strong distortion of the biprism
wire edges, dueto the electric field, when thetip is biased:
in particular, this effect introduces an off-set of the two
Fresnel fringe systemsof thewire. It followsthat the Fresnel
phase shift cannot be compensated and becomes an
unavoidable artefact of the hologram (Frost et al., 1995)
which can beremedied only by taking theinterferencefield
aslarge as possible.

Theoretical Smulations

In addition to easier specimen preparation with re-
spect to the case of p-n junctions, the two foregoing case
studies have the advantage that also theoretical modelling
can be carried out in an analytical form.

Thefield generated by asingledielectric sphere hav-
ing thetotal charge Q which lieson the carbon film can be,
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Figure 4. Coordinate system for the potential and phase
calculations of a single charged sphere of radius a on a
conducting plane, modelled by apoint charge Q at itscenter.

Figure 5. Simulation of the phase difference maps of a
charged sphere of radiusaon ahorizontal conducting plane
withincreasing interference distancevalues. (a) 5g; (b) 10a;
(c) 20&; and (d) infinity.

in fact, satisfactorily modelled by that of an equal point
charge located in front of an infinite conducting plane at a
distance equal to theradius of the sphereitself, asshownin
Figure4. Thisisfully justifiedif one makesthe assumption
that the charge is isotropically distributed in the body of
the sphere and that the distance of the sphere from holes of
the supporting carbon filmislarge compared to the particle
size. The thickness of the film can be considered
unimportant.

Therefore, for a particle whose center is positioned
at the point (x,, y,, -a), the potential in the half-space z< 0
can be calculated by means of the image charge method
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(Feynman, 1967) and is given by the expression:

V(Y2 = (QUATE) {Oex )+ (9 + (#3322 o
L% )+ (YY) + (a3
whilein the half-space z> 0, V(x,y,2) = 0. The phase shift @
can be calculated analytically by inserting Equation (6) into
Equation (2). Thistask isalso simply done by Mathematica
(Wolfram, 1994) by means of its symbolic computation
capabilities, using the built-in object Integrate. The output
function can then be used for smulation, asshownin Figure
5which reportsaseriesof contour plotsdrawn by the built-
in object ContourPlot, with increasing values of the
interference distance. The spherical particleisrepresented
by ablack disk of radiusaand the phase-differenceimages
are plotted over a square of side 10a. Taking a as scae
distance, the interference distance is taken respectively as
5a(Fig. 5a), 10a(Fig. 5b), 20a(Fig. 5¢) andinfinity (Fig. 5d),
corresponding to the ideal contour map. It can be ascer-
tained that the main effect of the modulated reference wave
is the breaking of the circular symmetry of the equiphase
lines. The perturbation diminishes by increasing
interference distance, but it isstill detectableevenfor large
interference distance D.

Asthelatex particleradius can vary from 0.1 umup
to 3 um, whereasthe interference distance may range from
0.1 pmupto 10 pum depending on the objectivelensexcitation
(on, off or weakly excited), the figures have been plotted
without dimensions. To give some numbers, the contour
linesin Figure 2 correspond to 2mintervalsin afour-time
phase amplified image dueto the charge of 600 electronson
aspherical latex particle of radius0.155 pm.

Also, the case of acharged particle on acopper grid,
modelled by avertical conducting plane, can be treated in
the same way, as shown by Frost et al. (1995); it is only
necessary to exchange the x-component with the z-
component in Figure4. Theresultscorrespondingto Figure
5 for these different boundary conditions and for the same
values of the square side and interference distances are
reportedin Figure6. Thevertical conducting plane coincides
with the left side of each square (emphasized in bold). In
this case, the main effect on the equiphase lines is due to
the boundary conditions which somewhat mask the effect
of the perturbed reference wave.

In both Figures 5 and 6, the trend of the equiphase
linesisvery similar to the expected trend of the equipoten-
tial lines calculated in the plane of the charge. From these
results, it could beinferred that the equiphase lines, actually
related to the projected potential distribution, Equation
(2), arealso agood representation of the equipotential lines.

Owing to the linearity of the basic equations, the
foregoing results can be simply generalized to the case of
more spheres by adding up the phase shift associated with
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Figure 6. Simulation of the phase difference maps of a
charged sphere on avertical conducting planewithincreas-
ing interferencedistancevalues. (a) 5a; (b) 10a; (c) 20a; and
(d) infinity.
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Figure 7. Models for the calculation of the potential of
linear charged segment of length L perpendicular (a) or
parallel (b) to aconducting plane. Thedistance of the apex
fromtheplaneisa. Theimage line chargeisdashed.

each single sphere. Thesesimulations confirm satisfactorily
the experimental results (Matteucci et al., 1991; Frost etal.,
1995).

The second case study, which emphasizes the im-
portance of atheoretical model for thefield is represented
by abiasedtip. Our theoretical analysisof the electrostatic
fieldaroundit (Matteucci et al., 1992) started by considering
(Fig. 7a) two linear charged segmentsof length L placedin
asymmetric position, at adistancea, with respect toavertical
plane. Each segment had a constant and opposite charge
density . The analytical expression for the potential
distribution has been obtained, showing that near and
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Figure8. Simulationsof theequipotential linesintheplane
of atip (modelled asalinear charged segment) whose axisis
(a) perpendicular to a plane as sketched in Figure 7a; (b)
parallel to aplane as sketched in Figure 7b.

around the extremities of the two charged lines, the
equipotential surfaces behave approximately asafamily of
hyperboloids of rotation. Therefore, it was reasonably
assumed that this field represented, at least in a first
approximation, thefield produced by acharged tip in front
of a conducting plane, as the shape of the tip closely
approximated ahyperboloid. The corresponding phase shift
could be obtained analytically after lengthy calculations,
which required careful verifications (Matteucci et al., 1992).

These same calculations are carried out automati-
cally by Mathematica (Wolfram, 1994), which, starting from
the two boundary conditions considered for the charge in
front of the plane, by putting Q = adt, allowsthe analysis of
the cases of a line segment in front of or parallel to a
conducting plane, provided the integral along t is made
perpendicularly, Figure 7a, or parallelly, Figure 7b, to the
plane. Therefore, it is possible to investigate, also in this
case, the influence of the boundary conditions on the field
and the resulting phase shift. Figures 8aand 8b report the
trend of the equipotential linesin the plane of the charged
line for the two boundary conditions of Figure 7aand 7b
respectively. The square is 7a by 7a, the length L of the
charged lines has been taken equal to 5a and the vertical
plane of Figure 7a, perpendicular to the drawing plane of
Figure 8a, coincides with the upper side of the square
(emphasized in bold). It can be ascertained that, over
distances comparable with a, the distance of the tip from
the plane, the boundary conditions affect the potential
distribution.

However, when the attention is focused around the
tip, over a square of side 0.2a, boundary conditions have
much less influence and the obtained results, reported in
Figure9, arealmost identical in the two cases.

Figure Qareportsthetrend of the equipotential lines
in the plane of the tip: they are hyperboloids and thetip is
simulated by darkening the surface enclosed by an
equipotential line.
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Figure9. (a) Map of the equipotential linesin thetip plane.
(b) trend of the equiphase linesin the same plane. (c) and
(d) map of the lines of equal phase difference, with
interference distances of 0.1aand 0.2a, respectively.

Figure 9b shows the map of the equiphase lines.
Their trend islessintuitive than the bidimensional potential
distribution because the phase shift, suffered by electrons
along their trajectories, is related to the three dimensional
potential distribution around the tip integrated along the z
axis.

Figures 9c and 9d report the trend of the lines of
equal phase difference when the influence of a perturbed
reference wave is taken into account. The interference
distances are 0.1a and 0.2a for Figures 9c and 9d,
respectively.

Therefore, the case of the charged tip not only shows
that equiphase lines are not, in general, representative of
the projected equipotential surfaces, but also that it isvery
cumbersome, if not impossible, to interpret the experimental
results without properly taking into account the effect of
the perturbed reference wave.

Conclusions

A short review has been given of the main theoreti-
cal and experimental problems encountered in the record-
ing and processing of electron hologramswhen long range
electrostatic fields are present.

From the experimental point of view, theimportance
has been stressed of having two holograms in register
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(double exposure) in order to avoid misrepresentation of
the field obtained with optical methods and phase
amplification techniques.

From the theoretical point of view, we have shown
that it isimportant to start with a good model of the field
under investigation in order to calculate, simulate and
disentangle the effects of the boundary conditions and of
the perturbed reference wave on the phase images. These
tasks can be successfully and easily performed using the
software package Mathematica with its calculus and
graphical capabilities.

In particular, the two case studiesinvestigated show
that, contrary to naive assumptions, the phase difference
lines in general do not represent directly the potential
distribution. Moreover, the effect of the perturbed reference
wave must betaken into account, in order not to attributeto
the bare field under investigation image features dueto its
long range tail. While we pointed out the importance of
modelling, arecent study (Kou and Chen, 1995) isattempting
to copewith this problem in amore genera way.
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