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MAXIMUM ENTROPY RESTORATION OF ELECTRON MICROSCOPE IMAGES WITH A
RANDOM-SPATIAL-DISTRIBUTION CONSTRAINT

Abstract

An improved maximum entropy (ME) method is
proposed for restoration of electron microscope images of
extended objects for which the conventional ME method
has not presented satisfactorily restored images. For the
improvement of ME restoration, a constraint consistent with
statistical properties of quantum noise contained in
observed images was introduced to impose a random spatial
distribution (RSD), in addition to a suitable probability
distribution, on the inferred noise.

The ME restorations with and without the RSD
constraint were applied to models of scanning transmis-
sion electron microscopy (STEM) images degraded by a
Gaussian point spread function and a Poisson noise. The
RSD constrained ME method recovered both point and disk
objects by suppressing the localization of the large noise
into the object sites. The signal-to-noise ratio of the restored
image of disk objects was higher for the ME restoration
with the RSD constraint than the original degraded image
and the restoration without the RSD constraint. The ME
restoration was also applied to models of largely defocused
noisy transmission electron microscopy (TEM) images of
weak phase objects. For point objects, the ME restoration
with the RSD constraint as well as the conventional ME
restoration using χ2 constraint improved the resolution. For
disk objects, only the RSD constrained ME restoration
successfully removed fringes due to the defocus and
decreased quantum noise.
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Introduction

The Maximum Entropy (ME) method has been
successfully used in various fields for restoration of blurred
noisy images (Gull and Skilling, 1984; Narayan and
Nityananda, 1986). In electron microscopy, the ME method
has been applied to deconvolution of atomic-scale dark-
field scanning transmission electron microscope (STEM)
images (Pennycook et al., 1994), and deconvolution of
transmission electron microscope (TEM) images with
unknown defocus amount (Hu and Li, 1991).

However, the ME restoration failed to improve the
signal-to-noise ratio (SNR) when it was applied to STEM
images of extended objects with considerably large areas
(Farrow and Ottensmeyer, 1989). The reason for the failure
of the restoration was that maximization of the entropy
required smooth intensity distributions and, therefore,
decreased image contrasts. For this smoothing of the
processed image, the inferred noise having large
magnitudes was assigned to the extended object region.
This localization of the inferred noise is not consistent with
the statistical property of quantum noise because the spatial
distribution of the amplitude of quantum noise is random.
Satisfactory restoration is not obtained if the inferred noise
largely deviates from the actual noise in each pixel.
Therefore, it is expected that introduction of a statistical
constraint imposing a random spatial distribution of the
inferred noise allows better restoration for images of
extended objects. Farrow and Ottensmeyer (1989) proposed
application of simulated annealing method to realize the
random spatial distribution of the noise. This method seems
to be useful for stochastic problems such as the ME
restoration but a disadvantage of a long computation time
should be overcome for images with a large number of pixels.

We propose a simple method to realize the random
spatial distribution (RSD) of the noise by fitting, in the
reciprocal space, the power spectrum of inferred noise
residuals to the uniform power spectrum of the spatially
random noise (Hanai et al., 1994). In addition to the RSD
constraint, exact error fitting constraint (E constraint) (Bryan
and Skilling, 1980) was used to fit the probability density of
the noise amplitude to the statistical expectation. This two-
fold constraint, which restricts both probability distribution
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and spatial distribution of the inferred noise amplitude, is
denoted as the E+RSD constraint below. In this paper, the
ME method with the E+RSD constraint is described in detail.
Results of simulations using models of STEM and TEM
images are shown for point objects and extended objects,
and compared with the results of conventional χ 2

constrained ME restoration. Simulations for noisy low
resolution images, for which the E+RSD constrained ME
restoration would be most useful, are mainly dealt with in
this paper and the case of high resolution image is described
briefly.

Methods

In the ME method, an image is restored by maxi-
mizing the entropy of the image under constraints which
are consistent with the observed image and statistical
properties of the noise. There are several formulas for
definition of the entropy and their difference has been
discussed (Kikuchi and Soffer, 1977; Frieden, 1983). In this
paper we adopt the entropy form

(1)

Skilling and Bryan, 1984) for reason of computational
efficiency. In Equation (1), f

j
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in jth pixel of the ideal image without blurring and noise, A
the average of f
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Here, the image is represented by a vector in a N dimensional
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When the observed image is corrupted by noise, there are
many probable images on different bases. Among all
probable images, the maximum entropy image carries
minimum information because the entropy is the measure of
uncertainty. It means that the maximum entropy image
contains minimum structure which is consistent with the
observed image. This is the reason why the ME restoration
is considered to have the least artefacts. Practically, the ME
restoration has a merit of providing smooth intensity
distribution to maximize the entropy if no confidential
structure is recognized in the observed image.

The number of electrons falling in kth pixel of the
observed image is written as
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 denotes the standard deviation of the noise, n
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random variable which represents the normalized noise
residual and F
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 the number of electrons in the image which

would be obtained in the absence of noise. In a linear and

space-invariant imaging, F = (F
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) is given by the

convolution of f with a point spread function R and is
expressed using the matrix form of R as

(3)

The ME restoration selects the single solution for f with the
maximum entropy from possible images for which the series
of the residuals n = (n

1
, n

2
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N
) calculated from Equation

(2) satisfies statistical constraints.
The conventional ME restoration uses a χ2 con-

straint in which a statistic

(4)

is restricted to reasonable values around the statistical
expectation. When quantum noise is dominant, the electron
number fluctuates according to the Poisson distribution,
so that

(5)

and n
k
 follows the normal probability distribution N(0, 1) if

the number of electrons is well above unity in each pixel.
An alternative constraint has been proposed (Bryan

and Skilling, 1980) as E constraint which minimizes the
distance between the probability distribution of the
residuals n

k
 and the normal distribution. In the process of

the E constrained ME restoration, residuals n
k
 are sorted

into ascending order to give n
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), and a
statistic
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is minimized, where v
(i)

 is the ith element of the numerical
series sampled from a population obeying the normal
distribution and sorted into ascending order. The ME
restoration is reduced to a constrained maximization of the
entropy S which can be solved by maximizing a Lagrangian
function

Q = S - λE

in the case of the E constraint, where λ is the Lagrange
multiplier and E is calculated with Equation (6). Although
the E constraint has a mathematically weak basis so that the
solution may not be unique, we employed this constraint
because of its practical merit of giving better deconvolution
effect. The E constraint provides a strict fitting of the
probability of the noise amplitudes but still assigns biased
residuals to the noise at the object sites and decreases the
image contrast for extended objects. Therefore, the

(2)

(7)
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performance of ME restoration is considered to be improved
if the undesirable concentration of the noise is avoided.

We propose a new method to realize a random spatial
distribution of the inferred noise. The method uses a
property of quantum noise having a uniform power spectrum
in the spatial frequency domain and minimizes the deviation
of the power spectrum of inferred noise residuals from the
uniform power spectrum. In order to perform this
minimization in a reasonable computation time, the spatial
frequency domain is divided into several frequency bands
using low-pass filters with different band widths. Both the
power spectrum of the inferred residuals and the expected
uniform power spectrum are low-pass filtered and integrated
to give the total powers contained in these frequency bands,
and the differences of the powers are minimized
simultaneously in all frequency bands. The low-pass filters
used in the present work are Gaussian functions as shown
in Figure 1 although other filter forms might be also
applicable. The mth low-pass filter in Figure 1 has a full
width at half maximum (FWHM) in proportion to 1/m. This
RSD constraint was combined with the maximization of the
E constrained entropy function given by Equation (7). We
call this process E+RSD constrained ME restoration. The
algorithm for the constrained maximization basically follows
Skilling’s proposal (Skilling and Bryan, 1984) and the new
constraint on the power spectrum is incorporated in the

algorithm as detailed below.
Once an trial image for f without blurring and noise

is assumed, the residuals n = (n
1
, n

2
,⋅⋅⋅, n

N
) are determined

from Equation (2). Let the residuals passed by the mth low-
pass filter be n(m) = (n

1
(m), n

2
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(m))  Then, n(m) is written

with the convolution formula as

(8)

where the convolution matrix R(m) is derived from the inverse
Fourier transform of the low-pass filter. From the Parseval’s
theorem, the integral of the power spectrum for n(m) is
identical to the power calculated in real space as

(9)

For simplicity, it is supposed that only two low-pass
filters are used for fitting of the power spectrum of the
residuals. Then, three values of the integrated power B

1
(n),

B
2
(n) and B

3
(n) are obtained from different spatial frequency

domains. One is the total power integrated over the whole
frequency range and the others are the powers passed by
the two filters. To minimize the differences of these powers
from their expectations B

1aim
, B

2aim
, and B

3aim
, respectively,

the gradients of B
m
(n) (m = 1, 2, 3) in the N dimensional

Figure 1. Low-pass filters used to divide the spatial frequency domain into several frequency bands in which the power
spectrum of the inferred noise was integrated to evaluate its flatness. The half width of the filter is in proportion to the inverse
of m.



382

T. Hanai, T. Morinaga, H. Suzuki and M. Hibino

Figure 2. A model of the bright-field STEM image of disk objects and restored images. The image (a) shows disks of 6 pixels
in radius convoluted with a Gaussian point spread function of the FWHM of 2 pixels, (b) corrupted by the random noise
simulating a Poisson distribution of the number of electrons. Images (c), (d) and (e) are results of restorations with the χ2,
independent E and E+RSD constraints, respectively.

Figure 3. Maps of the residuals calculated from the observed and restored images shown in Figure 2. The map (a) shows the
original random noise. The maps (b) and (c) show the residuals inferred by the χ2 and E+RSD constrained ME restorations.
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space are calculated as

(10)

Since the differentiation ∂B
m
/∂n

l
 is derived from

Equations (8) and (9) as

(11)

Equation (11) involves the two-fold convolution of
n with the symmetric matrix  (corresponding to the two-fold
low-pass filtering of n) which can be readily calculated with
fast Fourier transform.

The next step is to search for the position, where B
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pixels, and the reduction of the dimension of the searched
space largely reduces the computation time. To solve this
problem, simple steepest descents method is used. In this
method B
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where n
0
 is the noise residuals inferred in the previous

iteration of the loop in the ME restoration program and B
m0

is the integral of the low-pass filtered power spectrum for
n

0
. The necessary displacement x can be obtained by

solving linear equations

(15)

The noise residuals n obtained from Equations (13) and (15)
should have a more uniform power spectrum than n

0
 because

the power of the noise is evenly assigned to the spatial
frequency bands correspondingly to their band widths. With
the modified n, the value of the E statistic is calculated with
Equation (6) and the maximization of Equation (7) is
performed with Skilling’s algorithm. This procedure is
repeated until convergence. The computation time depends
on the SNR of the processed image and, in most cases, the
CPU time of a main frame computer used for process of a
128x128 pixel image is within 5-30 seconds for the χ2

constraint and about five times longer for the E+RSD
constraint.

Restoration of Models of STEM Images

The effect of ME restoration on STEM images was
studied with model images. It was assumed that the imaging
is completely incoherent, the intensity distribution of the
electron probe is Gaussian with a known diameter and
quantum noise is the dominant noise. The model images
were, therefore, prepared by convoluting objects with the
Gaussian point spread function and introducing random
fluctuation of the electron number obeying a Poisson
distribution. An example of blurred bright-field STEM image
of disk objects is shown in Figure 2a. The radius of the
objects is 6 pixels and the FWHM of the point spread
function is 2 pixels. The image corrupted by quantum noise
is shown in Figure 2b. Images restored with the χ2,
independent E and E+RSD constraints are shown in Figures
2c, 2d and 2e, respectively. In the image of Figure 2c only
the high spatial frequency components of the noise are
removed and the image quality is nearly the same as the
original degraded image Figure 2b. When the E constraint

Figure 4. Signal-to-noise ratio, after Rose’s criterion, of the
original degraded images and restored images for various
size of objects. The radius of zero pixel indicates point
objects.

(12)

(13)
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is used independently, the disks completely disappear, as
shown in Figure 2d. In the image of Figure 2e restored with
E+RSD constraint, the noise is reduced so that the disks are
clearly visible. In ME restorations the image without blurring
and noise is inferred, that is, the restored image is
automatically deconvoluted. In the image of Figure 2e,
however, the blurring is not removed. This loss of high
spatial frequency components is due to the low SNR of the
original image of Figure 2b. The effect of the RSD constraint
on the spatial noise distribution is shown in Figure 3 as
maps of the residuals n. Figure 3a shows the original
computer-generated random noise. The maps in Figures 3b
and 3c show the residuals inferred by ME restorations with
the χ2 and E+RSD constraints, respectively. In the map in
Figure 3b, large negative residuals are localized in the disks.
The localization of noise is still recognized in the map in
Figure 3c but the degree of the concentration is lower than
in Figure 3b. This result indicates that RSD constraint is
effective to make the spatial distribution of noise more
random and to recover the extended disk objects.

For quantitative evaluation of the effect of restora-

tion, the SNR of the image defined by Rose (1948), which is
often used as a measure of visibility, was measured for
various disk radii. The measured SNR values are plotted in
Figure 4 as a function of the radius of the disk objects. The
zero disk radius indicates the point object. The χ2

constrained ME method could not find the solution for the
disk radii of more than 6 pixels and, for smaller objects,
presented only a little increase of SNR. The E+RSD
constrained ME method yielded SNR higher than the
original degraded image for large disks as well as for point
objects. Although the restoration with the independent E
constraint provides the highest SNR for point objects, it is
rejected in the following section because of its ill dependence
on the object size.

When many objects with the same configuration exist
in an image, as is the case in above model, superposition of
images or similar techniques could enhance the SNR of the
image. For images containing objects of various sizes,
however, these enhancement techniques are not useful. An
example of such a case is the model shown in Figure 5a.
This model contains point objects and disk objects with

Figure 5. A model of mixed point and disk objects with up to 6 pixels in radius (a), its degraded STEM image (b) and results
of (c) χ2, (d) independent E and (e) E+RSD constrained ME restorations.
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various radii up to 6 pixels. The degraded image is shown in
Figure 5b. In this image all objects with different radii are
imaged with the same SNR of 5 which is the minimum value
of the SNR, based on Rose’s criterion, required to recognize
an object. This means that the averaged intensity in a object
measured from the background intensity is inversely
proportional to the area of the object. The restored images
with the χ2, independent E, and E+RSD constraints are
shown in Figures 5c, 5d and 5e, respectively. The χ2

constrained ME restoration shown in Figure 5c again failed
to decrease the low frequency components of the noise. In
Figure 5d, point objects and small disks are observed with
high contrasts but large disks are recognized as gatherings
of small objects. In Figure 5e, the noise is much reduced
and almost all objects with different sizes are simultaneously
recovered. This result indicates a practical advantage of
the E+RSD constrained ME restoration which can reduce
the noise without changing the configurations of objects
with various sizes.

Restoration of Models of TEM Images

Effects of the χ2 and E+RSD constrained ME
restorations on TEM images were investigated using model
images of weak phase objects. We mainly deal with low

resolution images because the low resolution images often
contain various structures with different sizes and the
E+RSD constrained ME restoration is expected to have the
advantage for such images. Radiation-sensitive biological
specimens or organic materials are within the scope in this
case. Effects of the ME restoration on high resolution
images will be described only briefly.

We first consider the low resolution case and,
therefore, neglect spherical aberration. Attenuation of the
contrast transfer function (CTF) due to chromatic aberration
and partial coherence is not taken into account. In this case,
the formula of the CTF is written as

B(q*) = 2 sin (π ∆z*q*2)

with a dimension-less form of spatial frequency and defocus
given by

(17)

where q denotes the spatial frequency, λ  the electron
wavelength, ∆z the defocus and q

s
 the sampling spatial

frequency (the inverse of the size of a pixel). The shape of
CTF depends only on the normalized defocus ∆z*.

An example of the model of randomly distributed

Figure 6. A model of weak-phase point objects (a), the defocused TEM image with noise (b) and the results of (c) χ2 and (d)
E+RSD constrained ME restorations. The arrow in (a) indicates a pair of objects separated by one pixel.

(16)



386

T. Hanai, T. Morinaga, H. Suzuki and M. Hibino

point objects is shown in Figure 6a. A small part of the
model with 128x128 pixels is shown to see details of one
pixel size. A largely defocused image is shown in Figure 6b
for ∆z* = 8.4. The corresponding CTF is shown in Figure 7.
This CTF has two zeros and takes small values near the
highest frequency. The image in Figure 7b is corrupted by
the Poisson noise whose standard deviation is three times
smaller than the peak depth at the objects in the model of
Figure 7a before defocusing. In Figure 7b, fringes caused
by the defocus are observed around the blurred objects.
The results of the χ2 and E+RSD constrained ME restoration
are shown in Figures 6c and 6d, respectively. In these
restored images, a pair of points placed at a distance of 2
pixels, shown by the arrow in Figure 6a, are resolved and
the noise is obviously reduced. The magnitude of the noise
remaining around the objects is almost the same for Figures
6c and 6d. Thus, for point objects, the conventional χ2 and
E+RSD constraints similarly yield deconvoluted images with
reduced noise.

Since it is difficult, in practice, to estimate the defocus
amount accurately, the effect of the error in defocus
estimation was studied for the E+RSD constrained ME
restoration. Figures 8a and 8b show the images restored
from the image shown in Figure 6b with defocus amounts
having 10 and 15 % relative errors, respectively. Figure 8a
has almost the same quality as the image in Figure 6c restored
with the correct defocus. In Figure 8b, the close two points
are not resolved and the background noise becomes larger.
From these images the ratio of the contrast to the noise
magnitude was measured. The contrast ∆I was defined as
the difference between the peak intensity at the restored
image of the pair of objects shown by the arrow in Figure 6a
and the intensity at their middle pixel. The values of the

Figure 7. The contrast transfer function used to make the
defocused image shown in Figure 6b.

Figure 8. Effects of the error in the estimated defocus
amount on the restored image. The relative errors are 10 %
for (a) and 15 % for (b).

Figure 9. Contrast ∆I of the point objects separated by one
pixel, divided by the standard deviation of the background
noise σ, plotted as a function of defocus ∆z* used for the
restoration. The correct value of ∆z* is 8.4.



Maximum entropy restoration

387

ratio ∆I/σ, where σ is the standard deviation of the noise in
the restored image, are plotted in Figure 9 as a function of
the defocus value used for the restoration. The ratio rapidly
decreases as the defocus deviates from the correct value of
∆z* = 8.4 and becomes half at the error of ±13 %. This result
indicates that an accuracy higher than 10 % would be
required in measurements of defocus amounts to resolve
point objects in the restoration of noisy images.

ME restoration of images of extended objects was
performed using a model consisting of disks of 6 pixels in
diameter. Figure 10a is the image deteriorated with the CTF
shown in Figure 7. Figures 10b and 10c are the results of
ME restorations with the χ2 and E+RSD constraints,
respectively. In Figure 10b, the fringes due to the defocus
are still observed near the edge of disks and the noise level
is almost the same as the original image of Figure 10a. In
Figure 10c, the contrast of the fringes is much weaker than
in Figure 10b and the noise is reduced to small fluctuation
of the background intensity with low spatial frequencies.
The effect of the error in defocus estimation is shown in
Figures 10d and 10e. The error is 15 % for Figure 10d and 30
% for Figure 10e. The appearance of the whole image is not

so much changed but the edge of disks is considerably
blurred in Figure 10e. The blurring of each point as shown
in Figure 8b is canceled in the disks and appears near the
edge. This result indicates that the tolerance in the defocus
measurements is determined by the visibility of details and
not by the total appearance.

Effects of the E+RSD constrained ME restoration
on high resolution TEM images were studied with a model
image of point objects. Spherical aberration was taken into
account and Scherzer focus ∆z = √C

s
λ was assumed, where

C
s
 is the spherical aberration coefficient. The cut-off spatial

frequency was set to be two times as large as the first zero
of the CTF. This means that the length of one pixel is four
times smaller than the value of the resolution limit given by
d = 0.71C

S
1/4λ3/4. The corresponding CTF is shown in Figure

11. This CTF has the first zero corresponding to the
resolution limit at the spatial frequency of q

0
* = ¼ pixel-1 and

23 zeros in the region between q
0
* and the maximum spatial

frequency of q* = ½ pixel-1. Figure 12a shows the model of
point objects convoluted with the CTF shown in Figure 11
and corrupted by noise. The results of the χ2 and E+RSD
constrained ME restorations are shown in Figures 12b and

Figure 10. A model of defocused TEM image of weak-phase disk objects (a) and the results of the restoration with (b) χ2 and
(c) E+RSD constraints. Images (d) and (e) show the effect of the error in defocus amount of 15 % and 30 %, respectively.
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12c, respectively. In these restored images, the two points
at the distance of 2 pixels are resolved and the magnitude of
the noise is reduced by a factor of about 6. This result
suggests that the ME restoration could improve the
resolution by recovering spatial frequency components from
the severely oscillating region of the CTF. Actually, attenu-
ation of the CTF due to chromatic aberration and partial
coherence would limit the performance of the ME restoration.
The effect of the ME restoration on periodic structures,
instead of the weak phase objects considered in this paper,
must be studied for application to high resolution TEM
images.

Conclusion

An improved ME method with a constraint on spatial
distribution of noise was proposed as the E+RSD
constrained ME method to restore the images of extended
objects. The aim of the proposed constraint is to achieve a
spatially random distribution of the inferred noise by
flattening the power spectrum of the noise. A simple
algorithm was developed to realize an approximately uniform
power spectrum by fitting the integrated power spectra
passed through several low-pass filters to their expectations.

The effects of the E+RSD constrained ME restora-
tion were studied for models of STEM and TEM images
numerically. In the STEM case, the image of disk-shaped
objects, which was hardly restored with the conventional
χ2 constrained ME restoration, was improved in its SNR. In
the maps of the inferred noise residuals, the spatial
distribution of the noise amplitude was more  random for
the E+RSD constrained restoration. From images of point

objects mixed with disk objects, the point objects were
restored with high contrasts and the noise was fairly
reduced. This result indicates the possibility of restoration
of fine structures without loss of information on extended
objects.

The ME restoration was also applied to models of
defocused TEM images. The image of point objects
transferred by an oscillating CTF was restored in spite of
the existence of zeros in the CTF. It was found that this level
of the restoration is possible if the defocus amount is
estimated within ±10 % error. For the image of extended
objects, the χ 2 constrained ME method was again
insufficient both in deconvolution and in noise reduction.

Figure 11. The contrast transfer function at the Scherzer
focus. The cut-off spatial frequency is two times higher
than the resolution limit.

Figure 12. A model of high resolution image at the Scherzer
focus (a) and the results of (b) χ2 and (c) E+RSD constrained
ME restorations.
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With the E+RSD constrained ME method, the intensity of
the fringe due to the defocus became weak and the noise
was reduced.

These results of the simulation suggest that the
introduction of the constraint on spatial distribution of the
inferred noise is effective to restore objects of various size
from only one image. This technique, therefore, would be
appropriate for observation of radiation-sensitive objects
containing a wide range of structure size.

A preliminary simulation was performed for high
resolution TEM images. A high resolution beyond the
Scherzer resolution limit was obtained from a CTF which
has a rapid oscillation caused by spherical aberration. Since
the simple weak phase approximation was used in this paper,
the effect of the ME restoration on crystalline objects is not
clear in the present stage of the development of the improved
ME restoration.
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Discussion with Reviewers

P.W. Hawkes: The ME method is particularly well suited to
images with reasonably marked features, preferably
separated by fairly uniform zones (diffraction patterns for
example). Do the authors consider that their procedure would
still be beneficial for electron images full of high-resolution
details?
Authors: Yes, we expect the ME method could be applicable
to high-resolution images. It is true that the method is suited
to images with marked peaks on a uniform background and
not to complicated structures with irregular intensity
distributions. But we consider the weakness of the ME
method could be overcome by an appropriate estimation of
the spatial distribution of noise. A proposal for this purpose
was described in this paper. The difficulty would arise in
determining accurate imaging parameters as other
restoration methods using only one image. From this point
of view, methods using though-focus series would be better
if the specimen is not sensitive to electron irradiation.

P.D. Nellist: The authors have used two low-pass filters
plus the total power of the noise residual to provide the
spatial distribution constraint. How have the authors chosen
the number of low-pass filters to use? Is there a criterion for
the optimal number of filters to use for a given accuracy?
M. Op de Beeck: For simplicity only two low pass filters are
assumed in the paper. How do the reconstructions depends
on the number of low pass filters and on the shape?
Authors: It would be better, at least mathematically, to fit
each spatial frequency component to a uniform power
spectrum independently. But this is very time-consuming
and practically impossible. Therefore, we decreased fitting
parameter by using integrated powers. Besides, we divided
low frequency region into smaller pieces than high frequency
region because the noise concentrated on extended objects
is considered to make the power spectrum irregular
especially in the low frequency region. The number of the
filter was increased until the change of the appearance of
the processed image was not recognized, and typically 6-10
filters were used. Other shapes of the filter is not tried to
use yet.

M. Op de Beeck: The performance of the RSD+E constraint
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has been demonstrated on images with low signal to noise
ratios. Would the method show the same improvement over
the existing ME method in case of high SNR?
Authors: No, the degree of improvement would be lowered
for high SNR images because the localization of large noise
would not so much affect the visibility of the image if the
noise amplitude is sufficiently small. The deconvolution
effect of the E+RSD constrained ME method is almost the
same as that of the existing ME method.

M. Op de Beeck: The RSD+E method inherently favourises
low frequencies in the reconstructed images by
simultaneously maximizing the entropy in different resolution
ranges. Would a weighted E-constraint optimization yield
comparable results?
Authors: No, we do not think so. ME restorations usually
enhance high spatial frequencies by increasing the height
of marked peaks and decreasing small fluctuations to
maximize the entropy. The noise is assigned to produce
such an image. This is a fundamental property of ME
methods including a weighted E-constraint, in which only
the probability distribution is constrained to fit the real noise.
Constraints on the spatial distribution operates to assign
the noise equally to the marked peak and the background,
and result in the recovery of low frequencies.

E.J. Kirkland: The maximum entropy method obtains much
of its advantage because it enforces a “positivity” constraint
on the image and reduces spurious negative oscillations
(i.e., Gibbs oscillation). This requires knowledge of real
background constant in the image. Practical measured
images typically have an arbitrary linear scaling factor and
offset. Can you comment on the practical requirements of
using the maximum entripy method on real measured images?
Authors: The positivity constraint on the intensity is not
so important in our method because we do not use the
background subtraction used in usual ME methods and the
model images have high background. But knowledge of the
background level is still required to estimate the magnitude
of the noise because we suppose the Poisson noise whose
amplitude is identical to the square root of the electron
number. In application to real electron images, we have to
also consider the noise generated in the detection and
recording system used. Since it is difficult to measure the
fluctuation of electron number and the noise of the recording
system separately, it would be better to measure SNR of
image recorded for a uniform illumination without specimen
and take the square of the SNR as the effective electron
number which is used to represent images in the ME
restoration program. Calibration of the detection and
recording system with respect to the number of incident
electrons would be also necessary to avoid non-linearity
and offset of recorded images.

E.J. Kirkland: What are the accuracy requirements for the
other relevant parameters such as magnification and
spherical aberration C

S
? Do you expect STEM to be more or

less sensitive to the accuracy of image parameters than
TEM?
Authors: Errors in estimating magnification and spherical
aberration result in a shift of contrast transfer function which
causes reversal of the sign of the CTF in some spatial
frequency ranges. The effect of the errors would be sever
when the CTF oscillates rapidly in the high frequency region.
This is one of reasons why we concentrate on noise
reduction in low resolution images for which the CTF
oscillates gently and, therefore, the accuracy requirements
for the imaging parameters are relatively low. We expect
STEM to be less sensitive to the accuracy because the
incoherent nature of the STEM imaging suppresses the
contrast reversal. Measurements of Gaussian probe size
are easier than measurements of the spherical aberration
coefficient and the absolute defocus amount.

E.J. Kirkland: Do you expect the defocus accuracy
requirements to be different for different choices of defocus?
Authors: Yes, the accuracy requirements would be higher
for larger defocus in the case of low resolution images
because the oscillation of the CTF becomes more rapid. In
the case of high resolution images, we expect that there is
the optimum defocus which relaxes the oscillation of the
CTF in high spatial frequency region.


