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Abstract

This paper describes procedures being developed
to quantitatively measure mean inner potential, Φ

o
, and use

such data in holographic image simulations of polymer
microstructure. Results from holographic imaging
experiments are presented using polymer latexes whose
spherical geometry leads to a simple relation between
specimen thickness and lateral position in a phase image.
Success with this approach demands accurate determina-
tion of the center and radius in the image of a latex sphere.
These parameters are found via a least-squares fit to
experimental image data.  Recursive methods to enhance
the accuracy of the measured Φ

o
 values are being developed

based on characteristic features in difference images
generated using an experimental phase image and a
simulated phase image calculated from experimentally-
derived center, radius, and Φ

o
 data.
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Introduction

Transmission electron microscopy (TEM) has been
used extensively over the past few decades as a tool to
measure polymer microstructure.  The principal TEM imaging
method employed for the study of multiphase amorphous
or semicrystalline polymers uses heavy-element stains to
preferentially label or decorate one particular polymer phase
(Sawyer and Grubb, 1987).  Stained regions scatter electrons
more strongly than unstained regions.  Strongly scattered
electrons can be blocked by an objective aperture to induce
contrast by changing the electron-wave amplitude
contributing to the various parts of an image.  Figure 1
shows a typical result.  The specimen is a solution-cast film
of polystyrene-polybutadiene-polystyrene (SBS) tri-block
copolymer.  No stain was used to generate the image in
Figure 1a, and there is little discernible contrast.  Figure 1b
shows a similar specimen after being exposed to OsO

4
 vapor.

OsO
4
 reacts preferentially with the unsaturated carbon-

carbon double bond in the polybutadiene and gives it dark
contrast in a traditional bright-field image.

The rich microphase-separated microstructure
evident in figure 1b is present in the unstained specimen of
Figure 1a, but there is insufficient differential scattering to
resolve the two phases by traditional amplitude-contrast
TEM methods.  Handlin and Thomas (1983) have shown,
however, that phase contrast can be induced in unstained
specimens from this same polymer system by defocusing.
The phase of an electron wave is modulated by the refractive
properties of the specimen, and, if the refractive indices
characterizing two different polymer phases are sufficiently
different, then image contrast can be generated by mapping
the modulated electron wave phase as a function of position
in a specimen.

The electron-optical index of refraction, n
eo

, is related
to the distribution of electrostatic potential in a material.
Particularly in the case of an amorphous material where
orientation-dependent electron channeling effects are
minimized, the electrostatic potential can be represented by
its mean value known as the mean inner potential Φ

o
.

Ignoring dynamical scattering effects, the phase shift of an
electron wave can be then modeled as:
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∆ϕ = (1/C
E
)Φ

o
t   or   Φ

o
 = C

E
 d (∆ϕ)/dt

where t is the specimen thickness and C
E
 is a constant

determined by the accelerating potential of the microscope
(Landau and Lifshitz, 1965; Gajdardziska-Josifovska et al.,
1993).  While Φ

o
 values have been measured for a number

of inorganic materials (O’Keeffe and Spence, 1994; Saldin
and Spence, 1994) and can be estimated using density and
atomic-scattering factor data (Rez et al., 1994), values
characterizing various polymers are not known.  Despite
the fact that they are principally hydrocarbons, one can
anticipate variations in Φ

o
 that would lead to phase contrast

due to differences in density, composition, and the
redistribution of valence electron charge due to various
possible bonding configurations available to organic

materials (Libera et al., 1995).
Transmission electron holographic techniques

(Lichte, 1991; Tonomura et al., 1995) now becoming
increasingly practiced throughout the world offer an
alternative means to defocus for phase-contrast  imaging.
Holography measures the phase shift induced by refrac-
tion in a specimen relative to an unmodulated reference
wave.  Reconstruction of a hologram can recover the entire
exit-face electron wave function ι(x,y) = A(x,y)exp[-iφ(x,y)]
from which either amplitude images (A(x,y)) or phase images
(φ(x,y)) can be generated.  Traditional imaging recovers only
the intensity distribution I(x,y) = |ι (x,y)|2.  The potential of
holographic techniques to do phase-contrast imaging of
unstained polymers is illustrated by figure 2.  This shows
the result of a simulation assuming a specimen which acts
as a pure phase object and has a two-phase lamellar
microstructure.  The two polymer phases are characterized
by mean inner potential values of Φ

o
A = 8V and Φ

o
B = 6V.

Figure 2a shows a simulated hologram with fringe shifts
due to differential refraction in the specimen.  Reconstruction
generates the amplitude and phase images of Figures 2b
and 2c, respectively.  There is little contrast in the amplitude
image as one would expect from a pure phase object.  The
contrast associated with edge and lamellar interfaces is due
to cut-off effects in Fourier space during reconstruction.
The phase image shows substantial contrast which
faithfully represents the intrinsic structure of this specimen.

Because little is known about the refractive proper-
ties characterizing various polymers, we have developed
methods based on holographic phase imaging to measure
Φ

o
 values in relevant polymer systems.  As indicated by

equation [1], Φ
o
 can be determined if ∆φ can be measured

from a specimen with a well-known thickness t.  Recent
work by Gajdardziska-Josifovska et al. (1993) and McCartney
and Gajdardziska-Josifovska (1994) has exploited wedge  and
cube-shaped specimens of such materials as Si, GaAs, PbS,
and MgO where a functional relation between specimen
thickness and lateral position in a phase image can be
developed.  Our work concentrates on spherical specimens
for the same reason (Wang and Libera, 1996; Wang et al.,
1996).  A relation between thickness and lateral position
can be developed by knowing the center and radius of a
sphere in its projected image.  Errors in identifying the
projected sphere center and radius lead to errors in the mea-
sured Φ

o
 value.  The present paper describes the digital

imaging and analysis procedures used to determine Φ
o
 from

spherical polymer latexes and introduces the idea of
recursive improvement in the accuracy and precision of these
measurements by analysis of characteristic features in
difference images formed from experimental and simulated
image data.

Figure 1. Bright-field image of (a) unstained, and (b) OsO
4
-

stained polystyrene-polybutadiene-polystyrene (SBS)
polymer thin film.

(1)
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Experimental Methods

Holograms were collected using a 200 keV Philips
(Eindhoven, The Netherlands) CM20 TEM/STEM equipped
with a Schottky field emitter.  The nominal C

E
 value is 136.77

(nm)(Volt)/(rad).  The selected-area aperture mechanism was

modified to accommodate a non-rotatable electron biprism
(Möllenstedt and Düker 1956; Libera et al., 1995).  Digital
1024x1024 holograms of polystyrene latex particles were
collected with empty reference holograms using a Gatan
(Pleasanton, CA) 794 Multiscan camera system.  These were
reconstructed using the HoloWorks version 1.0 software
package developed at Oak Ridge National Laboratory (Voelkl
et al., 1995).  Simulated holograms of latexes were generated
assuming kinematic scattering by spherically-shaped pure
phase objects characterized by well-defined Φ

o
 values.

Simulations used parameters to give a fringe spacing and
pixel resolution comparable to the experimental holograms.
Simulated holograms were reconstructed identically as the
experimental holograms.  Images were manipulated using
Digital Micrograph software from Gatan, Inc.

Results and Discussion

An electron hologram of a single polystyrene (PS)
latex particle and its reconstructed phase image are
presented in Figures 3a and 3b, respectively.  The phase
image can be used to derive a value for Φ

o
PS if the specimen

thickness can be established at each pixel.  Since the particle
has a spherical shape, the thickness t is simply related to
the lateral coordinates x and y by:

t = 2[R
o
2 - (x-x

o
)2 - (y-y

o
)2]1/2

where (x
o
,y

o
) defines the center of the particle in the phase

image and R
o
 defines its radius.  The three parameters x

o
, y

o
,

and R
o
 must be determined from the experimental data.  We

have derived these by identifying the set of pixels that best

(2)

Figure 2. (a) simulated hologram of a two-phase lamellar
morphology with reconstructed (b) amplitude, and (c) phase
images.
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defines the edge of the particle in the phase image and then
performing a least-squares fit.  The three-parameter fit is
typically done to a dataset of edge pixels containing
hundreds of data points.

Figure 3b shows the result of the edge and center-
finding operation with the best-fit circle outlined.  Figure 3c
shows a line profile of phase shift as a function of radial
position for the rectangular box indicated on Figure 3b.  The
profile is averaged over a ten-pixel width.  While sufficiently
accurate for most of the radial distance, this averaging
process introduces error near the center.  We are exploring

a representation of the x-y data in radial coordinates but are
currently minimizing the error by simply omitting a small
portion of the radial phase profiles near the particle’s center
from subsequent processing steps.

Using Equation (2), the radial coordinate in a phase
profile such as that in Figure 3c can be converted to a
measure of specimen thickness.  One such result is shown
in Figure 4.  The phase data are no longer equally spaced in
this thickness representation because of the nonlinear
dependence of thickness on radial position (eqn. 2).  As a
consequence, there is a greater concentration of data points

Figure 3. (a) experimental hologram of a ~30nm diameter polystyrene latex particle (enlarged inset), (b) reconstructed phase
image with best-fit edge, center, and radius indicated, (c) ten-pixel-averaged line profile from box indicated in (b).
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near the particle center than near the edge.  In the thickness
representation, the phase-shift data points fall nicely along
a straight line.  A least-squares fit gives a value for the
slope which can be used in Equation (1) to determine Φ

o
PS.

This particular dataset gives Φ
o
PS = 7.4V ± 0.1 V.

Analysis of results from a number of different latex
particles gives a range of Φ

o
PS values with an average of

8.2V ± 0.9V.  The precision of this experimental measurement
needs to be improved in order to demonstrate anticipated
differences between various polymers.  Possible sources of
error are: (i) errors in the reconstruction and analysis
process; (ii) the presence of a surfactant layer on each latex
particle; (iii) specimen charging; or (iv) error in determining
the center and radius of the latex particle in its phase image.
Tests of the reconstruction and analysis procedure have
been done using simulated holograms whose center, radius,
and mean inner potential are all specified.  Φ

o
, x

o
, y

o
, and R

o

values are recovered which agree to within 1% of the input
values indicating that the processing algorithm is sound.
The presence of a surfactant layer can be identified by
characteristic features in the ∆φ vs. t plot (Wang et al.,
1996) which are absent here.  While continued work is
needed to fully understand charging effects (Matteucci et
al., 1988), the characteristic phase shifts in the vacuum due
to a net electrostatic charge in the latex particle itself which
are consistently observed and studied in large (~1µm
diameter) latex particles (Frost et al., 1995) have not been

observed in our work on sub-50nm diameter particles.  This
observation raises interesting questions concerning the size
dependence of specimen charging in latex particles but will
not be further addressed here.

Simulations show that errors in correctly identifying
x

o
, y

o
, and R

o
 can lead to errors in the determination of Φ

o
.  A

10% error, for example, in the coordinates of the center
produces an equally great error in Φ

o
.  Error in determining

the center and radius comes from inaccurate identification
of the image pixels which correspond to the particle edge.
Traditional edge-detection operators such as the Roberts
or Sobel operators (Russ, 1994; Tovey et al., 1995) give
clear and unambiguous results when applied to noise-free
simulated images but are far less effective when applied to
noisy experimental data.  Figure 5, for example, shows the
result of applying an 11x11 Sobel operator to a model image
and an experimental image.  The line profiles show that the
edge is clearly delineated in the model data but much more
poorly in the experimental data.  Integrating over a 20 pixel
width (Fig. 5e) helps mitigate this problem, but a more-
accurate radial average would demand a priori knowledge
of the particle’s center.

We are currently exploring the possibility of using a
recursive method to refine the determination of the particle
center and radius.  The data derived from an experimental
phase image are x

o
, y

o
, R

o
, and Φ

o
, and these can be used to

define a model specimen in a holographic simulation from
which a calculated phase image can be derived.  Figure 6
shows a calculated phase image using the four data
parameters derived from the experimental image of figure
3b.  Figure 7 shows a difference image formed by subtracting
the calculated phase image (figure 6) from the experimental
phase image (Fig. 3b).  There is relatively little contrast in
the difference image suggesting that the experimentally
derived dataset (x

o
, y

o
, R

o
, and Φ

o
) is a good one.

Further analysis of the difference image may provide
a means for recursive improvement in the determination of
the center and radius to enhance the precision with which a
Φ

o
 measurement can be made using a spherical specimen.

Characteristic features can be observed when there is not
precise agreement between the experimental and calculated
phase images.  Figure 8 illustrates one possible effect using
two calculated phase images where the center of one is
offset slightly in the vertical direction relative to the other.
A line profile taken along the horizontal direction shows
relatively small deviation from zero across its length.  The
profile along the vertical direction shows a significant
deviation from zero at the edge of the sphere.  Different
features in such perpendicular line profiles can be used to
identify the type of discrepancy between the two images.
They suggest a direction and magnitude in which x

o
, y

o
,  or

R
o
 could be adjusted to improve the agreement between the

two images and, in comparisons between experimental and

Figure 4. Phase shift as a function of particle thickness
from the line profile of Figure 3c.



432

Y.C. Wang, T.M. Chou and M. Libera

Figure 5. Phase images after application of an 11x11 Sobel edge-finding algorithm (a) from simulated holographic phase image
with (b) 1-pixel wide line profile, and (c) from experimental holographic phase image with (d) 1-pixel and (e) 20-pixel wide line
profile.
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Figure 6. Phase image derived from a holographic simulation
using x

o
, y

o
, R

o
, and Φ

o
 values determined from the

experimental data of Figure 3.

Figure 7. Difference image between the experimental (Fig.
3b) and simulated (Fig. 7) images.

Figure 8. (a) Difference image between two identical
simulated images offset vertically 0.5nm, (b) horizontal line
profile, (c) vertical line profile.
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calculated phase images, lead to more accurate and more
precise determinations of Φ

o
.

Conclusions

(1) Phase images from latex spheres have been used
to make quantitative measurements of the mean inner
potential characterizing polystyrene.  An average from 15
different experiments gives Φ

o
PS = 8.2V ± 0.9 V.

(2) The relation between specimen thickness and
lateral position in a phase image of a latex sphere is essential
to these measurements and can be established knowing the
center (x

o
, y

o
) and radius (R

o
) of the sphere in its projected

image.  These parameters were determined by a multi-
variable least-squares fit of a circle to a large number of data
points in the image defining the sphere edge.

(3) The accuracy with which the least-squares
algorithm establishes the thickness-lateral position
relationship can be assessed via difference images between
simulated and experimental phase images.  Recursive
methods to improve the accuracy based on such difference
methods are being developed.
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Discussion with Reviewers

D.J. Smith: For typical experimental conditions, such as
used for Figure 5c, what was the holographic fringe contrast?
Authors: Figure 5c is an experimental phase image after
application of an 11X11 Sobel edge-finding algorithm.  The
holographic fringe contrast of the original recorded
hologram is 14%.  This fringe contrast is typical of our
holograms.
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D.J. Smith: Did the authors undertake any systematic study
of fringe contrast vs. image magnification, and thus
document its overall effect on image quality (signal-to-
noise)?
Authors:  No, we did not systematically study the relation
between fringe contrast and magnification.  In general, the
holograms taken at Stevens were collected at 300-400kX
and those taken at Oak Ridge National laboratory (ORNL)
were collected at 700kX.  The poorest phase resolution we
found in these holograms is π/20 measured from the vacuum.
Most of the holograms had a phase resolution of order π/
40.

T. Tanji: I do not understand why the averaging error is
introduced near the particle center.  The ratio of the thickness
change over the averaging area is maximum at the edge.
And how do you omit the radial phase profiles?  Can this
problem be solved by considering a particle shape?
Authors: The center is the thickest portion of a sphere.  The
averaging error of the rectangular box of the line plot near
the sphere center is higher compared to the error close to
the edge.  That is, the weighting percentage of a rectangular
box is lower for the center portion than the edge.  From the
plot of ∆φ vs. radial distance, we can easily exclude the
digitized data points near the central region.  We have
considered the object as a particle shape.  Then, the ∆φ vs.
radial distance plot can be converted to the ∆φ vs. thickness
plot by knowing the center/radius of the spherical object.

T. Tanji:  How much in radian is the maximum difference
evaluated from Figure 7?  And how much does it affect to
mean inner potential obtained?
Authors:  Since the recorded experimental phase image is
pretty noisy and carries artifacts, the maximum difference in
Figure 7 has no influence on the determination of mean
inner potential.  By the way, the radian difference inside the
object of Figure 7 can be related to a statistical parameter χ2

and used for finding the best center/radius/mean inner
potential fit of a spherical shape object.

T. Tanji:  The explanation of Figure 2 should include data
besides inner potentials, e.g., an accelerating voltage, a
defocus value, a coefficient of a spherical aberration etc.
Phase contrast might be observed under a suitable
defocusing.
Authors:  We assumed that the simulated hologram and its
reconstructed phase image are focused and ignored the
transfer property of the microscope.

T. Tanji:  In our experiment electron charge accumulated in
the latex sphere of 0.5 micron in diameter has been analyzed
6E-17 Coulomb.  Of course the amount of charge depends

experimental conditions, but we may guess the charge in
the sphere of 50 nm in diameter is a few electrons, which
may be difficult to be detected by means of an ordinary
experiment.
Authors: The charging problem of ~50 nm PS spheres is
checked by the line plot in the vacuum region of the
experimental phase image and a simulated phase image of
1X10-9 Coulomb charged sphere.  We have not found any
evidence of charging effect.  On the other hand, we have
collected  some low-magnification holograms where the field
of view is larger but where the phase resolution is smaller
than in high-magnification holograms.  We still see no
evidence of charging in these low-magnification holograms.
The amount of static charge on these particles is either too
small for us to detect or is being drained to ground due to
the small particle sizes (typically 30nm → 100nm) we are
studying.

J. Bonevich:  The authors should use the standard
mathematical notation in their equations.  For example, in
Equation (1) the symbol Φ

0
 is used for the mean inner

potential, whereas V
0
 or U

0
 is typically employed.  The

symbol Φ is commonly taken to be the phase of the electron
wave.  This is a very minor revision, but serves to make the
paper consistent with the literature.
Authors:  We used ∆φ for the phase shift and Φ

0
 for the

mean inner potential.  This is consistent with papers by
John Spence and coworkers as well as other papers we
have published previously.

G. Matteucci:  The interference field width is not given
explicitly.  However, from the figures it seems that the authors
could try to obtain phase difference amplified maps on the
whole sphere so as to observe a map of the thickness
variations to obtain an indication of the sphericity together
with a somewhat more comprehensive approach for the
determination of the sphere center.  How did they check
that the spheres did not charge significantly?
Authors:  The sphericity of the latex particle is a legitimate
concern.  The polymers we have studied are amorphous
and have a T

g
 well above room temperature.  We would not

expect these to facet because of isotropic surface energy or
mechanically deform by viscous flow during the experiment.
The response for the charging problem is same as the
response for Dr. Tanji.

G. Matteucci:  It would be better to report, in the inset of
Figure 3a, the fringes through the sphere since those outside
are unimportant for the required phase detection.
Authors:  The inset of Figure 3a just simply shows the
magnified interference fringes.  The point is really just to
show that fringes are present, since they are difficult to see
in the lower magnification hologram.  Since the latex sphere
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imparts only a small and smoothly varying phase shift on
the incident wave, the fringes from the specimen look much
like those in vacuum except with more noise.


