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Abstract

The usefulness of stochastic algorithms to retrieve
the exit-plane wave function from periodic high-resolution
electron microscopic imagesisinvestigated. In contrast to
“classical” focal seriesreconstruction methodswhich need
approximately twenty input images, fully non-linear
reconstructions of periodic wave functions are possible in
most casesfrom only twoimagesusing stochastic algorithms.
The efficiency and accuracy of two different algorithms, a
Simulated Annealing algorithm and agenetic algorithm, are
compared with each other. Simulated high-resol utionimages
of theintermetallic alloy Ni,Mo and experimental images of
the high-T_ superconductor YBa,Cu,O, are used as a test
input.
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Introduction

During the past twenty years, considerable effort
has been put into the development of techniques for the
retrieval of the exit-plane wave function (EPW) in high-
resolution electron microscopy. These techniques have
proven to be of considerable advantage, especially when
making use of the information lying beyond the Scherzer
resolution limit of the microscope. The high-resolution
information stemming from the frequency band between
Scherzer limit and information limit is often not suitablefor
an image interpretation by eye. Due to the spherical
aberration and the defocusing of the objective lens, the
electron wave emerging from the object is distorted when
propagating to thefinal recording plane. These distortions
become considerably stronger with increasing resolution.
Itistherefore advantageousto retrieve the EPW, sinceit is
unaffected by imaging artifacts up to the information limit
of the microscope.

Besides el ectron hol ography, the technique of focus
variation is awell-known approach for the retrieval of the
EPW in transmission electron microscopy. The amplitude
and phase of the EPW are retrieved by making use of the
information contained in a series of images taken from the
same object areabut with adifferent objectivelensdefocus
for each singleimage. Prominent a gorithmic approachesto
solving the phase retrieval problem in focus-variation
microscopy arethe so-called Paraboloid Method (seg, e.g.,
Schiske, 1973; Saxton, 1978, 1980, 1986, 1993, 1994; Van Dyck
and Op de Beeck, 1990, 1993) and the Maximum Likelihood
method (see, eg., Kirkland, 1984; Kirkland et al ., 1985; Coene
etal., 1992, 1996; Thust et al., 1996a,b).

The Paraboloid Method (PAM) aims at aseparation
of the EPW from its complex conjugate counterpart and at
an extraction of linear contrast contributions from the total
image contrast. Using N input images, both effectsimprove
roughly by a factor V in the final wave function. Useful
resultsof the PAM over asufficiently largeinterval of spatial
frequencies can therefore be only expected when taking at
least 15 to 20 images asinput. A second restriction of the
PAM is due to the fact that it concentrates on the linear
contrast contributionswhich may beinsufficiently separated
from the nonlinear contributions in the case of strongly
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scattering objects. Recursiveimplementations of the PAM
which compensate for strong nonlinear contributions to
theimage contrast turned out to be of limited use (Thust et
al., 1996a).

A more powerful algorithmto retrievethe EPW from
afoca seriesisthe Maximum Likelihood (MAL) method.
The MAL algorithm is based on a recursive feedback
principle which exploits the difference between simulated
images based on a trial EPW and experimental through-
focus images. By minimizing the difference between
simulated and experimental images, one assumes that the
trial EPW convergestowardsthe actual experimental EPW.
Contrary tothe PAM, which aimsat acomplete elimination
of nonlinear contrast contributions, the MAL method
exploits actively nonlinear contrast phenomena. As a
consequence, the MAL method can also be employed for
strongly scattering objects. Asisthe casefor the PAM, the
MAL method requires a set of typically 20 input images.
The use of asubstantially lower number of input imagesis
in most cases not possible. Due to the strong nonlinear
coupling of diffracted beams, alocal minimization principle,
asistheleast squaresformalism applied inthe MAL method,
may fall.

At this point, a question arises: how many images
are in principle required for a successful reconstruction?
The reproducible acquisition of 20 or more images needed
forthe PAM or MAL methodisstill not atrivial experimental
task nowadays. Apart from specimen drift, the sample might
suffer from radiation damage or may bend dueto the heating
effect of theelectron beam. Itistherefore beneficial to have
the capability to perform reconstructions of the EPW using
as few as possible input images. It was shown that two
micrographs taken under different defocus can provide
sufficient information to reconstruct the EPW of astrongly
scattering object (Drenth et al., 1975). A well-known iterative
procedure based on two input images (Misell, 1973) does,
however, not takeinto account the resolution limiting effect
of partially coherent illumination (see, e.g., Frank, 1973).

In the present paper, we investigate an alternative
approach for the fully nonlinear reconstruction of the EPW
from through-focus images which is mainly suitable for
periodic objects. Thisapproach, which isbased onthe use
of stochastic algorithms, requires a substantially smaller
number of input images than the well-established PAM or
MAL methods.

Theory
Categorization of reconstruction algorithms

Themost efficient approach for phaseretrieval would
betofind ananalytica expressionwhichinvertstheimaging
process and transforms the input images directly back into
the EPW. Such an analytical inversion has not been
achieved due to the non-linearity of the imaging process.
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A solution closeto the analytical approach isthe Paraboloid
Method (PAM) in the case that the linear approximation to
the image formation holds. However, the nonlinear
interference terms which become important for thicker
objects cannot be treated in such a straightforward way.

A more tedious approach in terms of numerical ef-
fort hasto be chosenin the case of strongly nonlinear image
formation. The Maximum Likelihood (MAL) approachis
based on the optimization of an initial guess to the EPW.
The images calculated from this trial EPW are compared
with the experimental images, and afeedback to the EPW is
calculated on the basis of this comparison. One assumes
that the correct EPW is found if the squared intensity
difference between input images and calculated imagesis
minimized. Inthefollowing, the quantity to be minimized
will be more generally called evaluation function, since it
expressesthe ability of aparticular trial EPW to reproduce
the experimentally observed contrast. Within the MAL
formalism, the minimization of the evaluation function
requiresmultiplefeedback (backward) and image calculation
(forward) stepsinstead of only one backward step needed
withinthe PAM formalism. Convergenceto the correct solu-
tionisonly guaranteed if one unique minimum of the eval-
uation function exists. The existence of only one unique
minimum is difficult to prove and depends also on the
number of input images given to the algorithm. The less
images are used, the more it is likely that the evaluation
function exhibitslocal minimawhich may causeafailure of
the algorithm due to its exclusively local search
characteristics.

If the search spaceiscovered densely by local minima
and maxima of the evaluation function, a global search
strategy must beapplied. The most extremeform of aglobal
search strategy is random search. By trying out randomly
different EPWs, one has in principle a chance to find the
correct EPW which reproduces the experimental ly observed
focal series. Itis, however, easy to demonstrate that such a
strategy would exceed the capacity of thefastest computers
and isnot viable for the solution of practical problems.

From the above considerations, it can be concluded
that acompromise between local search and random search
should be most efficient in cases where local minima are
encountered, as is the case when attempting nonlinear
reconstructionsfromonly afew input images. Compared to
the PAM formalism and to the more calculation intensive
MAL formalism, the computational load should again
increase strongly dueto the need for aglobal search strategy.

During the past few decades, two highly efficient
types of algorithms have been developed which meet the
demand to combine global and local search strategies.
Genetic algorithms, as well as the technique of Simulated
Annealing, have proven to bevaluabletoolsfor finding the
best solution for problemsexhibiting local optima. A good



Phase retrieval by means of stochastic algorithms

overview over these algorithms can be found in thework of
Davis and Steenstrup (1987). In the framework of
focal-seriesreconstruction, these stochastic algorithms can
be roughly positioned betweenthe MAL algorithm and the
impractical random search approach because the search
characteristics can be adjusted continuously between pure
local search and pure random search, depending on the
particular demands.

In order to keep the computational effort withinrea-
sonable limits, the present application of stochastic
algorithmsislimited to periodic objects. Typical periodic
wave functionsin high-resolution el ectron microscopy can
be decomposed into asmall number of Fourier coefficients
which does in most cases not exceed one hundred. The
high demand in global search activity is compensated in
this work by a restriction to periodic objects keeping the
application of stochastic algorithms still well suited for
practical use.

Theevaluation function

In theframework of stochastic algorithms, it isnec-
essary to rate frequently a set of input parameters with re-
spect to the desired output. In the present context, the
input parameters describe a particular trial EPW, and the
output to be optimized is the ability of this EPW to repro-
ducetheexperimentally observed image contrast. Two basic
procedures are therefore required to evaluate the EPW:
firstly, aprocedureto simulateafocal seriesof imagesbased
onthe EPW and, secondly, afigure-of-merit describing the
match between the simulated images and the experimental
images.

Imagecalculation

Inthefollowing, the exit-planewavefunction A(r) is

denoted in its Fourier-space representation, where the

Fourier coefficients F(k) are given by

F(K)= W )2 dr 6
For partially coherent illumination, the Fourier-space
description of the resulting imageintensity I (k) isgiven by
(Frank, 1973):

KW= F(G+KF (G )T(d+kd2 (@
s

Equation (2) isaweighted autocorrelation in Fourier
spacewith the complex transmission cross-coefficient (TCC)
T asaweighting factor. Renaming the argument vectorsa

and b, the transmission cross-coefficient T(a,b,Z) describes
the phase shifts and damping effects imposed by the
microscope on the mutual interference terms between two
beams with wave vectors @ and b at a defocus value Z
(Ishizuka, 1980). Linear imaging theory takes only such

terms F(a)[E’ (b)[T(a,b,2) into account where Call= 0 or
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[b[]= 0. Thiscondition means that only the interference
terms between diffracted beams and the unscattered beam
are evaluated.

Given awavefunction consisting of N beams, acom-
pletenonlinear imagesimulationfollowing the TCC formaism
requires the calculation of N? interference terms. From a
computational point of view, adramatically faster alternative
can be used for the highly coherent illumination produced
by field emission guns (FEGs) (Coene et al., 1992, 1996).
Nevertheless, the TCC formalism can still beemployed very
efficiently in the context of Simulated Annealing. During
thenth cycle of thealgorithm, it isnot necessary to calculate

the intensity coefficients In(l§) based on a certain wave
function W completely fromscratch, but itisonly necessary
to make asmall updateto the already known intensity coef-

ficients| n_1(12) based onapreviouswavefunction ¥ .. This
ispossible dueto thefact that from oneiteration step to the
next only onesingle Fourier coefficient F(g) of the previous
wave function is changed within the Simulated Annealing

agorithm, and only intensity differences Al (k) due to this
change have to be actually calculated. All Fourier
coefficients of the image intensity | (k) belonging to the
new wavefunctionW_arerelatedtothe previouscoefficients
|, (k) via

1n(K)= 10.2(K)+ A1(K) ®
If only asingle Fourier coefficient F(g) of thewavefunction
ischanged by the algorithm, the differencein imageintensity

isgiven for k # 0 by
A()=AF(G)F (G-k)T(6,6-k2)+
F(Gg+k)AF (9T(G+kG2)

where the change of the wave function related to the wave
vector g has been denoted as

AF(G )= Fn(d)-Fna(@) ©
Compared to the complete formulation given in
Equation (2), the updating technique requires substantially
lesscomputational effort. Whereasthe completeformulation
described by Equation (2) involves the calculation of N?
interference terms, the updating technique described by
Equation (4) allowsreduction of the number of interference
termsto 2N-1. For the sake of simplicity, the possibility of
exploiting the Friedel symmetry of the Fourier transform of
the image intensity has not yet been considered. If the
Friedel symmetry is additionally exploited, only N
interference terms have actually to be taken into account
for the fully nonlinear update, and the numerical effort is
thusthe same asthat needed for alinear image calculation.
I magecomparison
The ability of atrial EPW to reproduce the experi-
mental image contrast is assessed by means of a quality

@
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factor. Thisquality factor expressesthe match between the
experimental images and theimages calculated onthebasis
of acertain wavefunction W. From an a gorithmic point of
view, the choice of aparticular evaluation functionisfree.
Any of the various measures used commonly for image
comparison can be used. One can use measures like the
squared difference intensity, a X?> measure, or a measure
based on the cross-correlation between images. Since, in
all cases, theinformation content of two imagesisprojected
onto one number, none of the possible measures can be
regarded as perfect or superior to all others. Due to the
projection onto one number, the discrepancies between two
images are weighted differently by each measure, and the
particular choice of a measure depends on which intensity
differences should be stressed and which should beregarded
as less significant.

We use a measure based on the cross-covariance
coefficient for the evaluation function of our stochastic
algorithms. Thismeasure neglectsdifferences between the
image mean values as well as differences of the absolute
contrast scaling of two images. The feature compared by
this measure is the pattern content which turned out to
provide sufficient information for theretrieval of the EPW.

It isadvantageousto perform theimage comparison
in Fourier spacefor two reasons. First, the preceding image
simulation stepiscarried out in Fourier spaceand atransform
to real space can beavoided. Secondly, sincewe dedl here
with periodic objects, the Fourier transform consists only
of relatively few coefficients, and image comparison can be
accelerated considerably compared to a real-space
procedure.

The simulated and the experimental imagetransforms
can be arranged in vector form, where we use the symbol &
for the experimental and the symboal s for thesimulatedimage
vector. Thedimension M of the vectors correspondsto the
number of involved Fourier coefficients. Denoting the

Fourier coefficients of the experimental imagewith Ie(E) and

those of the simulated image with IS(E), the vectorse and s
arewritten as

e=(lo(K)lo(ky)) (63)

$=(15(K)uv (Kt ) (6b)

wheretheimage mean values| e’5(12 =0) haveto beexcluded
in order to obtain the cross-covariance instead of the
cross-correlation coefficient. With this notation, the
normalized cross-covariance coefficient ¢ can be displayed
inthe compact form

e

lells|
where the asterisk denotes the complex conjugate, and the
notations [e[]and [s[are short formsfor theimage con-

@)
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trast given by (eld)¥? and (s[8")¥2, respectively. The
coefficient ¢ of Equation (7) is the cosine of the angle ¢
between the vectorse ands. We use the angle ¢ instead of
the coefficient ¢ as a measure describing the ability of a
wavefunction W to reproduce the experimentally observed
image contrast. For afocal series consisting of N images
taken at different defocusvalues Z, we definethe evaluation

function E(W) asthe mean angle [¢ [Ivith

N
E(W)=<¢>= Sacodc(z) @
i=1

If E(W) amountsto 90° theimages simulated on the basis of
thewavefunction ¥ are completely uncorrel ated with those
of the experimental series. In contrast, E(W) = 0° indicates
a perfect correspondence between the respective image
patterns.

Numerical efficiency

The search space to be investigated for an N-beam
reconstruction may increase exponentially with the number
of nonlinearly coupled beams. Asaconsequence, asimilar
increase of the required calls to the evaluation function is
expected. Since amost the complete numerical effort is
spent for frequent calculations of the evaluation function,
it isimportant to keep the computation time related to the
evaluation function as short as possible.

The calculation of the evaluation function is atwo-
step process. First, the images based on atrial wave func-
tion are cal culated and, second, these simulated imagesare
compared with the experimental images (see previous two
sections). In this context, it is interesting to estimate the
final gain in numerical efficiency that can be achieved by
employing the updating techniquefor theimage cal culation
instead of theimage calculation from scratch.

Inthefollowing, the possibility to exploit the Friedel
symmetry of the image intensity will be ignored, since it
cancelsout inthefinal result. The computation timerequired
for the calculation of the eval uation function can beroughly
related to the required number of complex multiplications.
Thenumber of complex multiplications needed for oneimage
calculation from scratch is2N? (Egn. 2), whereasthe number
of multiplications involved in the updating technique is
closeto 4N (Eqgn. 4). Theimage comparison step isidentical
for both aternativesand requires approximately 8N complex
multiplications. Theestimate of 8N multiplicationsisbased
on two considerations: first, due to the nonlinear image
formation, the Fourier transform of theimage extendstwice
asfar in Fourier space than does the transform of thewave
function. In two dimensions, thus roughly 4N Fourier
coefficients are needed for the description of the image
transform. Secondly, each of these 4N coefficients enters
the cross-covariance twice, since it is necessary to update
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the numerator €s”, in Equation (7), as well as the contrast
normalization [S[] in the denominator, whereas the

normalization [e[]of the experimental imageisfixed.

In summary, the computation time required for the
calculation of the evaluation function from scratch is
roughly proportional to (2N? + 8N), whereas the compu-
tation time required for the updating technique is roughly
proportional to 12N. The gainin computational speed can
be roughly estimated by the corresponding ratio y, with

y=(N+4)/6 ©)
An 8-beam reconstruction isthus accel erated approximately
only by afactor of two, whereas a 56-beam reconstruction
can be accelerated already by an order of magnitude when

employing the updating technique instead of a calculation
from scratch.

Representation of the EPW

The Fourier-space representation of the EPW (Eqn.
1) can be denoted formally as a sequence of amplitude and
phase values. Given a periodic wave function which is
defined by adiscrete and finite set of N Fourier coefficients

(or beams) F(k), the wave function can be encoded as a
sequence w, consisting of 2N components given by

w={ ag,az - an Q. @ Py } (19
wherethe a denote the amplitude of theith coefficient and
the @ the phase, respectively. The special arrangement of
amplitude and phase valueswithin the sequencewispurely
arbitrary, adifferent choicewould bejust asgood. Itisonly
important to know that a particular position represents an
amplitude or a phase value belonging to a particular wave
vector. Moreover, it is not necessary to use an
amplitude-phase notation based on decimal numbers. Any
parameterization of thewave functionispossibleaslong as
completeness and uniquenessis guaranteed. For example,
the wave function could be displayed alternatively as a
stream of binary digits.

The goal of the stochastic search is to modify an
initial sequence w, filled with random numbers in such a
way that theimages cal culated from an output sequence w,
finaly match exactly the experimental images. Inthecontext
of Simulated Annealing, the sequencew to be optimizedis
called aconfiguration, whereasin the terminology of genetic
algorithms, a particular sequence w represents a
chromosomal sequence of genes describing the properties
of anindividual.
Simulated Annealing

The technique of Simulated Annealing is derived
from fundamental principlesof statistical mechanics. Basic
components of this technique were introduced by
Metropolis and coworkers (Metropalis et al., 1953) who
considered asystem of particlesinthermal equilibrium. The
further development of this technique was achieved by
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Kirkpatrick (Kirkpatrick et al., 1983; Kirkpatrick, 1984), who
applied it successfully to problems of combinatorial
optimization.

The principle of Simulated Annealing is based on
the observation that a many-particle system, which isin
thermal equilibrium at a given temperature T, adopts a
minimum of itsfreeenergy. The searchfor agloba minimum
of the evaluation function E(W) (Egn. 8) belonging to a
N-beam problem can be treated analogously to the search
for a global minimum of the free energy belonging to a
system of N interacting particles.

In statistical mechanics, the probability 1t of finding
a system in a configuration s is given by the Boltzmann
distribution

_ e('%)

> &

we S

Tls 11)

thesystemisinthermal equilibrium. Intheabove equation,
Sdenotes the set of al possible configurations, E denotes
the energy belonging to a certain configuration, T denotes
thetemperature and kis Boltzmann’'sconstant. A transition
fromaninitial configurationi to afina configurationf occurs
with aprobability p, —

where

i 12
A transition always occurs for E, < E, otherwise the
transition occurs with a probability p < 1. The thermo-
dynamic systemislocated in configuration space on ashell
which has a width proportional to KT. A decrease of the
temperature leads to a decrease of the surface aswell as of
thewidth of thisshell. Inthelimit T — 0, thesystemarrives
at a set of configurations, or even a single configuration,
which hasthelowest possible energy. Such aconfiguration,
if unique, is called the ground state.

The Simulated Annealing algorithm consists of the
following components: a representation of the configura-
tion to be optimized (Egn. 10), a generator for an initial
configuration, a generator for new configurations, an
evaluation function E (Eqgn. 8), which rates a given
configuration, a function calculating the transition proba-
bility p, — , (Egn. 12) and atemperature schedul e describing
thedecreasefromaninitial temperatureto afinal temperature
closeto zero.

Concerning the present purpose of the reconstruction
of the exit-plane wave function, an initial configuration of
amplitude and phase values (Eqgn. 10) is set up by means of
arandom number generator. A new trial wave functionis
established by replacing either the amplitude or the phase
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valueof asinglerandomly chosen beam by arandom number.
The “energy” values of the initial and the altered wave
functions are calculated by means of the dimensionless
evaluation function given in Equation (8). The transition
probability from theinitial wavefunctiontotheatered wave
functioniscalculated by means of Equation (12), wherethe
temperature factor /KT is substituted by a dimensionless
quantity. The transition is accepted if the probability is
larger than a random number generated between 0 and 1,
otherwisethetransitionisrejected. After acertain number
of successful transitions, the current configuration is
assumed to represent an equilibrium state, and the
temperature T islowered followingalaw T, =T ,withc<
1. This procedure is repeated until the temperature has
fallen closeto zero. Thelogical sequence of the Simulated
Annealing algorithm is shown in acompact formin Figure
1

During one program run, the search behavior of the
algorithm is controlled by the temperature schedule and
varies continuously between random search and local
search. For very high temperatures, if KT is much larger
than the possible bandwidith of LE, - E [1of 180°, aimost
any transition from an initial to a final state is accepted
(Egn. 12) and good estimates of the wave function found so
far are “forgotten” and replaced by worse configurations
andviceversa. Ontheother hand, inthe casewherekT =0,
only “energies’ E, are accepted which are smaller than the
previous value E. By keeping KT = 0 fixed during the
complete program run, the Simulated Annealing algorithm
can thus be used alternatively as a conventional stochastic
hill climbing agorithm.

The Simulated Annedling agorithmisnot well suited
for fine-tuning amplitude and phase values which are
already very close to the optimum solution. Global search
iscontinued until the very end of the optimization process,
and alarge part of the computational effort iswasted. One
possibility for avoiding this waste of computation time is
the parallel implementation of local search characteristics
without changing to a different type of algorithm.
Convergenceisaccel erated by the application of additional
configuration changes, which are centered around the nearly
optimum amplitude and phase values found so far. Since
these additional configuration changes are executed in
parallel totheregular changes, thegenerdity of theagorithm
is not violated.

Geneticalgorithms

Theprinciplesof genetic agorithmsare derived from
asimplified model of evolution, which can be considered as
asearch process occurring in animated nature. Thegoal of
this search process is the optimization of a species with
respect to a given environment. Genetic algorithms were
first developed by Holland (1975), who found that under
certain conditions genetic algorithms converge to nearly
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sot initial value for temperaturs;
choose initial configuration;
calenlats svaloation function for imitial configurationm;
repeat
Tepeat
generate new configuration;
caleulate evaluation functiom for new configuration;
calenlats transition probability for new configuration;
decide whether nev configuration is accepted;
1f mecepted:
replace corrert configuration by new cns;
until thermal equilibrivm in reachesd;
decreass temperaturs by a amall amount;
until ground atate is reached,

Figurel. Compact description of the Simulated Annealing
algorithm.

create an initial populetion of individuals;
rate membere of the population by an evaluation functien;
ropoat
with a probability pleross):
choose two members of the population;
earry out a cressing over operation with theee meabers;
rate the descendent;
replace & member of the population by the descendant;
with a probability plmtation):
cheose & membor of the population;
checse & gene in the candidete’s chromosome;
change it randsmly;
rato the candidnte;
antil species ia optimized.

Figure2. Compact description of genetic algorithms.

optimal solutions.

A simplemodel of evolution, whichissufficient for
the solution of optimization problems, consists of the fol-
lowing components: a chromosomal representation of the
properties to be optimized (Eqn. 10), a set of individuas
forming a species where each individual represents a
different chromosomal configuration, an evaluation function
which measures the fitness of individuals with respect to
the environment (Eqgn. 8) and genetic operators, such as
mutation and crossing over.

In genetic al gorithms, the mutation operator changes
asingle gene or a small group of genesin acertain chro-
mosome. In this way, new properties are introduced into
the population. Crossing over is often carried out by
copying a sequence of genes from one chromosome to
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another, thus combining existing information in anew way.
The probability that amember of the population is selected
for crossing over and for creating an offspring is chosen
proportional to its fithess. The crossing over operation
creates the power of genetic algorithms, since it is likely
that the combination of two fairly good solutions can form
abetter one. Thesearchiscarried outinanimplicitly parallel
fashion by exploiting the wealth of information stored in
the entire population. High performance genes become
building blocks for new chromosomes and are propagated
as aknowledge base from generation to generation.

In our genetic agorithm, the chromosomal represen-
tation of the exit-plane wave function is a sequence of
amplitude and phase values defining the Fourier coefficients
of the wave function (Egn. 10). An initia population is
created by filling the chromosomes of all individuals with
uniformly distributed random numbers. Mutationiscarried
out inasimilar way to the configuration change performed
inthe Simulated Annedling algorithm. Uniformly distributed
random numbers are used for the choice of a certain
individual, for the choice of agenewithin itschromosomal
representation and for the replacement of the stored
amplitude or phase value by anew one. The crossing over
operationisalso guided by random events. Thefirst parent
for crossing over is aways the best solution present in the
population; the second parent is sel ected randomly among
theremaining members of the population. The sequence of
amplitude and phase values which is transferred between
thetwo parentsforming anew individual isallowed to vary
in its length from just one gene up to a complete chromo-
somal sequence. The length as well as the end points of
this sequence are determined by random numbers. In order
to keep the popul ation size constant, an of fspring generated
by the crossing over operator replacesthe currently “worst”
individual of the population. Sincetherearealargevariety
of possibilitiesfor establishing genetic systems, the compact
description shown in Figure 2 is given in a more general
form.

In contrast to the Simulated Annealing algorithm,
the search properties of our implementation of the genetic
algorithm do not change during one program run. The
search behavior is tuned via a fixed mutation rate. In the
casethat theindividuals' genes are changed more often by
mutation than by crossing over, random search char-
acteristics dominate. Such behavior is similar to that of
Simulated Annealing during its initial high-temperature
phase. On the other hand, a low mutation rate leads to a
local optimization of the already found solutions at the cost
of global search. This situation corresponds to Simulated
Annealing at low temperatures. The convergence behavior
depends al so on the number of individualsinvolved in the
genetic optimization. Since the mutation rate and the
population sizearefixed, the success of the genetic agorithm

depends much more sensitively on the choice of thesefixed
parametersthan the Simulated Annealing algorithm depends
on its continuous temperature schedule.

Similar to the Simulated Annealing algorithm, the
genetic algorithmisvery inefficient in fine-tuning solutions
which are close to the optimum. In order to improve the
speed of convergence, a strategy was developed which is
analogous to the strategy chosen for the Simulated
Annealing algorithm. Convergence is accelerated by
applying extra mutations which are centered around the
already nearly optimum amplitude and phase val ues.

Apart fromthedifferencein search properties, there
is a further difference between the Simulated Annealing
algorithm and the genetic algorithm applied here. In the
present context, the Simulated Annealing technique allows
implementation of the highly efficient updating technique
for the calculation of the evaluation function, which has
been explained earlier in thispaper. Thisispossiblein the
case of Simulated Annealing, since only one amplitude or
phase value of the wave function is changed at atime. In
contrast, the crossing over operator of the genetic algorithm
requires at the sametimethe exchange of alarge number of
amplitude and phase val ues between two parents. Sincean
offspring consists on average of 50% of the genes of parent
1 and 50% of the genes of parent 2, an updating based on
either parent 1 or parent 2 is of very limited advantage.

PerformanceTests

In order to check the reliability and accuracy of the
described algorithms, simulated images were used as atest
input. The use of simulated images has the benefit that the
output of the reconstruction algorithms can be compared
directly with the EPW which was used to generate the input
images. In contrast, the correct EPW is unknown in
experimentation and such adirect comparisonisnot possible.

Simulated images of the ordered intermetallic alloy
Ni,Mo have been chosen for test purposes. This alloy is
based on a fcc (face-centered cubic) matrix with a lattice
constant of 0.36 nm. A projection of 2 x 2 unit cells of the
D1_superstructure along [001] is shown in Figure 3. The
typical sequence of four Ni atomsfollowed by one Mo atom
along a <100> fcc direction as well as the 18° rotation
between the projected fcc and D1, unit cells can be seen
there.

The EPWs shown inthis paper which served asinput
for image smulationswere calcul ated by meansof theEM S
package (Stadelmann, 1987). Theelectron optical imaging
process was simulated by means of a self-written routine.
Thisroutine has been cross-checked with the corresponding
EMSroutine IM1 and produces identical results.

Two test images comprising 4 x 4 D1_unit cellsare
displayed in Figure 4. The simulations are based on an
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Figure3. Projection of 2x 2 D1 unit cellsalong the [001]
zone axis. Mo atoms areindicated by large circles and Ni
atomsby small circles. TheD1, unit cell ismarked by thick
lines and the fcc unit cell by thin lines.

accelerating voltage of 400 kV and a spherical aberration
constant of C_of 1 mm. For the defocus spread, avalue of
10 nm was used, and for the semi-convergence angle of
illumination, avalueof 0.9 mrad wasused (1/e-vaues). The
aperture radius used for the simulations is 7.5 nm*. The
specimen thickness belonging to the two images shown in
Figure 4 is25 nm, the defocusvaluefor image 1is-35 nm,
andthat forimage 2is-70 nm. Therelatively high specimen
thickness has been chosen in order to obtain strongly
diffracted beams which enhance the nonlinear contrast
formation. From both images, it is not possible to deduce
the projected atom positions by simple visual inspection.
Reconstructions of the EPW from the two images
shown in Figure 4 were performed in two different modes.
Inthe 29-beam mode, all beamswithin the objective aperture
were treated independently from each other. Inthe8-beam
mode, the knowledge about the four-fold symmetry of the
projected structure was expl oited, and only a set of 8 (28/4
+ 1 =18) beamsnot related by symmetry had to beretrieved.
The input EPW used for the simulation of the two
images of Figure 4 isdisplayed in Figure 5a, together with
the output EPWs retrieved by the Simulated Annealing
algorithm (Fig. 5b) and by the genetic agorithm (Fig. 5¢).
The typical four-by-one sequence of Ni and Mo atoms,
whichisnot visibleintheinput imagesof Figure4, isclearly
revealed by the phase minimaof the displayed EPWs. The

1 2

Figure 4. Simulated high-resolution images of Ni,Mo
viewed along the[001] zoneaxis. Exactly 4x 4 unit cellsare
shown. Image 1issimulated for aspecimen thickness of 25
nm and a defocus val ue of -35 nm; image 2 issimulated for
the same specimen thickness and a defocus value of -70
nm. The cornersof theimages coincidewith Mo positions.

Figure 5. EPW of [001]-oriented Ni,Mo at a specimen
thicknessof 25 nm. Eachimage comprisesexactly 4 x 4 unit
cells. Theimagesin thetop row show the amplitude, those
inthe bottom row show the phase of the wavefunction. (a)
Generating EPW which was used to simulate the model
imagesof Figure4. (b) EPW reconstructed from the model
images by means of the Simulated Annealing algorithmin
the 29 beam mode. (c) EPW reconstructed by meansof the
genetic algorithm inthe 29 beam mode.

reconstructions belonging to the wave functions of Figures
5b and 5¢ were both performed in the 29-beam mode. The
reconstruction accuracy is so high that no difference
between input and output wave functions can be observed
visually in Figure 5. In order to be able to resolve small
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differences between input and output wave functions, the
reconstruction results are compared numerically with the
correct solution in Table 1 for the Simulated Annealing
algorithm and in Table 2 for the genetic algorithm. For the
sake of compactness, only non-symmetry-related beams
resulting from reconstructions in the 8-beam mode are
displayed there. Except for the {400} beamsand the{ 330}
beams, the relative errors in the amplitudes are typically
less than 0.1%, and the absolute errors in the phases are
typically lessthan 0.02°. These extremely small errorsare
not caused by the algorithms themselves but by the
numerical accuracy limit of the programsin use. Whereas
typical values of the evaluation function (Eqgn. 8) arearound
90 degrees at the beginning of a program run, convergence
terminates at values near 102 degrees, whichiscloseto the
minimum image difference that can be displayed as a
cross-covariance using single precision numbers. Since
the convergence is finally terminated by the number
precision and not by theal gorithmsthemselves, even smaller
pattern differences between simulated and experimental
images could be exploited by the use of double-precision
numbers. In practice, image noise and other experimental
inconsistencies overwhelm such small pattern differences
aready by orders of magnitude and anincrease of the number
precision in use would be completely overdone.

The reason that the {330} and {400} beams are re-
trieved with comparatively larger errors can be explained by
the fact that the related spatial frequencieslie close to the
information limit of the microscope. Dueto the dampening
effects caused by the partially coherent illumination, the
contribution of these beams to the image contrast can be
hardly detected eveninideal noise-freesmulations. A more
detailed investigation on the achievable accuracy under
partially coherent illumination conditions, a discussion of
the convergence properties and of the uniqueness of the
results can be found in the work by Thust et al. (1994).

In order to compare qualitatively the search efficiency
of both algorithms, the fast updating techniquetailor-made
for the Simulated Annealing al gorithm was not employed at
first. Using identical subroutinesfor image calculation and
comparison, both algorithms need approximately the same
CPU (central processing unit) time for the solution of the
phase retrieval problem discussed here. On a DEC 3500
ALPHA (Digital Equipment Corp., Maynard, MA)
workstation, the solution of the 8-beam case requires
between 1 and 2 minutes of CPU time, the 29-beam case
takes approximately 10 minutes, independently of thetype
of algorithm in use. This result indicates that the search
efficiency of both algorithmsis roughly equal. Owing to
the possibility of using the fast updating technique, the
29-beam problem can be solved with the Simulated Anneal -
ing agorithm within 2 minutes of CPU time, which isin
good agreement with the estimate given by Equation (9).
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Figure6. Top: Prgjectionof aY Ba,Cu,O, unit cell dong the
[100] zone axis. Bottom: Projection along the [010] zone
axis. Full, large circles denote Ba, medium denote Y and
small denote Cu positions. Oxygen positions are marked
by open circles. The projected unit cell hasasizeof 1.17 x
0.39nm? ([ 100] projection).

Application example

In the previous section, it was shown that phase
retrieval problemsup to 29 Fourier coefficients can be solved
readily by means of stochastic algorithms, even though
only two through-focus images were used asinput. Itis
interesting to investigate the question if two-image
reconstructionsinvolving an even higher number of beams
can still betackled by the discussed algorithms. To answer
this question, the high-T_superconductor Y Ba,Cu,O, was
chosen as atest object. Dueto thelarge unit cell occupied
by four different atom species, the number of Fourier
coefficients needed for the synthesis of the wave function
isrelatively high. Projectionsof the unit cell along the[100]
and [010] directions, which are difficult to distinguish in
experiment, areshownin Figure 6. Sincethisdistinctionis
not of importance in the following, the zone axis will be
addressed asthe[100] axis.

Experimental images were recorded with a JEOL
4000EX (JEOL, Tokyo, Japan) electron microscope oper-
ated at an accelerating voltage of 400 kV. An objective
aperturewith areciprocal radiusof 5.5 nm* wasused for the
observation of Y Ba,Cu,O, along the[100] zone axis, which
resultsin 53 beams contributing to the EPW. Except for the
apertureradius, all optical parameters correspond to those
used in the previous section for image simulations.

Figures 7 and 8 show two experimental images of
YBa,Cu,0, which were taken with different defocus from
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Table 1. Reconstruction accuracy of the Simulated Annealing al gorithm. Comparison of the EPW used to generate theinput
images of Figure 4 with the EPW obtained by the application of the Simulated Annealing algorithm. The amplitudes and
phases belonging to the “input” EPW are denoted by the subscript “i,” those belonging to the output EPW are marked with
thesubscript “0.” Theamplitude of the unscattered beam isnormalized to the value 1, and the common phase factor hasbeen
chosen to result in the phase value zero for the unscattered beam.

(hkl) A A, AAA [%] ¢, [ded] b, [deg] b, - ¢, [deg]
(000) 1.0000 1.0000 000 000 000 000
(110) 03341 03341 000 8354 8355 001
(200) 02481 02482 004 6343 6343 000
(220) 01287 01286 -008 3048 3048 000
(310) 01062 01062 000 2538 2538 000
(130) 02542 02542 000 239 22400 001
400) 003%6 00384 056 27124 22693 031
(330) 00111 00103 710 23371 22379 992

Table 2. Reconstruction accuracy of the genetic algorithm. Comparison of the EPW used to generate the input images of
Figure 4 with the EPW obtained by the application of the genetic algorithm. The amplitudes and phases belonging to the
“input” EPW are denoted by the subscript “i,” those belonging to the output EPW are marked with the subscript “0.” The
amplitude of the unscattered beamisnormalized to the value 1, and the common phase factor has been chosen toresultinthe

phase value zero for the unscattered beam.

(hki) A A, ANA[%] ¢, [deg] ¢, [deg] - ¢, [deg]
(000) 1.0000 1.0000 000 000 000 000
(110) 03341 03340 -003 8354 8352 -002
(200) 02481 02479 -006 6343 6343 000
(220) 01287 01289 015 3048 3050 002
(310) 01062 01063 004 2538 2539 001
(130) 02542 02540 -006 239 22398 -001
(400) 00386 0.03%9 336 2124 2759 035
(330) 00111 00070 -36.77 23371 24032 661

approximately the same specimen area. The images have
been recorded on photographic plate and were digitized
from the negative by means of a CCD (charge coupled
device) camera (for details, see Thust and Urban, 1992).
The areas chosen for further processing are marked by a
white frame in Figures 7 and 8 and contain exactly 3 x 9
YBa,Cu,0, unitcells. Itisvery likely that theseframesare
not located at exactly the same specimen area, since it is
difficult to identify the same position on two different
negatives. The maximum spatial separation between the
two frames displayed in Figures 7 and 8 is estimated to be
around 3 nm. Since no significant long range variation of
the image patterns can be observed within the displayed
areas, a spatial shift between the chosen framesis only of
minor importance for the reconstruction in the case of a
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periodic object. Itis, however, of importance that this shift
corresponds to integer multiples of the lattice vectors
definingthe Y Ba,Cu,O, unit cell. Inthefollowing, theimage
extracted fromtheframedisplayedin Figure 7 iscalledimage
1; the image extracted from the frame of Figure8iscalled
image2.

Figure 9 (top) shows images 1 and 2 after spatial
averaging over all unit cells within the extracted frames.
Although each unit cell is identical after averaging, the
display of 3x 9 unit cellsismaintained in order to facilitate
visual patternrecognition. Before starting areconstruction
based on the averaged images 1 and 2, two aspects deserve
special attention. Firstly, it is a priori not clear, which
position of unit cell 1 correspondsto aparticular positionin
unit cell 2, i.e., a common origin has to be found. This
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Figure7. High-resolutionimageof Y Ba,Cu,O, takenalong
the [100] zone axis. The image was recorded with a CCD
camerafrom the photographic negative and consists of 512
x 512 pixels. The area chosen for reconstruction is
surrounded by aframeof size3.5x 3.5nm?. A projected unit
cell of YBa,Cu,O, ismarked withintheframe.

problem can be solved by means of symmetry arguments
except for oneambiguity. Itispossibleto overlay intensity
maximaof image 1 with such of image 2, or alternatively, by
ahalf-unit-cell shift along the[010] direction (y-directionin
Fig. 9) withintensity minimaof image 2. A second problem
arises due to the fact that neither the exact defocus values
of the images 1 and 2, nor the relative focal difference
between them are known with sufficient precision. Inorder
to solve these problems, image simulationswere carried out
with the automatic image-scan routine described in Thust
and Urban (1992). For different choicesof theunit-cell origin,
the best fitting simulated images with respect to defocus
and specimen thickness were automatically determined.
The simulated images yielding the best fit to the
experimental images 1 and 2 are displayed at the bottom of
Figure9. Theseimages, which arecalled image3and 4 in
thefollowing, belong to aspecimen thickness of 3.5 nmand
to defocus values of -30 nm and -72 nm, respectively. On
visual standards, the correspondence between simulation
and experiment is fairly good, although not convincing.
Whereas the main contrast features, such as number and
position of minimaand maximaarein good correspondence,
theexperimental images appear somewhat blurred compared
tothesimulations. Thisdiscrepancy isrevealed prominently
when using the eval uation function defined in Equation (8)
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Figure8. High-resolutionimage of Y Ba,Cu,O, taken from
the same specimen area as the image of Figure 7, but at a
different defocus setting. Seelegend of Figure 7 for details.

asaquantitativemeasure. Sincethe experimental images 1
and 2 deviate slightly from the mm symmetry of the ideal
structure, these images were symmetrized before the
comparison with the perfectly symmetric simulations(Thust
and Urban, 1992). After symmetry correction, arelatively
large residual value of 28 degrees is obtained for the
evaluation function.

In order to check the capability of stochastic algo-
rithmsto solve the specific reconstruction problem, at first
not the experimental images 1 and 2, but the simulated
counterparts 3 and 4 (Fig. 9) were used as input for the
reconstruction. For reasons of flexibility and speed, the
reconstructions presented in this section were performed
exclusively with the Simulated Annealing algorithm. With
53 beams within the objective aperture, a reconstruction
down to values of the evaluation function close to 102
degrees takes |ess than 10 minutes of CPU time on aDEC
3500 ALPHA workstation.

The reconstructed EPW is displayed in Figure 10
together with the* correct” EPW used asinput for thesim-
ulation of the images 3 and 4. It can be seen by visual
comparison that the correspondence between input and
output EPW is perfect. A quantitative comparison of the
wave functions yields an even better correspondence than
that shown in Tables 1 and 2 for the Ni,Mo calculations.
The fact that the reconstruction from simulated images of
YBa,Cu,0, is more precise, even though the number of
beamsisamost twiceashigh, can beexplained by thesmaller
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Figure9. (1) Imagecontaining 3x 9identical unit cellsof
YBa,Cu,0,, whichisobtained after averaging over the unit
cells surrounded by the frame in Figure 7. (2) Image
obtained after averaging over the unit cells surrounded by
theframeinFigure8. (3) Simulated imagewhichfitsbestto
imagel. (4) Simulatedimagewhichfitsbesttoimage2. A
projected Y Ba,Cu,O, unit cell ismarked intheimages.

aperture used for the simulation of the Y Ba,Cu,O, images.
The aperture with areciprocal radius of 5.5 nnr? excludes
such beamsfrom theimaging processwhich liecloseto the
information limit of the microscope. Ashasbeen explained
in the previous section, the contrast contributions of such
beamsareextremely small and may fall below the numerical
detection limit.

It wasfurther investigated if apremise-free determi-
nation of therelative focal distance between two imagesis
possible by means of the Simulated Annealing algorithm.
Again, simulated imageswere used first to test thefeasibility
of such adetermination. Several trial reconstructionswith
different assumptions about the focal distance between the
simulated images 3 and 4 of Figure 9 were made. It can be
seen in Figure 11 that the smallest obtainable value of the
evaluation function increases strongly in the case that the
reconstruction is based on a wrong assumption about the
focal distance. The correct value of 42 nm is revealed
unambiguously by a steep minimum of the evaluation
function.
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Figure10. (a) Amplitude (top) and phase (bottom) of the
EPW reconstructed from the simulated images 3 and 4 of
Figure 9. (b) Amplitude (top) and phase (bottom) of the
EPW which was used as input for the simulation of the
images 3 and 4 of Figure 9. Theresolution of the displayed
EPWsislimited to 5.5 nmrt. The common phase factor is
chosen to result in the phase value zero for the unscattered
beam. A projected YBa,Cu,O, unit cell is marked in all
images.

After having assured that adetermination of relative
focal distancesispossiblefrom simulated images, the same
procedure was applied to the experimental images 1 and 2
shown in Figure 9. Similar to the simulations, a single
minimum of the evaluation function is found in the
experimental case. Thevalue of thefocal distance between
images 1 and 2is36 nm and differsby 6 nm from the value
determined from the simulated images 3 and 4. Whereasin
the simulated case the minimum of the evaluation function
isvery sharp and hasavalue of approximately 102 degrees,
the experimentally determined minimumismuch broader and
hasavalue of 8 degrees (Fig. 11).

Amplitude and phase of the wave function resulting
from the reconstruction of the experimental images1 and 2
are shown in Figure 12. The projected positions of the
cations Y, Ba, and Cu are clearly revealed in both the
amplitude and the phase image.

Asis expected for athin, weakly scattering object,
the atomic positions are revealed by minimain the ampli-
tude and by maxima in the phase image. Whereas the
asymmetry of theinput imagesisdominant in theamplitude
image, the phase image yields an amost distortion-free
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Figure 11. Display of the smallest achievable value of the
evaluation function in dependence of the assumed focal
distance between two images. The upper graph refers to
reconstructions based on the simulated images 3 and 4 of
Figure 9, the lower graph refers to reconstructions based
onthe experimental images 1 and 2 of Figure9.

projection of the cation structure. A general feature of the
experimentally reconstructed EPW is a lack of high-
resolution detail when compared with the ssimulation of
Figure 10. Asisthe casefor the smulated EPW of Figure
10, the projected oxygen positions atoms are not directly
visiblein the experimental reconstruction.

The tests performed in parallel with the smulated
images allow judgement of the reliability and precision of
the reconstruction technique directly on the level of the
EPW. Inexperimentation, such adirect check isnot possible.
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Nevertheless, the quality of the reconstructed EPW can be
judged indirectly by a comparison of the images
re-calculated from the EPW with the experimental input
images. Such acomparisonisshowninFigure13. (Inthis
context, it is of importance to distinguish between
“simulated” and “recalculated” images. simulated images
are based on a known structure model and result from a
calculation of the dynamic electron scattering process and
of the subseguent electron optical imaging process. In
contrast, recal culated imagesresult purely fromasimulation
of the electron optical imaging process based on a
reconstructed EPW.) The difference between the
experimental input images and the recalculated images is
hardly visible by eye in Figure 13, which means that the
EPW displayed in Figure 12 reproduces almost perfectly
the experimentally observed image contrast. The
corresponding value of the eval uation function is 8 degrees,
whereas a comparison of the experimental images with the
best fitting simulated images (Fig. 9) yields amuch higher
value of 28 degrees. Although such anindirect comparison
on the image level cannot be seen as a strict proof, the
obtained results indicate that the reconstructed EPW dis-
played in Figure 12 is of considerably higher relevance
with respect to the experiment thanisthe EPW displayedin
Figure 10, which was obtained via the comparison with
simulations.

There are various reasons which could be respon-
siblefor the observed discrepancies between reconstruction
and simulations. Although a detailed treatment is out of
the scope of the present paper, some of the more evident
causesare discussed in short. Compared to the simulations,
the most prominent discrepancy observed in experiment is
the lack of high-resolution detail. This can be already
observed by eye when comparing the images of Figure 9,
and is revealed quantitatively in Figure 11 by the slow
variation of the experimental evaluation function with the
assumed focal distance. The sharp minimum of the simulated
counterpart can only be synthesized in the presence of
high-frequency beams which have a small focal repetition
period AZ = 2/(Ag?). Apart from instrumental instabilities, a
lack of high-resolution detail inthe experimental imagescould
be due to static atom displacements and a partial
amorphization of the specimen caused either by ion milling
during sample preparation or by electronirradiation during
observation. Such effects have not been taken into account
in our simulations. Another point to discussisthefact that
individual unit cellsin the experimental input imagesof Fig-
ures 7 and 8 differ from each other in image contrast. A
spatial averaging, asapplied in thiswork, isnot justifiedin
a strict sense, since local structural variations cannot be
treated as random noise. Therefore, the spatia averaging
causes adegradation of non-periodic high-resolution detall.
However, possible problems arising from the violation of
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Figure12. Amplitude (top) and phase (bottom) of the EPW
obtained from the reconstruction based on the experimental
images 1 and 2 of Figure 9. The common phase factor is
chosen to result in the phase value zero for the unscattered
beam. In both images, a projected YBa,Cu,O, unit cell is
marked.

strict periodicity are not specific for the phase-retrieval
procedure and arise also when comparing periodic
simulationswith real-lifeimages.

Conclusions

Stochastic algorithms are highly efficient tools for
thereconstruction of the exit-planewave function belonging
to periodic high-resolution electron microscopic images.
Reconstructions with an accuracy close to analytical can
be achieved on standard workstations within thetime scale
of interactive computer sessions. Whereas the classical
PAM and MAL focal-series reconstruction methods seem
indispensable for the solution of non-periodic problems,
stochastic algorithms are superior in the case of periodic
problems, because only two input images are mostly
sufficient for afully nonlinear reconstruction. Furthermore,
since most high-resolution images contain periodic aress,
stochastic algorithms can be applied for a premise-free
determination of relative defocus intervals. Amongst the
two types of algorithms applied in thiswork, we prefer the
Simulated Annealing algorithm over the genetic algorithm.
Firgt, the Simulated Annealing a gorithm can beimplemented
far more efficiently in this context and, secondly, the
adjustment of the convergence behavior turned out to be
moreflexibleand user friendly.
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Figure13. (a) Experimentally recorded and averaged images.
Theleftimageisidentical withimage 1 of Figure9; theright
image is identical with image 2 of Figure 9. (b) Images
re-calculated on the basis of the reconstructed EPW
displayedin Figure 12. A projected YBa,Cu,O, unitcell is
marked in theimages.
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Discussion with Reviewers

G. Mobus: If twoimages (foca values) are now considered
to be sufficient to retrieve the exit wave function, why is
one image still not enough?

Authors. Although we have no genera proof, we found
that a single input image can, at least in special cases, be
sufficient to retrieve the EPW uniquely. By using only image
2 shown in Figure 4, it is possible to retrieve the
corresponding EPW by means of the Simulated Annealing
algorithm in the 8-beam mode. The uniqueness and the
accuracy of the solution were checked with extreme carein
this special case: twenty different program runs using
different random numbers yielded identical results,
indicating that the retrieved EPW isunique. The accuracy
of theretrieved Fourier coefficientswas surprisingly of the
same quality than that of the corresponding two-image
reconstruction. With respect to a potential practical
application, one important remark has to be made: in the
case of areconstruction from one single image, the search
spaceiscovered densely with local minimaof theevaluation
function, which can extend even below avalue of 1°. In
order to determine the EPW purely on the basis of image 2
shown in Figure 4, an extremely slow cooling rate hasto be
chosen, and the required numerical effort increasesroughly
by an order of magnitude compared to the two-image
reconstruction. Under experimental conditions, such small
differences of the evaluation function, which lead to the
correct solution, arelikely to beburied in noise, and asingle-
image reconstruction would most probably yield unreliable
results.

G. Mdbus: The comparison of performancefor the MAL-
method (Coeneet al., 1996) and the new stochastic method
isquite complicated, sincefour features have been changed
at once: (i) reciprocal spaceinstead of real space, (ii) global
optimization instead of local optimization, (iii) correlation
instead of chi-square of Maximum Likelihood theory, (iv)
perfect crystals instead of crystal defects. What do the
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authors think about mixed techniques such as a stochastic
global optimization of adislocation EPW inreal space? By
how many orders of magnitude would the calculation time
increase (roughly)?

Authors: The number of parameters describing the EPW
increases considerably when changing from Fourier to real
space. Using asampling rate of 40 pixels/ nm, the real-space
description of arelatively small motif of size1 nmx 1 nm
requiresalready 1600 pixels. Dueto the non-linear character
of the imaging process, the representation of the EPW
requires fortunately only half of the sampling rate used for
thedigitization of theinput images. Asaconseguence, one
quarter of the above calculated pixel number is actually
necessary to represent the corresponding two-dimensional
EPW, i.e., 400 complex numbers have to be determined in
order to reconstruct only asmall 1 nm x 1 nm patch.

It isimportant to note that this statement holds only
for periodic motifs. Thenumber of involved red-space pixels
becomes even higher in the non-periodic case, since the
marginsof thefield of view cannot be reconstructed within
a distance corresponding to the point spread of the
microscope (see, e.g., Thust et al., 1996a). Whereas the
sizes of the input images and the output EPW are identical
for a periodic object, the reconstructible area of a
non-periodic EPW is smaller compared to the input image
size. As a consequence, the numerical efficiency
(computation time per imagearea) can be substantially lower
for the non-periodic case, depending on the particular
imaging conditions in use and on the total area to be
reconstructed.

From the above considerations, it follows that the
real-space reconstruction of non-periodic objects, which
extend typically over several nanometers in size, would
involve by several orders of magnitude more parameters
than have been treated in the body of the paper. Itisdifficult
to estimate the dependence of the required calculation time
on the number of involved parameters, since the
computational effort may increase from linear (best case,
linear imaging conditions) to exponential (worst case,
strongly nonlinear imaging conditions). Inour experience,
stochastic algorithms are not well suited for the solution of
such high dimensional problems, as is the real-space
treatment of a crystal defect. One could even doubt if a
real-space reconstruction of a defect is still feasible using
stochastic algorithms. As long as approximately twenty
high-quality through-focusimages are available, the choice
of traditional deterministic reconstruction algorithms will
be the better strategy. The real strength of stochastic
algorithmsliesintheir capability to solvethe phase problem
for asmall set of unknownswhen only very few input data
are available. This property makes stochastic algorithms
superior to the alternative techniquesin thefield of periodic
objects.
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P.A. Sadelmann: What could be expected from either the
genetic or stochastic algorithms when the information
beyond the Scherzer resolution limit is degraded by 3-fold
astigmatism? Should we not use such a technique when
3-fold correctors will beinstalled in HREM microscopes?
For example, in the JEOL 4000 EX, 3-fold astigmatism
introduces phase shifts larger than /4 for spatial
frequenciescloseto its Scherzer resolution limit.

M. Hytch: The exit wavefunction reconstruction for the
experimental case is convincing but the experimental con-
ditions are assumed to be known. What happens in the
presence of misalignments like beam tilt or astigmatism?
Wouldit not be possibleto includethese asextraparameters?
Authors: Of course, the neglect of anisotropic aberrations
likebeamtilt or 3-fold astigmatism, whichispresent on most
current ultra-high resolution instruments, will affect the
reconstructed EPW, regardless of the particular
reconstruction technique in use. Two viable strategies can
be employed to tackle the problem: first, an aberration-clean
microscope alignment can be achieved by means of
correction elements which compensate a priori all
anisotropic aberrations like coma, 2-fold and 3-fold
astigmatism, or, secondly, such aberrations can beremoved
aposteriori from the reconstructed EPW by the application
of anumerical phaseplate. Unfortunately, thesetechniques
were not yet established during the progress of the work
shown here. Concerning the hardware approach, a 3-fold
astigmatism corrector is meanwhile available from Philips
(Philips Electron Optics, Eindhoven, The Netherlands) for
their high-resolution microscopeswhich alowsoneto avoid
the occurrence of any anisotropic aberration during the
experiment (Overwijk et al., 1997). Alternatively, the soft-
ware correction approach isapplied routinely in thefield of
phaseretrieval HRTEM (Thust et al., 1996b).

P.A. Sadelmann: Canyou comment ontheimportance of
crystal misalignment or tilt for the success of the phase
retrieval?

Authors: In the case of beam tilt or other anisotropic
aberrations, the EPW ismodified by theimaging system on
itsway from the object planeto theimage plane. Inthecase
of crystal tilt, thesituationisquitedifferent. Thecrystal tilt
is not an instrumental artifact but is areal effect whichis
physically present in the object plane. It is independent
from the imaging or reconstruction process and behaves
like an object property. If no assumptions about the object
are made, an EPW affected by crystal tilt will thus be
retrieved with the same success as any other “non-tilted”
EPW. Whereas the reconstruction is straightforward, the
direct interpretation of “tilted” EPWs can be difficult. In
the case of strong crystal tilt, it might be necessary to
compare the experimentally retrieved EPW with
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corresponding simulated EPWsin order to draw conclusions
about the specimen structure.

P.A. Sadelmann: Did you ever try to apply these recon-
struction schemes to more complicated crystal structures
like the large unit cell oxide Nb, Ti,O,,, where a couple of
hundreds of beams contribute to the image?

Authors. The examples of therelatively complicated unit
cell of YBa,Cu,O, involving 53 beamsarethe maximumwe
tried out. Since we did not encounter any problems, we
think that the capacity limit of the discussed algorithms has
not yet been reached and that even more complicated unit
cells can be tackled. It is, however, difficult to predict
whether several hundred beams are still in reach for the
discussed algorithms, since the feasibility would also
depend on factors like the number of input images, the
available computing power and thetotal computation time,
which is till regarded as acceptable.

P.A. Sadelmann: What would be the necessary computer
power in MIPS (or Mflops) to perform rea-time phase
retrieval using the “Stochastic Algorithm” for a typical
perovskitecrystal BaTiO,?

Authors: Itisdifficult to give an exact number, since the
outcome will depend on factors like the desired resolution
(number of beams), the number of input images, the degree
of nonlinearity involved in the imaging process and the
desired accuracy of theresults. Especially thelast factor is
of considerableimportance, sincethetreatment of the phase
retrieval problem down to a cross-covariance level of 102
degrees, which has been impressively demonstrated with
simulated input images, costs much computational effort,
but is completely overdone in experiment due to the
existence of noise and other data inconsistencies.
Reconstructions based on experimental data can thus be
executed much faster, since the best obtainable values of
theevauation function arerarely smaller than approximately
one degree. On areasonably up-to-date PC or workstation
(=30-100 Mflops), theexperimental reconstruction of asim-
ple unit cell like that of BaTiO, should require CPU times
which range from a couple of seconds in the best case, to
some tens of seconds in the worst case.

P.A. Sadelmann: What do you think of combining your
algorithmswith CRISP (crystallographicimage processing)
or equivalent kinematical programs?

Authors: Typical crystallographic image processing
programs rely on the fact that the sample is a weakly
scattering object or even a weak phase aobject, implying
that the scattered intensity issmall compared to theintensity
of the incident beam. In a strict sense, it is doubtful to
apply such programs to inorganic crystals important to
material s science, because nonlinear imaging theory, which
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isimportant for specimen thicknessvalues exceeding afew
nanometers, iscompletely ignored. Moreover, the obtained
results exhibit the Friedel symmetry of the input images,
making an a posteriori software correction of optical
aberrationsimpossible. The correct treatment of aberrations
onthelevel of areconstructed EPW would be clearly superior
to the usual symmetry averaging procedures used in crys-
tallographic programs, since the symmetry averaging
approach is based on purely phenomenological considera-
tionsand is not correct from amathematical point of view.
We think that the incorporation of the stochastic approach
into crystallographic image processing packages would be
areal benefit in many aspects.

M. Hytch: For the solution of theexperimental case, how do
the contrast levels compare? It seems that again the best
fitting wavefunction has the appearance of awavefunction
emerging fromavery thincrystal.

Authors: Taking the zero-beam intensity asareference, we
found that the total scattered intensity isin general smaller
for experimentally reconstructed EPWsthan for simulated
EPWSs. This behaviour corresponds to findings made in
image simulation, where it is was observed that the
experimental image contrast can be considerably lower than
the corresponding simulated contrast, taking theimage mean
value as a reference.  Since both methods - comparison
between experimental and simulated images, ontheonehand
and comparison of reconstructed and simulated EPWSs, on
the other hand - are based on the same kind of experimental
input images, itisnot surprising that asimilar “low contrast”
behaviour is observed in both cases. Such low contrast
output can be obtained in simulation only for relatively small
values of the specimen thickness. In our case, a wrong
measurement of the image mean value due to a possible
“fog” effect cannot be responsiblefor the discussed discrep-
ancy, since theimage mean value does not enter our recon-
struction procedure (we use the cross-covariance instead
of the cross-correlation). At the time being, we have no
stringent explanation for this effect.

P.W. Hawkes: The absolute values of the intensities
measured on experimental images are not necessarily cor-
rect, for reasons that are well understood but not easy to
remedy. How will such measurement errors affect the
proposed algorithms?

Authors: Indeed, the optical density of the photographic
emulsion need not be related linearly to the charge density
of the incident electrons. However, a nearly linear
dependence can be obtained by making exposures with
sufficiently low electron doses. If one nevertheless uses
input imageswhich exhibit saturation or even cut-off effects,
those nonlinearitieswill a so affect the reconstructed EPW.
Interestingly, theintroduced errors become smaller with an
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increasing number of input images. Thisisdueto the fact
that the contrast distortions affecting the various input
images constitute mutual ly inconsistent information which
is damped out due the intrinsic averaging process inherent
to the reconstruction.

Additional Reference
Overwijk MHF, Bleeker AJ, Thust A (1997) Correc-
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Ultramicroscopy 67: 163-170.
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