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Abstract

The usefulness of stochastic algorithms to retrieve
the exit-plane wave function from periodic high-resolution
electron microscopic images is investigated.  In contrast to
“classical” focal series reconstruction methods which need
approximately twenty input images, fully non-linear
reconstructions of periodic wave functions are possible in
most cases from only two images using stochastic algorithms.
The efficiency and accuracy of two different algorithms, a
Simulated Annealing algorithm and a genetic algorithm, are
compared with each other.  Simulated high-resolution images
of the intermetallic alloy Ni

4
Mo and experimental images of

the high-T
c
 superconductor YBa

2
Cu

3
O

7
 are used as a test

input.
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Introduction

During the past twenty years, considerable effort
has been put into the development of techniques for the
retrieval of the exit-plane wave function (EPW) in high-
resolution electron microscopy.  These techniques have
proven to be of considerable advantage, especially when
making use of the information lying beyond the Scherzer
resolution limit of the microscope.  The high-resolution
information stemming from the frequency band between
Scherzer limit and information limit is often not suitable for
an image interpretation by eye.  Due to the spherical
aberration and the defocusing of the objective lens, the
electron wave emerging from the object is distorted when
propagating to the final recording plane.  These distortions
become considerably stronger with increasing resolution.
It is therefore advantageous to retrieve the EPW, since it is
unaffected by imaging artifacts up to the information limit
of the microscope.

Besides electron holography, the technique of focus
variation is a well-known approach for the retrieval of the
EPW in transmission electron microscopy.  The amplitude
and phase of the EPW are retrieved by making use of the
information contained in a series of images taken from the
same object area but with a different objective lens defocus
for each single image.  Prominent algorithmic approaches to
solving the phase retrieval problem in focus-variation
microscopy are the so-called Paraboloid Method (see, e.g.,
Schiske, 1973; Saxton, 1978, 1980, 1986, 1993, 1994; Van Dyck
and Op de Beeck, 1990, 1993) and the Maximum Likelihood
method (see, e.g., Kirkland, 1984; Kirkland et al., 1985; Coene
et al., 1992, 1996; Thust et al., 1996a,b).

The Paraboloid Method (PAM) aims at a separation
of the EPW from its complex conjugate counterpart and at
an extraction of linear contrast contributions from the total
image contrast.  Using N input images, both effects improve
roughly by a factor √ in the final wave function.  Useful
results of the PAM over a sufficiently large interval of spatial
frequencies can therefore be only expected when taking at
least 15 to 20 images as input.  A second restriction of the
PAM is due to the fact that it concentrates on the linear
contrast contributions which may be insufficiently separated
from the nonlinear contributions in the case of strongly
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scattering objects.  Recursive implementations of the PAM
which compensate for strong nonlinear contributions to
the image contrast turned out to be of limited use (Thust et
al., 1996a).

A more powerful algorithm to retrieve the EPW from
a focal series is the Maximum Likelihood (MAL) method.
The MAL algorithm is based on a recursive feedback
principle which exploits the difference between simulated
images based on a trial EPW and experimental through-
focus images.  By minimizing the difference between
simulated and experimental images, one assumes that the
trial EPW converges towards the actual experimental EPW.
Contrary to the PAM, which aims at a complete elimination
of nonlinear contrast contributions, the MAL method
exploits actively nonlinear contrast phenomena.  As a
consequence, the MAL method can also be employed for
strongly scattering objects.  As is the case for the PAM, the
MAL method requires a set of typically 20 input images.
The use of a substantially lower number of input images is
in most cases not possible.  Due to the strong nonlinear
coupling of diffracted beams, a local minimization principle,
as is the least squares formalism applied in the MAL method,
may fail.

At this point, a question arises: how many images
are in principle required for a successful reconstruction?
The reproducible acquisition of 20 or more images needed
for the PAM or MAL method is still not a trivial experimental
task nowadays.  Apart from specimen drift, the sample might
suffer from radiation damage or may bend due to the heating
effect of the electron beam.  It is therefore beneficial to have
the capability to perform reconstructions of the EPW using
as few as possible input images.  It was shown that two
micrographs taken under different defocus can provide
sufficient information to reconstruct the EPW of a strongly
scattering object (Drenth et al., 1975).  A well-known iterative
procedure based on two input images (Misell, 1973) does,
however, not take into account the resolution limiting effect
of partially coherent illumination (see, e.g., Frank, 1973).

In the present paper, we investigate an alternative
approach for the fully nonlinear reconstruction of the EPW
from through-focus images which is mainly suitable for
periodic objects.  This approach, which is based on the use
of stochastic algorithms, requires a substantially smaller
number of input images than the well-established PAM or
MAL methods.

Theory

Categorization of reconstruction algorithms

The most efficient approach for phase retrieval would
be to find an analytical expression which inverts the imaging
process and transforms the input images directly back into
the EPW.  Such an analytical inversion has not been
achieved due to the non-linearity of the imaging process.

A solution close to the analytical approach is the Paraboloid
Method (PAM) in the case that the linear approximation to
the image formation holds.  However, the nonlinear
interference terms which become important for thicker
objects cannot be treated in such a straightforward way.

A more tedious approach in terms of numerical ef-
fort has to be chosen in the case of strongly nonlinear image
formation.  The Maximum Likelihood (MAL) approach is
based on the optimization of an initial guess to the EPW.
The images calculated from this trial EPW are compared
with the experimental images, and a feedback to the EPW is
calculated on the basis of this comparison.  One assumes
that the correct EPW is found if the squared intensity
difference between input images and calculated images is
minimized.  In the following, the quantity to be minimized
will be more generally called evaluation function, since it
expresses the ability of a particular trial EPW to reproduce
the experimentally observed contrast.  Within the MAL
formalism, the minimization of the evaluation function
requires multiple feedback (backward) and image calculation
(forward) steps instead of only one backward step needed
within the PAM formalism.  Convergence to the correct solu-
tion is only guaranteed if one unique minimum of the eval-
uation function exists.  The existence of only one unique
minimum is difficult to prove and depends also on the
number of input images given to the algorithm.  The less
images are used, the more it is likely that the evaluation
function exhibits local minima which may cause a failure of
the algorithm due to its exclusively local search
characteristics.

If the search space is covered densely by local minima
and maxima of the evaluation function, a global search
strategy must be applied.  The most extreme form of a global
search strategy is random search.  By trying out randomly
different EPWs, one has in principle a chance to find the
correct EPW which reproduces the experimentally observed
focal series.  It is, however, easy to demonstrate that such a
strategy would exceed the capacity of the fastest computers
and is not viable for the solution of practical problems.

From the above considerations, it can be concluded
that a compromise between local search and random search
should be most efficient in cases where local minima are
encountered, as is the case when attempting nonlinear
reconstructions from only a few input images.  Compared to
the PAM formalism and to the more calculation intensive
MAL formalism, the computational load should again
increase strongly due to the need for a global search strategy.

During the past few decades, two highly efficient
types of algorithms have been developed which meet the
demand to combine global and local search strategies.
Genetic algorithms, as well as the technique of Simulated
Annealing, have proven to be valuable tools for finding the
best solution for problems exhibiting local optima.  A good
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overview over these algorithms can be found in the work of
Davis and Steenstrup (1987).  In the framework of
focal-series reconstruction, these stochastic algorithms can
be roughly positioned between the MAL algorithm and the
impractical random search approach because the search
characteristics can be adjusted continuously between pure
local search and pure random search, depending on the
particular demands.

In order to keep the computational effort within rea-
sonable limits, the present application of stochastic
algorithms is limited to periodic objects.  Typical periodic
wave functions in high-resolution electron microscopy can
be decomposed into a small number of Fourier coefficients
which does in most cases not exceed one hundred.  The
high demand in global search activity is compensated in
this work by a restriction to periodic objects keeping the
application of stochastic algorithms still well suited for
practical use.

The evaluation function

In the framework of stochastic algorithms, it is nec-
essary to rate frequently a set of input parameters with re-
spect to the desired output.  In the present context, the
input parameters describe a particular trial EPW, and the
output to be optimized is the ability of this EPW to repro-
duce the experimentally observed image contrast.  Two basic
procedures are therefore required to evaluate the EPW:
firstly, a procedure to simulate a focal series of images based
on the EPW and, secondly, a figure-of-merit describing the
match between the simulated images and the experimental
images.

Image calculation

In the following, the exit-plane wave function Ø( ) is
denoted in its Fourier-space representation, where the

Fourier coefficients F( ) are given by
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For partially coherent illumination, the Fourier-space

description of the resulting image intensity I( ) is given by
(Frank, 1973):
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Equation (2) is a weighted autocorrelation in Fourier

space with the complex transmission cross-coefficient (TCC)
T as a weighting factor.  Renaming the argument vectors 

and , the transmission cross-coefficient T( , ,Z) describes
the phase shifts and damping effects imposed by the
microscope on the mutual interference terms between two

beams with wave vectors  and  at a defocus value Z
(Ishizuka, 1980).  Linear imaging theory takes only such

terms F( )⋅F*( )⋅T( , ,Z) into account where    = 0 or

   = 0.  This condition means that only the interference
terms between diffracted beams and the unscattered beam
are evaluated.

Given a wave function consisting of N beams, a com-
plete nonlinear image simulation following the TCC formalism
requires the calculation of N2 interference terms.  From a
computational point of view, a dramatically faster alternative
can be used for the highly coherent illumination produced
by field emission guns (FEGs) (Coene et al., 1992, 1996).
Nevertheless, the TCC formalism can still be employed very
efficiently in the context of Simulated Annealing.  During
the nth cycle of the algorithm, it is not necessary to calculate

the intensity coefficients I
n
( ) based on a certain wave

function Ψ
n
 completely from scratch, but it is only necessary

to make a small update to the already known intensity coef-

ficients I
n-1

( ) based on a previous wave function Ψ
n-1

.  This
is possible due to the fact that from one iteration step to the
next only one single Fourier coefficient F( ) of the previous
wave function is changed within the Simulated Annealing

algorithm, and only intensity differences ∆I( ) due to this
change have to be actually calculated.  All Fourier

coefficients of the image intensity I
n
( ) belonging to the

new wave function Ψ
n
 are related to the previous coefficients

I
n-1

( ) via
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If only a single Fourier coefficient F( ) of the wave function
is changed by the algorithm, the difference in image intensity

is given for  ≠ 0 by
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where the change of the wave function related to the wave
vector  has been denoted as
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Compared to the complete formulation given in
Equation (2), the updating technique requires substantially
less computational effort.  Whereas the complete formulation
described by Equation (2) involves the calculation of N2

interference terms, the updating technique described by
Equation (4) allows reduction of the number of interference
terms to 2N-1.  For the sake of simplicity, the possibility of
exploiting the Friedel symmetry of the Fourier transform of
the image intensity has not yet been considered.  If the
Friedel symmetry is additionally exploited, only N
interference terms have actually to be taken into account
for the fully nonlinear update, and the numerical effort is
thus the same as that needed for a linear image calculation.
Image comparison

The ability of a trial EPW to reproduce the experi-
mental image contrast is assessed by means of a quality

(1)

(2)

(3)

(4)

(5)
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factor.  This quality factor expresses the match between the
experimental images and the images calculated on the basis
of a certain wave function Ψ.  From an algorithmic point of
view, the choice of a particular evaluation function is free.
Any of the various measures used commonly for image
comparison can be used.  One can use measures like the
squared difference intensity, a χ2 measure, or a measure
based on the cross-correlation between images.  Since, in
all cases, the information content of two images is projected
onto one number, none of the possible measures can be
regarded as perfect or superior to all others.  Due to the
projection onto one number, the discrepancies between two
images are weighted differently by each measure, and the
particular choice of a measure depends on which intensity
differences should be stressed and which should be regarded
as less significant.

We use a measure based on the cross-covariance
coefficient for the evaluation function of our stochastic
algorithms.  This measure neglects differences between the
image mean values as well as differences of the absolute
contrast scaling of two images.  The feature compared by
this measure is the pattern content which turned out to
provide sufficient information for the retrieval of the EPW.

It is advantageous to perform the image comparison
in Fourier space for two reasons.  First, the preceding image
simulation step is carried out in Fourier space and a transform
to real space can be avoided.  Secondly, since we deal here
with periodic objects, the Fourier transform consists only
of relatively few coefficients, and image comparison can be
accelerated considerably compared to a real-space
procedure.

The simulated and the experimental image transforms
can be arranged in vector form, where we use the symbol 
for the experimental and the symbol  for the simulated image
vector.  The dimension M of the vectors corresponds to the
number of involved Fourier coefficients.  Denoting the

Fourier coefficients of the experimental image with I
e
( ) and

those of the simulated image with I
s
( ), the vectors  and 

are written as

))(),...,(( Mele kIkIe
��
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where the image mean values I
e,s

(  = 0) have to be excluded
in order to obtain the cross-covariance instead of the
cross-correlation coefficient.  With this notation, the
normalized cross-covariance coefficient c can be displayed
in the compact form

||||

*
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where the asterisk denotes the complex conjugate, and the
notations    and    are short forms for the image con-

trast given by ( ⋅ *)1/2 and ( ⋅ *)1/2, respectively.  The
coefficient c of Equation (7) is the cosine of the angle ϕ
between the vectors  and .  We use the angle ϕ instead of
the coefficient c as a measure describing the ability of a
wave function Ψ to reproduce the experimentally observed
image contrast.  For a focal series consisting of N images
taken at different defocus values Z

i
, we define the evaluation

function E(Ψ) as the mean angle 〈ϕ〉  with

)) Z( (c  
N

1
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N
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If E(Ψ) amounts to 90° the images simulated on the basis of
the wave function Ψ are completely uncorrelated with those
of the experimental series.  In contrast, E(Ψ) = 0° indicates
a perfect correspondence between the respective image
patterns.

Numerical efficiency

The search space to be investigated for an N-beam
reconstruction may increase exponentially with the number
of nonlinearly coupled beams.  As a consequence, a similar
increase of the required calls to the evaluation function is
expected.  Since almost the complete numerical effort is
spent for frequent calculations of the evaluation function,
it is important to keep the computation time related to the
evaluation function as short as possible.

The calculation of the evaluation function is a two-
step process.  First, the images based on a trial wave func-
tion are calculated and, second, these simulated images are
compared with the experimental images (see previous two
sections).  In this context, it is interesting to estimate the
final gain in numerical efficiency that can be achieved by
employing the updating technique for the image calculation
instead of the image calculation from scratch.

In the following, the possibility to exploit the Friedel
symmetry of the image intensity will be ignored, since it
cancels out in the final result.  The computation time required
for the calculation of the evaluation function can be roughly
related to the required number of complex multiplications.
The number of complex multiplications needed for one image
calculation from scratch is 2N2 (Eqn. 2), whereas the number
of multiplications involved in the updating technique is
close to 4N (Eqn. 4).  The image comparison step is identical
for both alternatives and requires approximately 8N complex
multiplications.  The estimate of 8N multiplications is based
on two considerations: first, due to the nonlinear image
formation, the Fourier transform of the image extends twice
as far in Fourier space than does the transform of the wave
function.  In two dimensions, thus roughly 4N Fourier
coefficients are needed for the description of the image
transform.  Secondly, each of these 4N coefficients enters
the cross-covariance twice, since it is necessary to update

(6a)

(6b)

(7)

(8)
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the numerator *, in Equation (7), as well as the contrast
normalization    in the denominator, whereas the

normalization    of the experimental image is fixed.
In summary, the computation time required for the

calculation of the evaluation function from scratch is
roughly proportional to (2N2 + 8N), whereas the compu-
tation time required for the updating technique is roughly
proportional to 12N.  The gain in computational speed can
be roughly estimated by the corresponding ratio γ, with

6 / 4) + (N  ≈γ
An 8-beam reconstruction is thus accelerated approximately
only by a factor of two, whereas a 56-beam reconstruction
can be accelerated already by an order of magnitude when
employing the updating technique instead of a calculation
from scratch.

Representation of the EPW

The Fourier-space representation of the EPW (Eqn.
1) can be denoted formally as a sequence of amplitude and
phase values.  Given a periodic wave function which is
defined by a discrete and finite set of N Fourier coefficients

(or beams) F( ), the wave function can be encoded as a
sequence w, consisting of 2N components given by

}   ,...  ,  ,  ,a ...,  ,a ,a { = w N21N21 φφφ
where the a

i
 denote the amplitude of the ith coefficient and

the φ
i
 the phase, respectively.  The special arrangement of

amplitude and phase values within the sequence w is purely
arbitrary, a different choice would be just as good.  It is only
important to know that a particular position represents an
amplitude or a phase value belonging to a particular wave
vector.  Moreover, it is not necessary to use an
amplitude-phase notation based on decimal numbers.  Any
parameterization of the wave function is possible as long as
completeness and uniqueness is guaranteed.  For example,
the wave function could be displayed alternatively as a
stream of binary digits.

The goal of the stochastic search is to modify an
initial sequence w

i
 filled with random numbers in such a

way that the images calculated from an output sequence w
o

finally match exactly the experimental images.  In the context
of Simulated Annealing, the sequence w to be optimized is
called a configuration, whereas in the terminology of genetic
algorithms, a particular sequence w represents a
chromosomal sequence of genes describing the properties
of an individual.
Simulated Annealing

The technique of Simulated Annealing is derived
from fundamental principles of statistical mechanics.  Basic
components of this technique were introduced by
Metropolis and coworkers (Metropolis et al., 1953) who
considered a system of particles in thermal equilibrium.  The
further development of this technique was achieved by

Kirkpatrick (Kirkpatrick et al., 1983; Kirkpatrick, 1984), who
applied it successfully to problems of combinatorial
optimization.

The principle of Simulated Annealing is based on
the observation that a many-particle system, which is in
thermal equilibrium at a given temperature T, adopts a
minimum of its free energy.  The search for a global minimum
of the evaluation function E(Ψ) (Eqn. 8) belonging to a
N-beam problem can be treated analogously to the search
for a global minimum of the free energy belonging to a
system of N interacting particles.

In statistical mechanics, the probability π
s
 of finding

a system in a configuration s is given by the Boltzmann
distribution

e

e = 
)(-

 

  S w

)(-

s

T k
E  w

 T k
E  s

Σ
ε

π

the system is in thermal equilibrium.  In the above equation,
S denotes the set of all possible configurations, E denotes
the energy belonging to a certain configuration, T denotes
the temperature and k is Boltzmann’s constant.  A transition
from an initial configuration i to a final configuration f occurs
with a probability p

i
→

f

where

e =  = p kT

)E - E(
-

i

f
fi

  if

π
π

→

A transition always occurs for E
f
 ≤ E

i
, otherwise the

transition occurs with a probability p < 1.  The thermo-
dynamic system is located in configuration space on a shell
which has a width proportional to kT.  A decrease of the
temperature leads to a decrease of the surface as well as of
the width of this shell.  In the limit T → 0, the system arrives
at a set of configurations, or even a single configuration,
which has the lowest possible energy.  Such a configuration,
if unique, is called the ground state.

The Simulated Annealing algorithm consists of the
following components: a representation of the configura-
tion to be optimized (Eqn. 10), a generator for an initial
configuration, a generator for new configurations, an
evaluation function E (Eqn. 8), which rates a given
configuration, a function calculating the transition proba-
bility p

i
→

f
 (Eqn. 12) and a temperature schedule describing

the decrease from an initial temperature to a final temperature
close to zero.

Concerning the present purpose of the reconstruction
of the exit-plane wave function, an initial configuration of
amplitude and phase values (Eqn. 10) is set up by means of
a random number generator.  A new trial wave function is
established by replacing either the amplitude or the phase

(9)

(10)

(11)

(12)
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value of a single randomly chosen beam by a random number.
The “energy” values of the initial and the altered wave
functions are calculated by means of the dimensionless
evaluation function given in Equation (8).  The transition
probability from the initial wave function to the altered wave
function is calculated by means of Equation (12), where the
temperature factor 1/kT is substituted by a dimensionless
quantity.  The transition is accepted if the probability is
larger than a random number generated between 0 and 1,
otherwise the transition is rejected.  After a certain number
of successful transitions, the current configuration is
assumed to represent an equilibrium state, and the
temperature T is lowered following a law T

n+1
 = cT

n
, with c <

1.  This procedure is repeated until the temperature has
fallen close to zero.  The logical sequence of the Simulated
Annealing algorithm is shown in a compact form in Figure
1.

During one program run, the search behavior of the
algorithm is controlled by the temperature schedule and
varies continuously between random search and local
search.  For very high temperatures, if kT is much larger
than the possible bandwidth of  E

f
 - E

i
  of 180°, almost

any transition from an initial to a final state is accepted
(Eqn. 12) and good estimates of the wave function found so
far are “forgotten” and replaced by worse configurations
and vice versa.  On the other hand, in the case where kT = 0,
only “energies” E

f
 are accepted which are smaller than the

previous value E
i
.  By keeping kT = 0 fixed during the

complete program run, the Simulated Annealing algorithm
can thus be used alternatively as a conventional stochastic
hill climbing algorithm.

The Simulated Annealing algorithm is not well suited
for fine-tuning amplitude and phase values which are
already very close to the optimum solution.  Global search
is continued until the very end of the optimization process,
and a large part of the computational effort is wasted.  One
possibility for avoiding this waste of computation time is
the parallel implementation of local search characteristics
without changing to a different type of algorithm.
Convergence is accelerated by the application of additional
configuration changes, which are centered around the nearly
optimum amplitude and phase values found so far.  Since
these additional configuration changes are executed in
parallel to the regular changes, the generality of the algorithm
is not violated.

Genetic algorithms

The principles of genetic algorithms are derived from
a simplified model of evolution, which can be considered as
a search process occurring in animated nature.  The goal of
this search process is the optimization of a species with
respect to a given environment.  Genetic algorithms were
first developed by Holland (1975), who found that under
certain conditions genetic algorithms converge to nearly

optimal solutions.
A simple model of evolution, which is sufficient for

the solution of optimization problems, consists of the fol-
lowing components: a chromosomal representation of the
properties to be optimized (Eqn. 10), a set of individuals
forming a species where each individual represents a
different chromosomal configuration, an evaluation function
which measures the fitness of individuals with respect to
the environment (Eqn. 8) and genetic operators, such as
mutation and crossing over.

In genetic algorithms, the mutation operator changes
a single gene or a small group of genes in a certain chro-
mosome.  In this way, new properties are introduced into
the population.  Crossing over is often carried out by
copying a sequence of genes from one chromosome to

Figure 1.  Compact description of the Simulated Annealing
algorithm.

Figure 2.  Compact description of genetic algorithms.
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another, thus combining existing information in a new way.
The probability that a member of the population is selected
for crossing over and for creating an offspring is chosen
proportional to its fitness.  The crossing over operation
creates the power of genetic algorithms, since it is likely
that the combination of two fairly good solutions can form
a better one.  The search is carried out in an implicitly parallel
fashion by exploiting the wealth of information stored in
the entire population.  High performance genes become
building blocks for new chromosomes and are propagated
as a knowledge base from generation to generation.

In our genetic algorithm, the chromosomal represen-
tation of the exit-plane wave function is a sequence of
amplitude and phase values defining the Fourier coefficients
of the wave function (Eqn. 10).  An initial population is
created by filling the chromosomes of all individuals with
uniformly distributed random numbers.  Mutation is carried
out in a similar way to the configuration change performed
in the Simulated Annealing algorithm.  Uniformly distributed
random numbers are used for the choice of a certain
individual, for the choice of a gene within its chromosomal
representation and for the replacement of the stored
amplitude or phase value by a new one.  The crossing over
operation is also guided by random events.  The first parent
for crossing over is always the best solution present in the
population; the second parent is selected randomly among
the remaining members of the population.  The sequence of
amplitude and phase values which is transferred between
the two parents forming a new individual is allowed to vary
in its length from just one gene up to a complete chromo-
somal sequence.  The length as well as the end points of
this sequence are determined by random numbers.  In order
to keep the population size constant, an offspring generated
by the crossing over operator replaces the currently “worst”
individual of the population.  Since there are a large variety
of possibilities for establishing genetic systems, the compact
description shown in Figure 2 is given in a more general
form.

In contrast to the Simulated Annealing algorithm,
the search properties of our implementation of the genetic
algorithm do not change during one program run.  The
search behavior is tuned via a fixed mutation rate.  In the
case that the individuals’ genes are changed more often by
mutation than by crossing over, random search char-
acteristics dominate.  Such behavior is similar to that of
Simulated Annealing during its initial high-temperature
phase.  On the other hand, a low mutation rate leads to a
local optimization of the already found solutions at the cost
of global search.  This situation corresponds to Simulated
Annealing at low temperatures.  The convergence behavior
depends also on the number of individuals involved in the
genetic optimization.  Since the mutation rate and the
population size are fixed, the success of the genetic algorithm

depends much more sensitively on the choice of these fixed
parameters than the Simulated Annealing algorithm depends
on its continuous temperature schedule.

Similar to the Simulated Annealing algorithm, the
genetic algorithm is very inefficient in fine-tuning solutions
which are close to the optimum.  In order to improve the
speed of convergence, a strategy was developed which is
analogous to the strategy chosen for the Simulated
Annealing algorithm.  Convergence is accelerated by
applying extra mutations which are centered around the
already nearly optimum amplitude and phase values.

Apart from the difference in search properties, there
is a further difference between the Simulated Annealing
algorithm and the genetic algorithm applied here.  In the
present context, the Simulated Annealing technique allows
implementation of the highly efficient updating technique
for the calculation of the evaluation function, which has
been explained earlier in this paper.  This is possible in the
case of Simulated Annealing, since only one amplitude or
phase value of the wave function is changed at a time.  In
contrast, the crossing over operator of the genetic algorithm
requires at the same time the exchange of a large number of
amplitude and phase values between two parents.  Since an
offspring consists on average of 50% of the genes of parent
1 and 50% of the genes of parent 2, an updating based on
either parent 1 or parent 2 is of very limited advantage.

Performance Tests

In order to check the reliability and accuracy of the
described algorithms, simulated images were used as a test
input.  The use of simulated images has the benefit that the
output of the reconstruction algorithms can be compared
directly with the EPW which was used to generate the input
images.  In contrast, the correct EPW is unknown in
experimentation and such a direct comparison is not possible.

Simulated images of the ordered intermetallic alloy
Ni

4
Mo have been chosen for test purposes.  This alloy is

based on a fcc (face-centered cubic) matrix with a lattice
constant of 0.36 nm.  A projection of 2 x 2 unit cells of the
D1

a
 superstructure along [001] is shown in Figure 3.  The

typical sequence of four Ni atoms followed by one Mo atom
along a <100> fcc direction as well as the 18° rotation
between the projected fcc and D1

a
 unit cells can be seen

there.
The EPWs shown in this paper which served as input

for image simulations were calculated by means of the EMS
package (Stadelmann, 1987).  The electron optical imaging
process was simulated by means of a self-written routine.
This routine has been cross-checked with the corresponding
EMS routine IM1 and produces identical results.

Two test images comprising 4 x 4 D1
a
 unit cells are

displayed in Figure 4.  The simulations are based on an
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accelerating voltage of 400 kV and a spherical aberration
constant of C

s
 of 1 mm.  For the defocus spread, a value of

10 nm was used, and for the semi-convergence angle of
illumination, a value of 0.9 mrad was used (1/e-values).  The
aperture radius used for the simulations is 7.5 nm-1.  The
specimen thickness belonging to the two images shown in
Figure 4 is 25 nm, the defocus value for image 1 is -35 nm,
and that for image 2 is -70 nm.  The relatively high specimen
thickness has been chosen in order to obtain strongly
diffracted beams which enhance  the  nonlinear  contrast
formation.  From both images, it is not possible to deduce
the projected atom positions by simple visual inspection.

Reconstructions of the EPW from the two images
shown in Figure 4 were performed in two different modes.
In the 29-beam mode, all beams within the objective aperture
were treated independently from each other.  In the 8-beam
mode, the knowledge about the four-fold symmetry of the
projected structure was exploited, and only a set of 8 (28/4
+ 1 = 8) beams not related by symmetry had to be retrieved.

The input EPW used for the simulation of the two
images of Figure 4 is displayed in Figure 5a, together with
the output EPWs retrieved by the Simulated Annealing
algorithm (Fig. 5b) and by the genetic algorithm (Fig. 5c).
The typical four-by-one sequence of Ni and Mo atoms,
which is not visible in the input images of Figure 4, is clearly
revealed by the phase minima of the displayed EPWs.  The

reconstructions belonging to the wave functions of Figures
5b and 5c were both performed in the 29-beam mode.  The
reconstruction accuracy is so high that no difference
between input and output wave functions can be observed
visually in Figure 5.  In order to be able to resolve small

Figure 3.  Projection of 2 x 2 D1
a
 unit cells along the [001]

zone axis.  Mo atoms are indicated by large circles and Ni
atoms by small circles.  The D1

a
 unit cell is marked by thick

lines and the fcc unit cell by thin lines.

Figure 4.  Simulated high-resolution images of Ni
4
Mo

viewed along the [001] zone axis.  Exactly 4 x 4 unit cells are
shown.  Image 1 is simulated for a specimen thickness of 25
nm and a defocus value of -35 nm; image 2 is simulated for
the same specimen thickness and a defocus value of -70
nm.  The corners of the images coincide with Mo positions.

Figure 5.  EPW of [001]-oriented Ni
4
Mo at a specimen

thickness of 25 nm.  Each image comprises exactly 4 x 4 unit
cells.  The images in the top row show the amplitude, those
in the bottom row show the phase of the wave function.  (a)
Generating EPW which was used to simulate the model
images of Figure 4.  (b)  EPW reconstructed from the model
images by means of the Simulated Annealing algorithm in
the 29 beam mode.  (c)  EPW reconstructed by means of the
genetic algorithm in the 29 beam mode.
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differences between input and output wave functions, the
reconstruction results are compared numerically with the
correct solution in Table 1 for the Simulated Annealing
algorithm and in Table 2 for the genetic algorithm.  For the
sake of compactness, only non-symmetry-related beams
resulting from reconstructions in the 8-beam mode are
displayed there.  Except for the {400} beams and the {330}
beams, the relative errors in the amplitudes are typically
less than 0.1%, and the absolute errors in the phases are
typically less than 0.02°.  These extremely small errors are
not caused by the algorithms themselves but by the
numerical accuracy limit of the programs in use.  Whereas
typical values of the evaluation function (Eqn. 8) are around
90 degrees at the beginning of a program run, convergence
terminates at values near 10-2 degrees, which is close to the
minimum image difference that can be displayed as a
cross-covariance using single precision numbers.  Since
the convergence is finally terminated by the number
precision and not by the algorithms themselves, even smaller
pattern differences between simulated and experimental
images could be exploited by the use of double-precision
numbers.  In practice, image noise and other experimental
inconsistencies overwhelm such small pattern differences
already by orders of magnitude and an increase of the number
precision in use would be completely overdone.

The reason that the {330} and {400} beams are re-
trieved with comparatively larger errors can be explained by
the fact that the related spatial frequencies lie close to the
information limit of the microscope.  Due to the dampening
effects caused by the partially coherent illumination, the
contribution of these beams to the image contrast can be
hardly detected even in ideal noise-free simulations.  A more
detailed investigation on the achievable accuracy under
partially coherent illumination conditions, a discussion of
the convergence properties and of the uniqueness of the
results can be found in the work by Thust et al. (1994).

In order to compare qualitatively the search efficiency
of both algorithms, the fast updating technique tailor-made
for the Simulated Annealing algorithm was not employed at
first.  Using identical subroutines for image calculation and
comparison, both algorithms need approximately the same
CPU (central processing unit) time for the solution of the
phase retrieval problem discussed here.  On a DEC 3500
ALPHA (Digital Equipment Corp., Maynard, MA)
workstation, the solution of the 8-beam case requires
between 1 and 2 minutes of CPU time, the 29-beam case
takes approximately 10 minutes, independently of the type
of algorithm in use.  This result indicates that the search
efficiency of both algorithms is roughly equal.  Owing to
the possibility of using the fast updating technique, the
29-beam problem can be solved with the Simulated Anneal-
ing algorithm within 2 minutes of CPU time, which is in
good agreement with the estimate given by Equation (9).

Application example

In the previous section, it was shown that phase
retrieval problems up to 29 Fourier coefficients can be solved
readily by means of stochastic algorithms, even though
only two  through-focus images were used as input.  It is
interesting to investigate the question if two-image
reconstructions involving an even higher number of beams
can still be tackled by the discussed algorithms.  To answer
this question, the high-T

c
 superconductor YBa

2
Cu

3
O

7
 was

chosen as a test object.  Due to the large unit cell occupied
by four different atom species, the number of Fourier
coefficients needed for the synthesis of the wave function
is relatively high.  Projections of the unit cell along the [100]
and [010] directions, which are difficult to distinguish in
experiment, are shown in Figure 6.  Since this distinction is
not of importance in the following, the zone axis will be
addressed as the [100] axis.

Experimental images were recorded with a JEOL
4000EX (JEOL, Tokyo, Japan) electron microscope oper-
ated at an accelerating voltage of 400 kV.  An objective
aperture with a reciprocal radius of 5.5 nm-1 was used for the
observation of YBa

2
Cu

3
O

7
 along the [100] zone axis, which

results in 53 beams contributing to the EPW.  Except for the
aperture radius, all optical parameters correspond to those
used in the previous section for image simulations.

Figures 7 and 8 show two experimental images of
YBa

2
Cu

3
O

7
 which were taken with different defocus from

Figure 6.  Top: Projection of a YBa
2
Cu

3
O

7
 unit cell along the

[100] zone axis.  Bottom: Projection along the [010] zone
axis.  Full, large circles denote Ba, medium denote Y and
small denote Cu positions.  Oxygen positions are marked
by open circles.  The projected unit cell has a size of 1.17 x
0.39 nm2 ([100] projection).
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approximately the same specimen area.  The images have
been recorded on photographic plate and were digitized
from the negative by means of a CCD (charge coupled
device) camera (for details, see Thust and Urban, 1992).
The areas chosen for further processing are marked by a
white frame in Figures 7 and 8 and contain exactly 3 x 9
YBa

2
Cu

3
O

7
 unit cells.  It is very likely that these frames are

not located at exactly the same specimen area, since it is
difficult to identify the same position on two different
negatives.  The maximum spatial separation between the
two frames displayed in Figures 7 and 8 is estimated to be
around 3 nm.  Since no significant long range variation of
the image patterns can be observed within the displayed
areas, a spatial shift between the chosen frames is only of
minor importance for the reconstruction in the case of a

periodic object.  It is, however, of importance that this shift
corresponds to integer multiples of the lattice vectors
defining the YBa

2
Cu

3
O

7
 unit cell.  In the following, the image

extracted from the frame displayed in Figure 7 is called image
1; the image extracted from the frame of Figure 8 is called
image 2.

Figure 9 (top) shows images 1 and 2 after spatial
averaging over all unit cells within the extracted frames.
Although each unit cell is identical after averaging, the
display of 3 x 9 unit cells is maintained in order to facilitate
visual pattern recognition.  Before starting a reconstruction
based on the averaged images 1 and 2, two aspects deserve
special attention.  Firstly, it is a priori not clear, which
position of unit cell 1 corresponds to a particular position in
unit cell 2, i.e., a common origin has to be found.  This

Table 2.  Reconstruction accuracy of the genetic algorithm.  Comparison of the EPW used to generate the input images of
Figure 4 with the EPW obtained by the application of the genetic  algorithm. The amplitudes and phases belonging to the
“input” EPW are denoted by the subscript “i,” those belonging to the output EPW are marked with the subscript “o.”  The
amplitude of the unscattered beam is normalized to the value 1, and the common phase factor has been chosen to result in the
phase value zero for the unscattered beam.
——————————————————————————————————————————————————
(h k l) A

i
A

o
∆A/A

i
[%] ϕ

i
 [deg] ϕ

o
 [deg] ϕ

o
 - ϕ

i
 [deg]

——————————————————————————————————————————————————

(0 0 0) 1.0000 1.0000 0.00 0.00 0.00 0.00
(1 1 0) 0.3341 0.3340 -0.03 83.54 83.52 -0.02
(2 0 0) 0.2481 0.2479 -0.06 63.43 63.43 0.00
(2 2 0) 0.1287 0.1289 0.15 30.48 30.50 0.02
(3 1 0) 0.1062 0.1063 0.04 25.38 25.39 0.01
(1 3 0) 0.2542 0.2540 -0.06 223.99 223.98 -0.01
(4 0 0) 0.0386 0.0399 3.36 227.24 227.59 0.35
(3 3 0) 0.0111 0.0070 -36.77 233.71 240.32 6.61
——————————————————————————————————————————————————

Table 1.  Reconstruction accuracy of the Simulated Annealing algorithm.  Comparison of the EPW used to generate the input
images of Figure 4 with the EPW obtained by the application of the Simulated Annealing algorithm.  The amplitudes and
phases belonging to the “input” EPW are denoted by the subscript “i,” those belonging to the output EPW are marked with
the subscript “o.”  The amplitude of the unscattered beam is normalized to the value 1, and the common phase factor has been
chosen to result in the phase value zero for the unscattered beam.
——————————————————————————————————————————————————
(h k l) A

i
A

o
∆A/A

i
 [%] ϕ

i
 [deg] ϕ

o
 [deg] ϕ

o
 - ϕ

i
 [deg]

(0 0 0) 1.0000 1.0000 0.00 0.00 0.00 0.00
(1 1 0) 0.3341 0.3341 0.00 83.54 83.55 0.01
(2 0 0) 0.2481 0.2482 0.04 63.43 63.43 0.00
(2 2 0) 0.1287 0.1286 -0.08 30.48 30.48 0.00
(3 1 0) 0.1062 0.1062 0.00 25.38 25.38 0.00
(1 3 0) 0.2542 0.2542 0.00 223.99 224.00 0.01
(4 0 0) 0.0386 0.0384 -0.56 227.24 226.93 -0.31
(3 3 0) 0.0111 0.0103 -7.10 233.71 223.79 -9.92
——————————————————————————————————————————————————
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problem can be solved by means of symmetry arguments
except for one ambiguity.  It is possible to overlay intensity
maxima of  image 1 with such of image 2, or alternatively, by
a half-unit-cell shift along the [010] direction (y-direction in
Fig. 9) with intensity minima of image 2.  A second problem
arises due to the fact that neither the exact defocus values
of the images 1 and 2, nor the relative focal difference
between them are known with sufficient precision.  In order
to solve these problems, image simulations were carried out
with the automatic image-scan routine described in Thust
and Urban (1992).  For different choices of the unit-cell origin,
the best fitting simulated images with respect to defocus
and specimen thickness were automatically determined.

The simulated images yielding the best fit to the
experimental images 1 and 2 are displayed at the bottom of
Figure 9.  These images, which are called image 3 and 4 in
the following, belong to a specimen thickness of 3.5 nm and
to defocus values of -30 nm and -72 nm, respectively.  On
visual standards, the correspondence between simulation
and experiment is fairly good, although not convincing.
Whereas the main contrast features, such as number and
position of minima and maxima are in good correspondence,
the experimental images appear somewhat blurred compared
to the simulations.  This discrepancy is revealed prominently
when using the evaluation function defined in Equation (8)

as a quantitative measure.  Since the experimental images 1
and 2 deviate slightly from the mm symmetry of the ideal
structure, these images were symmetrized before the
comparison with the perfectly symmetric  simulations (Thust
and Urban, 1992).  After symmetry correction, a relatively
large residual value of 28 degrees is obtained for the
evaluation function.

In order to check the capability of stochastic algo-
rithms to solve the specific reconstruction problem, at first
not the experimental images 1 and 2, but the simulated
counterparts 3 and 4 (Fig. 9) were used as input for the
reconstruction.  For reasons of flexibility and speed, the
reconstructions presented in this section were performed
exclusively with the Simulated Annealing algorithm.  With
53 beams within the objective aperture, a reconstruction
down to values of the evaluation function close to 10-2

degrees takes less than 10 minutes of CPU time on a DEC
3500 ALPHA workstation.

The reconstructed EPW is displayed in Figure 10
together with the “correct” EPW used as input for the sim-
ulation of the images 3 and 4.  It can be seen by visual
comparison that the correspondence between input and
output EPW is perfect.  A quantitative comparison of the
wave functions yields an even better correspondence than
that shown in Tables 1 and 2 for the Ni

4
Mo calculations.

The fact that the reconstruction from simulated images of
YBa

2
Cu

3
O

7
 is more precise, even though the number of

beams is almost twice as high, can be explained by the smaller

Figure 7.  High-resolution image of YBa
2
Cu

3
O

7
 taken along

the [100] zone axis.  The image was recorded with a CCD
camera from the photographic negative and consists of 512
x 512 pixels.  The area chosen for reconstruction is
surrounded by a frame of size 3.5 x 3.5 nm2.  A projected unit
cell of YBa

2
Cu

3
O

7
 is marked within the frame.

Figure 8.  High-resolution image of YBa
2
Cu

3
O

7
 taken from

the same specimen area as the image of Figure 7, but at a
different defocus setting. See legend of Figure 7 for details.
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aperture used for the simulation of the YBa
2
Cu

3
O

7
 images.

The aperture with a reciprocal radius of 5.5 nm-1 excludes
such beams from the imaging process which lie close to the
information limit of the microscope.  As has been explained
in the previous section, the contrast contributions of such
beams are extremely small and may fall below the numerical
detection limit.

It was further investigated if a premise-free determi-
nation of the relative focal distance between two images is
possible by means of the Simulated Annealing algorithm.
Again, simulated images were used first to test the feasibility
of such a determination.  Several trial reconstructions with
different assumptions about the focal distance between the
simulated images 3 and 4 of Figure 9 were made.  It can be
seen in Figure 11 that the smallest obtainable value of the
evaluation function increases strongly in the case that the
reconstruction is based on a wrong assumption about the
focal distance. The correct value of 42 nm is revealed
unambiguously by a steep minimum of the evaluation
function.

After having assured that a determination of relative
focal distances is possible from simulated images, the same
procedure was applied to the experimental images 1 and 2
shown in Figure 9.  Similar to the simulations, a single
minimum of the evaluation function is found in the
experimental case.  The value of the focal distance between
images 1 and 2 is 36 nm and differs by 6 nm from the value
determined from the simulated images 3 and 4.  Whereas in
the simulated case the minimum of the evaluation function
is very sharp and has a value of approximately 10-2 degrees,
the experimentally determined minimum is much broader and
has a value of 8 degrees (Fig. 11).

Amplitude and phase of the wave function resulting
from the reconstruction of the experimental images 1 and 2
are shown in Figure 12.  The projected positions of the
cations Y, Ba, and Cu are clearly revealed in both the
amplitude and the phase image.

As is expected for a thin, weakly scattering object,
the atomic positions are revealed by minima in the ampli-
tude and by maxima in the phase image.  Whereas the
asymmetry of the input images is dominant in the amplitude
image, the phase image yields an almost distortion-free

Figure 9.  (1)  Image containing 3 x 9 identical unit cells of
YBa

2
Cu

3
O

7
, which is obtained after averaging over the unit

cells surrounded by the frame in Figure 7.  (2)  Image
obtained after averaging over the unit cells surrounded by
the frame in Figure 8.  (3)  Simulated image which fits best to
image 1.  (4)  Simulated image which fits best to image 2.  A
projected YBa

2
Cu

3
O

7
 unit cell is marked in the images.

Figure 10.  (a)  Amplitude (top) and phase (bottom) of the
EPW reconstructed from the simulated images 3 and 4 of
Figure 9.  (b)  Amplitude (top) and phase (bottom) of the
EPW which was used as input for the simulation of the
images 3 and 4 of Figure 9.  The resolution of the displayed
EPWs is limited to 5.5 nm-1.  The common phase factor is
chosen to result in the phase value zero for the unscattered
beam.  A projected YBa

2
Cu

3
O

7
 unit cell is marked in all

images.
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projection of the cation structure.  A general feature of the
experimentally reconstructed EPW is a lack of high-
resolution detail when compared with the simulation of
Figure 10.  As is the case for the simulated EPW of Figure
10, the projected oxygen positions atoms are not directly
visible in the experimental reconstruction.

The tests performed in parallel with the simulated
images allow judgement of the reliability and precision of
the reconstruction technique directly on the level of the
EPW.  In experimentation, such a direct check is not possible.

Nevertheless, the quality of the reconstructed EPW can be
judged indirectly by a comparison of the images
re-calculated from the EPW with the experimental input
images.  Such a comparison is shown in Figure 13.  (In this
context, it is of importance to distinguish between
“simulated” and “recalculated” images: simulated images
are based on a known structure model and result from a
calculation of the dynamic electron scattering process and
of the subsequent electron optical imaging process.  In
contrast, recalculated images result purely from a simulation
of the electron optical imaging process based on a
reconstructed EPW.) The difference between the
experimental input images and the recalculated images is
hardly visible by eye in Figure 13, which means that the
EPW displayed in Figure 12 reproduces almost perfectly
the experimentally observed image contrast.  The
corresponding value of the evaluation function is 8 degrees,
whereas a comparison of the experimental images with the
best fitting simulated images (Fig. 9) yields a much higher
value of 28 degrees.  Although such an indirect comparison
on the image level cannot be seen as a strict proof, the
obtained results indicate that the reconstructed EPW dis-
played in  Figure 12 is of  considerably higher relevance
with respect to the experiment than is the EPW displayed in
Figure 10, which was obtained via the comparison with
simulations.

There are various reasons which could be respon-
sible for the observed discrepancies between reconstruction
and simulations.  Although a detailed treatment is out of
the scope of the present paper, some of the more evident
causes are discussed in short.  Compared to the simulations,
the most prominent discrepancy observed in experiment is
the lack of high-resolution detail.  This can be already
observed by eye when comparing the images of Figure 9,
and is revealed quantitatively in Figure 11 by the slow
variation of the experimental evaluation function with the
assumed focal distance.  The sharp minimum of the simulated
counterpart can only be synthesized in the presence of
high-frequency beams which have a small focal repetition
period ∆Z = 2/(λg2). Apart from instrumental instabilities, a
lack of high-resolution detail in the experimental images could
be due to static atom displacements and a partial
amorphization of the specimen caused either by ion milling
during sample preparation or by electron irradiation during
observation.  Such effects have not been taken into account
in our simulations.  Another point to discuss is the fact that
individual unit cells in the experimental input images of Fig-
ures 7 and 8 differ from each other in image contrast.  A
spatial averaging, as applied in this work, is not justified in
a strict sense, since local structural variations cannot be
treated as random noise.  Therefore, the spatial averaging
causes a degradation of non-periodic high-resolution detail.
However, possible problems arising from the violation of

Figure 11.  Display of the smallest achievable value of the
evaluation function in dependence of the assumed focal
distance between two images.  The upper graph refers to
reconstructions based on the simulated images 3 and 4 of
Figure 9, the lower graph refers to reconstructions based
on the experimental images 1 and 2 of Figure 9.
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strict periodicity are not specific for the phase-retrieval
procedure and arise also when comparing periodic
simulations with real-life images.

Conclusions

Stochastic algorithms are highly efficient tools for
the reconstruction of the exit-plane wave function belonging
to periodic high-resolution electron microscopic images.
Reconstructions with an accuracy close to analytical can
be achieved on standard workstations within the time scale
of interactive computer sessions.  Whereas the classical
PAM and MAL focal-series reconstruction methods seem
indispensable for the solution of non-periodic problems,
stochastic algorithms are superior in the case of periodic
problems, because only two input images are mostly
sufficient for a fully nonlinear reconstruction.  Furthermore,
since most high-resolution images contain periodic areas,
stochastic algorithms can be applied for a premise-free
determination of relative defocus intervals.  Amongst the
two types of algorithms applied in this work, we prefer the
Simulated Annealing algorithm over the genetic algorithm.
First, the Simulated Annealing algorithm can be implemented
far more efficiently in this context and, secondly, the
adjustment of the convergence behavior turned out to be
more flexible and user friendly.
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Discussion with Reviewers

G. Möbus:  If two images (focal values) are now considered
to be sufficient to retrieve the exit wave function, why is
one image still not enough?
Authors:  Although we have no general proof, we found
that a single input image can, at least in special cases, be
sufficient to retrieve the EPW uniquely.  By using only image
2 shown in Figure 4, it is possible to retrieve the
corresponding EPW by means of the Simulated Annealing
algorithm in the 8-beam mode.  The uniqueness and the
accuracy of the solution were checked with extreme care in
this special case: twenty different program runs using
different random numbers yielded identical results,
indicating that the retrieved EPW is unique.  The accuracy
of the retrieved Fourier coefficients was surprisingly of the
same quality than that of the corresponding two-image
reconstruction.  With respect to a potential practical
application, one important remark has to be made: in the
case of a reconstruction from one single image, the search
space is covered densely with local minima of the evaluation
function, which can extend even below a value of 1°.  In
order to determine the EPW purely on the basis of image 2
shown in Figure 4, an extremely slow cooling rate has to be
chosen, and the required numerical effort increases roughly
by an order of magnitude compared to the two-image
reconstruction.  Under experimental conditions, such small
differences of the evaluation function, which lead to the
correct solution, are likely to be buried in noise, and a single-
image reconstruction would most probably yield unreliable
results.

G. Möbus:  The comparison of performance for the MAL-
method (Coene et al., 1996) and the new stochastic method
is quite complicated, since four features have been changed
at once: (i) reciprocal space instead of real space, (ii) global
optimization instead of local optimization, (iii) correlation
instead of chi-square of Maximum Likelihood theory, (iv)
perfect crystals instead of crystal defects.  What do the
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authors think about mixed techniques such as a stochastic
global optimization of a dislocation EPW in real space?  By
how many orders of magnitude would the calculation time
increase (roughly)?
Authors:  The number of parameters describing the EPW
increases considerably when changing from Fourier to real
space.  Using a sampling rate of 40 pixels/ nm, the real-space
description of a relatively small motif of size 1 nm x 1 nm
requires already 1600 pixels.  Due to the non-linear character
of the imaging process, the representation of the EPW
requires fortunately only half of the sampling rate used for
the digitization of the input images.  As a consequence, one
quarter of the above calculated pixel number is actually
necessary to represent the corresponding two-dimensional
EPW, i.e., 400 complex numbers have to be determined in
order to reconstruct only a small 1 nm x 1 nm patch.

It is important to note that this statement holds only
for periodic motifs.  The number of involved real-space pixels
becomes even higher in the non-periodic case, since the
margins of the field of view cannot be reconstructed within
a distance corresponding to the point spread of the
microscope (see, e.g., Thust et al., 1996a).  Whereas the
sizes of the input images and the output EPW are identical
for a periodic object, the reconstructible area of a
non-periodic EPW is smaller compared to the input image
size.  As a consequence, the numerical efficiency
(computation time per image area) can be substantially lower
for the non-periodic case, depending on the particular
imaging conditions in use and on the total area to be
reconstructed.

From the above considerations, it follows that the
real-space reconstruction of non-periodic objects, which
extend typically over several nanometers in size, would
involve by several orders of magnitude more parameters
than have been treated in the body of the paper.  It is difficult
to estimate the dependence of the required calculation time
on the number of involved parameters, since the
computational effort may increase from linear (best case,
linear imaging conditions) to exponential (worst case,
strongly nonlinear imaging conditions).  In our experience,
stochastic algorithms are not well suited for the solution of
such high dimensional problems, as is the real-space
treatment of a crystal defect.  One could even doubt if a
real-space reconstruction of a defect is still feasible using
stochastic algorithms.  As long as approximately twenty
high-quality through-focus images are available, the choice
of traditional deterministic reconstruction algorithms will
be the better strategy.  The real strength of stochastic
algorithms lies in their capability to solve the phase problem
for a small set of unknowns when only very few input data
are available.  This property makes stochastic algorithms
superior to the alternative techniques in the field of periodic
objects.

P.A. Stadelmann:  What could be expected from either the
genetic or stochastic algorithms when the information
beyond the Scherzer resolution limit is degraded by 3-fold
astigmatism?  Should we not use such a technique when
3-fold correctors will be installed in HREM microscopes?
For example, in the JEOL 4000 EX, 3-fold astigmatism
introduces phase shifts larger than π/4 for spatial
frequencies close to its Scherzer resolution limit.
M. Hÿtch:  The exit wavefunction reconstruction for the
experimental case is convincing but the experimental con-
ditions are assumed to be known.  What happens in the
presence of misalignments like beam tilt or astigmatism?
Would it not be possible to include these as extra parameters?
Authors:  Of course, the neglect of anisotropic aberrations
like beam tilt or 3-fold astigmatism, which is present on most
current ultra-high resolution instruments, will affect the
reconstructed EPW, regardless of the particular
reconstruction technique in use.  Two viable strategies can
be employed to tackle the problem: first, an aberration-clean
microscope alignment can be achieved by means of
correction elements which compensate a priori all
anisotropic aberrations like coma, 2-fold and 3-fold
astigmatism, or, secondly, such aberrations can be removed
a posteriori from the reconstructed EPW by the application
of a numerical phase plate.  Unfortunately, these techniques
were not yet established during the progress of the work
shown here.  Concerning the hardware approach, a 3-fold
astigmatism corrector is meanwhile available from Philips
(Philips Electron Optics, Eindhoven, The Netherlands) for
their high-resolution microscopes which allows one to avoid
the occurrence of any anisotropic aberration during the
experiment (Overwijk et al., 1997).  Alternatively, the soft-
ware correction approach is applied routinely in the field of
phase retrieval HRTEM (Thust et al., 1996b).

P.A. Stadelmann:  Can you comment on the importance of
crystal misalignment or tilt for the success of the phase
retrieval?
Authors:  In the case of beam tilt or other anisotropic
aberrations, the EPW is modified by the imaging system on
its way from the object plane to the image plane.  In the case
of crystal tilt, the situation is quite different.  The crystal tilt
is not an instrumental artifact but is a real effect which is
physically present in the object plane.  It is independent
from the imaging or reconstruction process and behaves
like an object property.  If no assumptions about the object
are made, an EPW affected by crystal tilt will thus be
retrieved with the same success as any other “non-tilted”
EPW.  Whereas the reconstruction is straightforward, the
direct interpretation of “tilted” EPWs can be difficult.  In
the case of strong crystal tilt, it might be necessary to
compare the experimentally retrieved EPW with
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corresponding simulated EPWs in order to draw conclusions
about the specimen structure.

P.A. Stadelmann:  Did you ever try to apply these recon-
struction schemes to more complicated crystal structures
like the large unit cell oxide Nb

10
Ti

2
O

29
, where a couple of

hundreds of beams contribute to the image?
Authors:  The examples of the relatively complicated unit
cell of YBa

2
Cu

3
O

7
 involving 53 beams are the maximum we

tried out.  Since we did not encounter any problems, we
think that the capacity limit of the discussed algorithms has
not yet been reached and that even more complicated unit
cells can be tackled.  It is, however, difficult to predict
whether several hundred beams are still in reach for the
discussed algorithms, since the feasibility would also
depend on factors like the number of input images, the
available computing power and the total computation time,
which is still regarded as acceptable.

P.A. Stadelmann:  What would be the necessary computer
power in MIPS (or Mflops) to perform real-time phase
retrieval using the “Stochastic Algorithm” for a typical
perovskite crystal BaTiO

3
?

Authors:  It is difficult to give an exact number, since the
outcome will depend on factors like the desired resolution
(number of beams), the number of input images, the degree
of nonlinearity involved in the imaging process and the
desired accuracy of the results.  Especially the last factor is
of considerable importance, since the treatment of the phase
retrieval problem down to a cross-covariance level of 10-2

degrees, which has been impressively demonstrated with
simulated input images, costs much computational effort,
but is completely overdone in experiment due to the
existence of noise and other data inconsistencies.
Reconstructions based on experimental data can thus be
executed much faster, since the best obtainable values of
the evaluation function are rarely smaller than approximately
one degree.  On a reasonably up-to-date PC or workstation
(≈ 30-100 Mflops), the experimental reconstruction of a sim-
ple unit cell like that of BaTiO

3
 should require CPU times

which range from a couple of seconds in the best case, to
some tens of seconds in the worst case.

P.A. Stadelmann:  What do you think of combining your
algorithms with CRISP (crystallographic image processing)
or equivalent kinematical programs?
Authors:  Typical crystallographic image processing
programs rely on the fact that the sample is a weakly
scattering object or even a weak phase object, implying
that the scattered intensity is small compared to the intensity
of the incident beam.  In a strict sense, it is doubtful to
apply such programs to inorganic crystals important to
materials science, because nonlinear imaging theory, which

is important for specimen thickness values exceeding a few
nanometers, is completely ignored.  Moreover, the obtained
results exhibit the Friedel symmetry of the input images,
making an a posteriori software correction of optical
aberrations impossible.  The correct treatment of aberrations
on the level of a reconstructed EPW would be clearly superior
to the usual symmetry averaging procedures used in crys-
tallographic programs, since the symmetry averaging
approach is based on purely phenomenological considera-
tions and is not correct from a mathematical point of view.
We think that the incorporation of the stochastic approach
into crystallographic image processing packages would be
a real benefit in many aspects.

M. Hÿtch:  For the solution of the experimental case, how do
the contrast levels compare?  It seems that again the best
fitting wavefunction has the appearance of a wavefunction
emerging from a very thin crystal.
Authors:  Taking the zero-beam intensity as a reference, we
found that the total scattered intensity is in general smaller
for experimentally reconstructed EPWs than for simulated
EPWs.  This behaviour corresponds to findings made in
image simulation, where it is was observed that the
experimental image contrast can be considerably lower than
the corresponding simulated contrast, taking the image mean
value as a reference.  Since both methods - comparison
between experimental and simulated images, on the one hand
and comparison of reconstructed and simulated EPWs, on
the other hand - are based on the same kind of experimental
input images, it is not surprising that a similar “low contrast”
behaviour is observed in both cases.  Such low contrast
output can be obtained in simulation only for relatively small
values of the specimen thickness.  In our case, a wrong
measurement of the image mean value due to a possible
“fog” effect cannot be responsible for the discussed discrep-
ancy, since the image mean value does not enter our recon-
struction procedure (we use the cross-covariance instead
of the cross-correlation).  At the time being, we have no
stringent explanation for this effect.

P.W. Hawkes:  The absolute values of the intensities
measured on experimental images are not necessarily cor-
rect, for reasons that are well understood but not easy to
remedy.  How will such measurement errors affect the
proposed algorithms?
Authors:  Indeed, the optical density of the photographic
emulsion need not be related linearly to the charge density
of the incident electrons.   However, a nearly linear
dependence can be obtained by making exposures with
sufficiently low electron doses.  If one nevertheless uses
input images which exhibit saturation or even cut-off effects,
those nonlinearities will also affect the reconstructed EPW.
Interestingly, the introduced errors become smaller with an
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increasing number of input images.  This is due to the fact
that the contrast distortions affecting the various input
images constitute mutually inconsistent information which
is damped out due the intrinsic averaging process inherent
to the reconstruction.
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