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Abstract

Electron holography and other wave reconstruction
techniques allow one to directly determine the scattered
wave function at the exit surface of an object up to the
information limit of the electron microscope. Based on the
knowledge of the reconstructed complex electron wave and
using either a linearized eigenvalue system or a discretized
form of the diffraction equations, the scattering problem
can be inverted. This, in principle, enables the direct retrieval
of the local thickness and orientation as well as the
refinement of potential coefficients or the determination of
the atomic displacements, caused by a crystal lattice defect,
relative to the atom positions of the perfect lattice. Two
special inverse problems as direct solutions of the electron
scattering equations can be deduced considering the sample
orientation as perturbation, or solely the atomic
displacements, which are given by the zeros of a function
with an incompletely known Fourier spectrum. The numerical
algorithms resulting from the fundamental relations imply
ill-posed inverse problems.
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Introduction

As often occurring in many physical investigations,
in the mathematical sense, the direct solution of the
diffraction equations implies an inverse problem. Such
inverse problems are difficult, always fascinating, and in
most cases ill- or improperly posed [2, 8, 22]. Ill- or improperly
posed means that one or all of the requirements are violated
usually characterizing physics, i.e. the existence, uniqueness
and stability of a solution. Although inverse problems
violate especially the existence of unique and continuous
solutions for arbitrary data, they are of great practical
importance if the trial-and-error solution demands a large
variety of possible solutions and models to be tested, as
they provide a better insight into the basic relations of the
physical phenomena.

For instance, the imaging of crystal defects by either
high-resolution transmission electron microscopy or with
the help of electron diffraction contrast technique is well
known and routinely used. Though theoretical image
calculations tend to establish standard rules of interpretation,
a direct and phenomenological analysis of electron
micrographs is mostly not possible, thus requiring the
application of image simulation and matching techniques.
Images are modelled by calculating both the interaction
process of the electron beam with an almost periodic
potential of matter and the subsequent Fourier imaging
process including the microscope aberrations. The images
calculated are fitted to the experiment by varying the defect
model and the free parameters. This trial-and-error image
matching technique is the indirect solution to the direct
scattering problem, used to analyse the defect nature under
investigation.

Electron holography and other reconstruction
techniques [3, 9, 10, 11, 27] permit the determination of the
scattered wave function at the exit surface of the crystal
either directly from the hologram or from defocus series, up
to the information limit. For example the side-bands of a
Fourier-transformed hologram represent the Fourier
spectrum and its conjugate of the complete complex image
wave, from which the object wave can be reconstructed by
including a reciprocal Scherzer filter in the reconstruction.
Thus, both the reconstructed amplitudes and phases can
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be compared to trial-and-error calculations [10, 12].
The question arises whether it is possible to calcu-

late the object potential or the positions of the atomic
scattering centres directly from the wave function at the
exit surface of the object instead of using trial-and-error
simulation techniques [5, 6, 17, 18, 19, 24]. If all atom positions
are assumed to be unknown, e.g., for an amorphous object
with random atom positions, the argument of “blocked
information channel” [24, 25] does not allow to determine
more than one atom per “resolution area”. Inverse problems,
generally  dealing with insufficient measured data, require
always a priori physical related information. If the
assumption is made that the object is almost a perfect crystal,
the inversion problem in general refers to the finding directly
the potential from the wavefunction [4, 21], which is generally
unsolved, too. Uniqueness is guaranteed if a certain quasi-
periodicity of the thickness can be made unambiguous by
measuring at different thicknesses. But one can restrict
further the ambiguities by increasing the a priori information,
e.g., assuming that solely the displacement field of a defect
has to be determined [5, 6]. The present paper shows that
the knowledge of both the amplitudes and phases of a
sufficiently large number of plane waves scattered by the
object as well as the partial knowledge of the potential of
the perfect crystal structure imply the possibility of directly
retrieving object information, instead of using trial-and-error
simulation techniques. Two approximations are discussed
to solve the resulting inverse scattering problem without
reconstructing the whole crystal potential:

First, the special problem of retrieving the local sample
orientation is solved on the basis of the perturbation
approximation for perfect crystals, and by applying
regularized and generalized matrices to invert the resulting
linearized problem. The corresponding iteration procedure
enables the direct analysis of the moduli and phases if a
sufficient number of plane wave amplitudes can be separated
yielding local thickness and bending of the object for each
image pixel [20].

Second, based on the knowledge of the reconstruct-
ed complex electron wave and using a discretized form of
the diffraction equations, an alternative method is deve-
loped [18, 19], yielding an algebraic equation system for the
complex amplitudes and the elastic displacements. In
principle, this system enables the direct retrieval of the ato-
mic displacements, caused by a crystal lattice defect, relative
to the atom positions of the perfect lattice. The equations
are invertible provided the completeness of the plane waves
is valid (continuity of the electron current). A special inverse
problem of electron scattering is deduced considering solely
those atomic displacements given by the zeros of a function
with an incompletely known Fourier spectrum from the
scattered electron wave of which the displacement field of a
crystal lattice defect can, in principle, be retrieved.

The Direct Problem

The HREM image contrast is mainly determined by
two processes: First, by the electron diffraction owing to
the interaction process of the electron beam with the almost
periodic potential of matter and, second, by the interference
of the plane waves leaving the specimen and being
transmitted by the microscope. Assuming that the object
wave is reconstructed free of aberrations or under diffraction
contrast  conditions the influence of the microscope imaging
process itself can be neglected. Thus the image contrast is
solely determined by the interaction of the electrons with
the object potential.

The interaction of electrons with a crystalline object
is described on the basis of a periodic potential with the
electron structure factors as expansion coefficients and the
Bloch-wave method for solving the high-energy transmision
electron diffraction. Different formulations can be given,
using Bloch wave or plane wave representations of the
scattered waves, applying direct or reciprocal space expan-
sion, and direct integration or slice techniques, which, in
principle, are equivalent descriptions [23]. The object wave
in terms of modified plane waves with complex amplitudes
φ

g
 yields

o(R)=Σ
g
φ

g
 exp 2πi((k+g)R+s

g
t)

with reflections g, excitations s
g
, wave vector k, and

thickness t of a parallel-sided object. The amplitudes φ
g
 are

constant with respect to z in the vacuum outside the object,
which means that the plane waves are the stationary
solutions of the wave equation. Within the crystal, however,
the amplitudes of the modified plane waves φ

g
 are z-

dependent according to the Ewald pendulum solution as
described by the Bloch waves, which are the stationary
solution within the periodic potential.
  The basic equations of the Bloch wave presentation in
forward scattering approximation are given by the
eigenvalue system

ΣΑ
gh

C
h
- γC

g
 = 0, with

2k
z
Α

gh
=(2K.g-g2) δ

gh
 - V

g-h

yielding the amplitudes C
g
(l) of the l th partial wave and its

“anpassung” γ(l) to the dispersion of the lattice as a function
of the lattice potential (Fourier coefficient V

g
) as well as the

relative orientation of the object with respect  to the electron
beam incidence K. With these eigenvalues and vectors, for
a plane parallel perfect crystal of thickness t the complex
amplitudes φ

g
 of Equation (1) are directly given by

(1)

(2)
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φ
g
(t) = Σ (C-1)

o
(1)C

g
(1) exp (2πiγ(1)t)

or, in matrix form, with diagonal X = {exp (2πiγ(l)t)}
representing the diagonalized scattering matrix exp(2πiAt)
as follows:

ΦΦΦΦΦ=CXC-1θθθθθ

where Φ=[φ
g
] and θ are the vectors of the amplitudes of the

exit and the incident waves, respectively.
Using furthermore the deformable ion approximation

a crystal lattice defect can be included by its elastic
displacement field v as a phase shift of the Fourier spectrum
of the crystal potential. The evaluation of the quantum-
theoretical scattering problem using the high-energy forward
scattering approximation (see, e.g., [1, 7] for the derivation

and the explicit form of the equations) yields a parabolic
differential equation system for vector Φ of the complex
amplitudes of the elastically scattered electron waves:

∂Φ/∂z =  (∆ + V[eigv]) Φ

with ∆ = {ik
z
∇ 2-2(k+g)∇ }Φ/2k’

z
+2π(s

h
-s

g
)z, ∇ =(∂/∂x,∂/

∂y,0), k’
z
=k

z
+g

z
+s

g
 and the potential V=V’+iV” including the

lattice potential V’ and the absorption V” (one electron-
optical potential approximation of inelastic scattering). The
abbreviation [eigv] denotes the diagonal term in the matrix of
the Fourier coefficients according to the defect phase term.
  In addition, boundary and initial conditions have to be
applied: The linearized high-energy approximation directly
fits φ

g
(R,t) at the crystal exit surface to φ

g
(R) outside,

demanding |φ
g
(R,0)|=δ

g0
 at the entrance surface, whereas

Figure 1. Reconstruction of pairs of reflections of a Σ13-(100) Au grain boundary: (a) Fourier spectrum of the hologram (0.05
nm fringes, A. Orchowski, University of Tübingen [18, 19]) with indices of the reflections and asymmetric intensities in the
sideband showing the mistilted orientation, (b) pairs of reflections of the sideband with Gaussian window filtering, (c)
reconstructed moduli (AMP) and phases (PHA) of the reflections.

(3)

(4)

(5)
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the continuity of the derivatives has to be omitted in the
linearized case. It enables one, however, to estimate the
unknown displacements at the exit foil surface by using
Equation (5) without potential outside and inverting
Equation (5) directly at the exit surface:

{V[eigv] Φ = 2 ∆Φ}
z=t

Instead of boundary conditions one can assume a periodic
continuation to describe large extended crystal slabs, i.e.,
φ

g
(x,y,z) = φ

g
(x+X,y,z) and φ

g
(x,y,z) = φ

g
(x,y+Y,z), with slab

extensions X,Y approaching infinity.

The Wave Reconstruction

Holography with electrons offers one of the possibil-
ities to increase the resolution limit by correcting for
microscope aberrations. It also enables the complete
complex object wave to be restored. Image plane off-axis
holograms are recorded in a microscope which is equipped
with a Möllenstedt-type electron biprism inserted between,
e.g., the back focal plane and the intermediate image plane
of the objective lens [9, 10, 11, 12]. The object is arranged so
that a reference wave outside of it is transferred through
the microscope, and owing to a positive voltage of the
biprism both waves mutually overlap in the image plane
creating additional interference fringes. The intensity of the
latter is modulated by the modulus of the object wave,
whereas the fringe position is varied by the phase of the
object wave. Thus the recorded interference pattern is an
electron hologram from which both the modulus and the
phase of the object wave can be reconstructed by optical
diffraction or numerical reconstruction.

A Fourier transform d
H
(u) of the intensity distribu-

tion of the hologram generates three distinct spectral
patterns if the carrier frequency u

c
 is sufficiently high:

d
H
(u) = {δ(u)+d(u)} + {ô.eD-iχ}*δ(u-u

c
)

+ {ô*.eD+iχ}*δ(u+u
c
)

In the central region of the spectrum the zero peak
and autocorrelation occur, representing the conventional
diffractogram d(u) of the object intensity, completely
identical with that obtained from a corresponding HREM
micrograph. The sidebands represent the Fourier spectrum
of the complete complex image wave and its conjugate,
respectively, from which the object wave o(x,y) can thus be
reconstructed by means of an inverse Fourier transform
and using a reciprocal Scherzer filter eD-iχ with damping D
and aberrations χ [10, 16]. Nevertheless, the information
limit (D(u)≈0) determines the maximum transferred spatial
frequency owing to the noise in the phase distortion.
Examples are discussed in [14], where the reconstruction of

holograms of a Σ=13 (100) tilt grain boundary in gold
demonstrates the aberration free wave reconstruction and
yields amplitudes and phases of the corresponding HREM
image. A comparison with respective simulations enables
one to analyse the orientation of the grains and to determine
the particular atomic displacements at the grain boundary.
Furthermore, microdiffraction patterns from the holographic
reconstructed waves and respective defocus series can be
studied to investigate the local deviations from the perfect
lattice structure.

In the following it is important to note that, besides
the whole sideband, each single reflection of sufficient
intensity can be reconstructed separately. This provides
the possibility of noise reduction if suitable windows and
filtering are applied and if the pixels are precisely cen-tred
to avoid additional phase shifts. The environment of the
reflections included in the filtering process has to be chosen
such that the information of local distortions folded with
the reflections will be transferred to the reconstructed partial
waves. The reconstruction of the single reflections causes
modulus and phase to be dis-tributed in the partial waves,
which is the presupposition of the inversion algorithm
discussed in the following. Figure 1 shows the Fourier
spectrum of the hologram (upper row) of a Σ = 13 (100) tilt
grain boundary in gold (θ=22.6°, see [14] and preliminary
joint work [15]). The second row of Figure 1 presents the
intensities of the pairs of reflections as indicated in the
spectrum of the hologram filtered through a Gaussian mask.
The third row shows modulus (mod) and phases (pha) of
the particular reflections chosen of types 000, {002}, and
{220}, thus presenting the reconstruction of the cor-re-
sponding amplitudes φ

g
 out of the hologram. The re-

construction of the higher-order reflections is impossible
here because of the lower intensity of the latter and the
mutual overlap of the autocorrelation and the side-band.
The reconstructed amplitudes of the reflections can directly
be interpreted as bright and dark field images of the grain
boundary. The fringes remaining in the phases are due to
the term e2πi∆gR according to the tilt ∆g of the reflection pairs
of the different grains. Figure 2 presents the reconstruction
in more detail and using single reflections filtered, i. e., as
denoted by 1 and 2 the same reflections are considered as
before but separated now according to grain 1 and 2,
respectively. The additional fringes in the phases are thus
omitted, as can be seen more clearly in the presentation of
the real and imaginary part of the wave functions in the
corresponding lower rows. The shift of the fringes at the
grain boundary directly indicates the phase shift owing to
the crystal defect. The modulation in the lower frequency
range is either due to the local bending of the sample or to
thickness oscillations.

(6)

(7)



Direct retrieval of object information

459

Inversion by Linearization of the
Ewald Pendulum Solution

Equation (2) can be linearized applying perturbation
methods. Assuming that the eigenvalues γ are non-
degenerated, and by analogy with Equation (4), the
perturbation solution may read

φ = Γ Ξ Γ-1 θ

where the matrices are given by

Γ = C (1+∆), Ξ = {exp(2πiλt)}, and

λ=γ+∆{δ
ij
}+∆-1{1/(γ

i
-γ

j
)} ∆

As diagonal elements the perturbation matrix ∆
gh

 =
(∆K.g){δ

gh
}+i∆V

gh
 contains the deviation of the orien-ta-

tion ∆K from that of the original eigenvalue system K. The
non-diagonal elements describe a perturbation of the
potential as, e.g., according to optical absorption. Figure 3
demonstrates the validity of the perturbation solution
comparing Equation (8) with the exact solution (4) of the
two-beam case, which is solely chosen for the sake of
simplicity and because an explicite solution exists for this

Figure 2. Reconstruction of single reflections of a Σ13-(100) Au grain boundary separately for both grains denoted by 1 and
2, respectively: (a) Fourier spectrum of the hologram (0.05 nm fringes, A. Orchowski, University of Tübingen [18, 19]), (b)
reconstructed moduli (AMP) and phases (PHA), (c) reconstructed real (REA) and imaginary (IMA) part of the partial waves.

(8)

(9)



460

K. Scheerschmidt

situation. As for moduli and phases, for both reflections
there are remarkable deviations for |sξ| > 1 almost indepen-
dent of thickness t around the orientation of the pole sξ=0
of the exact two-beam excitation.

Starting from approximate values of thickness t
o
 and

beam orientation (k
xo

,k
yo

) gained either from a priori
knowledge or by analysing, e.g., the asymmetry of the single
reflections reconstructed from the holographically retrieved
wave function, the perturbation solution is valid within

certain intervals around t
o
 and (k

xo
,k

yo
). Equation (8) can be

expanded in a Taylor series yielding

φ(t,k
x
,k

y
) = φ(t

o
,k

xo
,k

yo
) + (t-t

o
)δφ/δt

+(k
x
-k

xo
,k

y
-k

yo
) grad

k
φ

The derivatives can directly be gained from Equations (9)
using equivalent abbreviations:

δφ/δt = Γ .δΞ/δt.Γ -1θ and
∇

k
φ = (∇

k
ΓΞ - Γ-1∇

k
ΓΞ + Γ∇

k
Ξ)Γ-1θ

The linearized Equation (10) together with the analytical
expressions (11) enable the inverse solution:

(t
,
k

x
,k

y
) = M

inv
.[φexp-φpert]

where the inverse matrix generalized and regularized by, e.g.,
the Penrose-Moore generalization M

inv
 = (MTM)-1MT, is also

given analytically using the matrix of the coefficients M =
(δΦ/δt,grad

k
Φ) of Equation (10). The series expansion (10)

as well as the resulting formalism (12) can be extended to
include also the derivatives of deviations from potential
coefficients, which are omitted here for the sake of simplicity.
That means, additional unknown object parameters can be
included in the retrieval procedure as far as the problem
remains overdetermined with respect to the unknowns. The
possibility of the inversion proposed here is based on lineari-
zation and the fact that the problem is overdetermined with
respect to the unknowns but underdetermined if the noise
is included, resulting in a least square minimization of a
suitable vector norm of the defect ||Φexp-Φpert|| = Min [2, 13].
The stability of the procedure may be enhanced by using
more general regularizations as, e.g., the Tichonov- Philips
regularization: While the Moore-Penrose inverse minimizes
the defect, an additional constraint allows one to weight
the measured data and to smooth the solution yielding,
e.g., M

inv
 = (MTC

1
M+γC

2
)-1MT with the suitable regulariza-

tion factor γ and matrices C
1
 and C

2
, respectively (see, e.g.,

[2, 13] and a forthcoming paper studying the numerical
stability of the procedure).

The algorithm (12) is the main result of the present
work, because the regularized inverse iteration can directly
be applied to each pixel in the real space representation of
the single reflections reconstructed from the hologram. On
the assumption of the basic eigenvalue system (8) and
starting with suitable local thickness t

o
 as well as incident

beam orientation (k
xo

,k
yo

) the values of thickness t and
orientation (k

x
,k

y
) are probably enhanced if Equation (12) is

applied to the measured amplitudes and phases of each
image pixel and each reflection g. Figures 4 and 5
demonstrate the applicability using pairs of reflections from
the wave reconstruction of Figure 1. In both cases the same

(10)

Figure 3. Comparison of the exact two-beam solution (a) of
moduli (Amp) and phases (Pha) of transmitted (0) and
diffracted beam (g) with the corresponding perturbation
solution (b). Differences occur for orientations with |sξ|  1,
where the perturbation is no longer valid (s = Bragg
deviation, t = crystal thickness, ξ = extinction distance).

(11)

(12)
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Figure 4. Non-stabilized iteratively determined local sample thickness t and beam orientation (K
x
,K

y
) retrieved from the

reconstructed pairs of reflections of Figure 1 for arbitrary start values of thickness t (resulting in stable solutions th=0 in the
hole, and tp = 0.77ξ on the plateau) and given start values of orientation K=(0.51, 0.71, 0) and K=(-0.28, 1.21, 0) for the left (a)
and right (b) columns, respectively.
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seven-beam eigenvalue system was used to model the
diffraction behaviour. Here no further assumption was made
for the initial thickness t

o
, the best fit is found searching in

an extended thickness intervall for the absolute minimum of
the defect of the vector norm. Different initial orientations
(Fig. 4a: k

0
=(0.51, 0.71, 0.0), Fig. 4b: k

0
=(-0.28, 1.21, 0.0)) yield

very noisy results in thickness t and orientation (k
x
,k

y
) for

the 64x64 pixels retrieved. Nevertheless, both cases show
almost the same values tp ≈ 0.77 ξ and th = 0 for the plateau
of the object and the hole, respectively. As the iteration
procedure seems to be amplifying the noise, the regulari-
zations should further be enhanced. Figure 5 shows a mean
value of the retrieved differences in thickness and orientation
with values larger than a certain threshold omitted.

Inversion of the Discretized Diffraction Equations

The differential equations (5) allow a diffusion-like
interpretation and can be discretized using standard
difference algorithms [18, 19]. An algebraic equation system
results, which formally reads

Φ(i,j, k-1) =
F1 {Φ(i,j,k),Φ(i±1,j,k),Φ(i,j±1,k),v(i,j,k)}

for the complex amplitudes Φ and the elastic displacements
v at the (xyz)-grid points (i,j,k), (i±1,j,k), (i,j±1,k) and (i,j,k±1)
by which the whole object is represented.

With I,J,K denoting the maximum number of grid
nodes in x, y, and z direction, respectively, the periodic
boundary conditions and the initial conditions may simply
read Φ(i,j,k) = Φ(i+I,j,k), Φ(i,j,k) = Φ(i,j+J,k) and |φ

g
(i,j,0)|=δ

0g
,

φ
g
(i,j,K) = F

g
(i,j), respectively, with F

g
 derived from the wave

reconstruction for a certain number of reflections. At the
exit surface, an additional equation is given by applying the
forward integration of Equation (13) outside the crystal to
determine φ(i,j,K+1) from φ(i,j,K), where the potential is
assumed to be vanishing because of the vacuum
propagation. The backward integration, however, using
again Equation (13) then enables the determination of v(i,j,K)
at the exit surface. This is the numerical realization of the
symbolic Equation (6), corresponding to the additional
assumption of the continuity of the derivatives for the
linearized equations, too.

Within the crystal the difference Equations (13) are
equivalent for backward (k-1) and forward (k+1) integration
with respect to the beam propagation, thus being insufficient
for determining both the wave amplitudes Φ(i,j,k) and the
elastic displacement field v(i,j,k) at the grid points (i,j,k).
This becomes also obvious by simply numbering the
unknowns and the equations at each node: for N beams,
there are N unknown amplitudes and 3 unknown
displacements, and N relations according to Equation (13),
using either (k-1) or (k+1). One of the difference equations,
however, can be replaced as follows: While the optical
potential in the reciprocal space representation is generally
non-hermitian, the hermiticity of the potential V′ and of the

“absorption” V″ yields the equation of continuity for the
whole current I= Σ φ

g
φ*

g
. The continuity equation may then

Figure 5. Local thickness variations ∆t and distribution of
the local sample bendings (∆K

x
,∆K

y
) reconstructed for

Figure 3 after reduction of the noise oscillations owing to
thresholds 0.98t

o
<∆t<1.02t

o
 and 0.9k

o
<∆k<1.1k

o
.

(13)
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read

∂I/∂z = Φ∇ 2Φ*-Φ*∇ 2Φ+

2(k+g)∇ I-2ΦV’[eigv]ΦΦΦΦΦ*

The equation of continuity can be discretized by analogy
with the discretization of the differential equations above.
The differential operator, however, yields mixed terms
between adjacent nodes (i,j,k) and (i±1,j±1,k):

F
2
{v(i,j),Φ(i,j,k+1),Φ(i,j,k),

Φ(i±1,j,k),Φ(i,j±l,k)} = 0

By analogy with the Gelfand-Levitan-algorithm (see, e.g.,
[28]) an additional equation results by inverting the equation
of continuity, which is a kind of completeness relation,
yielding

ΣgQge
2πigv = 0

for Equation (15) as well as for the additional boundary
condition previously discussed. Coefficients Qg are
explicitely given in [18]. Thus, in principle, the retrieval of
the displacements v is given by the remaining inverse
problem (16), implying to find the root of a function given
by an incomplete Fourier transform.

The inverse problem (16) is ill-posed for two reasons:
Only one equation has to be solved for the vectorial root
v(i,j,k) at node (i,j,k). The spectrum Q

g
(i,j,k) is incomplete

and noisy. This results in unstable numerical solutions using
standard algorithms to find the roots, owing to the existence
of a large number of subsidiary roots. Different algorithms
are being tested, viz. the Newton-Raphson algorithm itself
to solve Equation (16), and genetic algorithms as well as
neuronal networks. However, there is no stable solution up
to now, or the algorithm is still too time consuming for
application. Besides the numerical solutions, transforming
Equation (16) yields an iterative form as a kind of quasi-
regularization if the following relations for the arguments
are used

cos[2π(g-h)v+argQ
g
-argQ

h
] =

Σ(|Q
g
|2-|Q

h
|2)/2|Q

g
||Q

h
|

The algorithm demands the iteration for linearly independent
coefficients, thus coplanar vectors g leave one component
unconsidered. Analytical solutions to equations (17) can
be performed if four terms at a maximum are considered [19].
Furthermore, Equations (17) refer to an overdetermined
system in the same manner as discussed for Equations (10-
12).

Conclusions

Both the direct solutions (12) and (13, 15), i.e., the
explicit evaluation of thickness and orientation as well as
the retrieval of the atomic displacements from a recon-
structed electron wave function at the exit surface of an
object, result in particular inverse problems of the first kind,
viz. the analysis of object parameters from measured data.
Thus, from the mathematical point of view the retrieval
procedure is an ill-posed inverse problem requiring
additional information, e.g., the periodicity of the object,
the thickness, the orientation and the unknown
reconstructed displacements in order to make the process
stable and continuous, i.e., to avoid singularities, and to
restrict the manifold set of solutions. Open questions arise,
e.g., owing to the assumptions of cyclic boundary condi-
tions, the applicability of the completeness relation to the
backward iteration and for singular coefficients. The
procedure described has transformed these difficulties to
the mathematical problem of overdetermined equation
systems and of determining the roots of a function with an
incomplete Fourier transform. The uniqueness and the
stability of the solutions are determined by the regularization
methods applied, which should be discussed in more detail
in a forthcoming paper.
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Discussion with Reviewers

Reviewer I: How does the retrieval technique compare with
the conventional image simulation methods, when applied
to the same specimen?
D. van Dyck: Why did you not use a simple hypothetical
structure to retrieve from? Why do you not consider the
whole problem as one optimistic problem where the model
is fitted to the data set without additional approximations?
Author: The approximations, i.e., perturbation or
discretization, allow the direct solution of the scattering
and imaging problem considerably reducing the parameter
space, which has to be investigated. I hope this will
overcome some ambiguities in finding optimistic values in
trial and error image matching techniques. For simple models
the amplitudes and phases are simulated by usual methods,
with the retrieval procedure then correctly covering
thickness and beam orientation. This is used to test the
validity of the method and to find suitable regularizations.
However, this work is not yet finished for publication.

D. van Dyck: In the literature the deformable ion model is
used in connection with the column approximation. Is this
also the case here?
Author: No, the differential equations are used in full
generality as cited by Anstis and by Howie and Basinski.
The deformable ion model allows one to describe defects
by a phase factor in the potentials, the applicability of this
simplification should be discussed later on.
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D. van Dyck: How can the many-beam solution be decoupled
into two-beam cases that can be inverted separately?
P.W. Hawkes: How realistic is the linearization by
perturbation solution in application?
Author: The many-beam case is not decoupled, but the
perturbation is only used to find a linearization, which is
invertible around suitable starting values known a priori.
The two-beam solution is studied only for comparing the
perturbation with analytically known exact solutions, and
to give an impression of the validity of the approximation.
The validity range of the perturbation seems to be
sufficiently large, nevertheless, the applicabillity is not yet
clear because of the instabilities, etc., typical of inverse
problems. Beyond the validity range, a new start value can
be chosen in the iteration procedure.

P.W. Hawkes: Is the situation catastrophic if the problem is
over- or underdetermined as you stated?
Author: No, because this is typical of inverse problems.
Without noise, the system is overdetermined and cannot
be inverted in a simple manner. With noise, however, the
system is underdetermined, which offers the possibility of
minimizing suitable norms as described. This transforms
the ill-posed problem into a well-posed one, which, however,
may be ill-conditioned. The instabilities are due to bad
conditions and are enhanced by regularizations.

M.A. O’Keefe: Why do you use the term “direct retrieval”
whereas you have to apply image processing and
holographic techniques inorder to first extract the electron
wave, and then to determine the object properties
iteratively?
Author: There are always two steps to be solved, viz. the
reconstruction of the wave function and the retrieval of the
object properties. In both cases here, the trial and error
matching technique usually applied is replaced by the
mathematically inverse problem which corresponds to direct
solutions in physical context.

M.A. O’Keefe: Any HREM or holographic image will have
contrast determined not only by the interaction of the
electrons with the object, but is influenced in complicated
manner by the interferences in the microscope. Furthermore,
if the reflections are considered separately, the information
spread out due to defects will be missing from the
reconstruction. In which way is this considered in the
reconstruction process?
Author: Therefore the information limit is discussed not the
point resolution limit, including all the aberrations of the
microscope, i.e., the damping envelopes, too. Using the
holographic reconstruction technique with a suitable phase
plate allow one to correct these effects up to the information

limit determined by the beam divergency and the microscope
instabilities. The perturbation solution is solely applicable
to the separated reflections of perfect structures, but the
discretization proposed includes crystal defects and allows
generally a finer sampling, without any restriction.

Note added in proof:

For the forthcoming paper mentioned in the text
(details, numerical tests, etc.) cf. e.g., Scheerschmidt K (1998)
Retrieval of object information by inverse problems in
electron diffraction. J Microsc 190: 238-248.


