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Abstract

The problem of quantitative interpretation of high-
resolution electron micrographs is studied in the framework
of parameter estimation. Ideally, quantitative interpretation
means that unknown structural parameters of an object such
as atom types and coordinates are determined from fitting
with the experimental dataset.  However, in the imaging process,
the influence of these parameters is completely scrambled
over a large area of the image. As a consequence, the fitting
becomes a search process in the higher dimensional space of
all coupled parameters. The real importance of the so-called
direct methods such as holographic exit wave reconstruction
and direct structure retrieval is that they restore (deblur) to
some extent the imaging process so as to unscramble the
influence of the different model parameters. In this way the
dimension of the search space becomes manageable. In this
framework the concept of resolution in the sense of Rayleigh
is not valid anymore, but it has to be replaced by the notice of
parameter precision. In case two atoms are very close, the
parameter space may become degenerate so that the atoms
cannot be discriminated. The probability of this degeneracy
to occur is a function of the distance between the atoms and
the dose of the imaging particles.
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Introduction

The ultimate goal of high-resolution electron
microscopy is to determine the atomic structure of an object.
In this respect the electron microscope can be considered as
an information channel that carries this information from the
object to the observer.

The transfer of information proceeds in three
successive steps as sketched in Figure 1. First, the electron
interacts with the atoms in the object, through multiple
scattering. Secondly, the exit wave of the object is transferred
through the microscope to the image plane. This process is
described by a convolution product with the impulse response
function  (point spread function) of the electron microscope.
Since the imaging process is coherent, both the exit wave and
the impulse response function are two-dimensional complex
functions with an amplitude and a phase. In the last step, the
image is recorded either on photographic film or by a charge-
coupled device (CCD) camera. In this step only the intensity
of the image wave is recorded and the phase is lost. Incoherent
effects are changes in the imaging conditions causing changes
in the image intensity that are integrated during the time of
recording.

A major problem is the interpretation of the image.
Indeed, the structural information (atomic types and positions)
of the object is usually hidden in the images and cannot easily
be assessed. Therefore, a quantitative approach is required in
which all steps in the imaging process are taken into account.
Two main approaches have been followed so far in the
literature:

(a) the indirect approach in which the images are
simulated for various plausible trial structures of the object
and compared with the experimental images.

(b) a direct approach in which the lost phase
information is retrieved using holographic techniques so as
to “deblur” the effect of the microscope and to reveal directly
the atomic structure of the object.

In this paper, we will discuss the problem of quantitative
interpretation of the high-resolution images in the framework
of parameter estimation. It is shown that both direct and indirect
methods fit within this framework. But only direct methods
can make quantitative structure determination possible for
completely unknown objects. We will also discuss the problem
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of resolution in the same context.

Quantitative Image Interpretation

In principle, one is not interested in high-resolution
images as such but in the structure of the object under study.
High-resolution images are to be considered as data planes
from which the structural information has to be extracted in a
quantitative way. Ideally, this should be done as follows:  one
has a model for the object and for the imaging process (Figures
1 and 2), including electron object interaction, microscope
transfer and image detection. The model contains parameters
that have to be determined by the experiment. The parameters
can be estimated from the fit between the theoretical images
and the experimental images.  The goodness of the fit is
evaluated using a criterion of goodness of fit such as likelihood,
mean square difference or R-factor (cf. X-ray crystallography).
For each set of parameters of the model, one can calculate the
value of this criterion of goodness of fit, so as to yield a
goodness of fit function in parameter space. The parameters
for which the goodness of fit is maximal then yields the best
estimates that can be derived from the experiment. In a sense,
one is searching for a maximum (or minimum depending on
the criterion) of the criterion of goodness of fit in the parameter
space, the dimension of which is equal to the number of
parameters.

The object model that describes the interaction with
the electrons consists of the assembly of the electrostatic
potentials of the constituting atoms. Since for each atom type
the electrostatic potential is known, the model parameters then
reduce to atom numbers and coordinates, Debye-Waller
factors, object thickness and orientation (if inelastic scattering
is neglected). The imaging process is characterised by a small
number of unknown (or not exactly known) parameters such
as defocus, spherical aberration etc.

A major problem is now that the structural information
of the object can be strongly delocalised by the image transfer
in the electron microscope (Figure 1) so that the effect of the
structural parameters is completely scrambled in the high-
resolution images. For instance, if the position of one atom in
the object is changed, this affects the image over a large area.
Due to this coupling one has to refine all parameters
simultaneously which poses a combinatorial problem.  Indeed,
the dimension of the parameter space becomes so high that
one cannot use advanced optimisation techniques such as
genetic algorithms, simulated annealing, tabu search, etc.
without the risk of ending in local maxima. Furthermore, each
evaluation of the criterion of goodness of fit requires a full
image calculation so that the procedure is very cumbersome.
The problem is only manageable if the object is a crystal with
a very small unit cell and a small number of object parameters
(Thust et al. 1994; Bierwolf and Hohenstein, 1994; Lentzen
and Urban, 1996) or if sufficient prior knowledge is available

Figure 1. Due to lens imperfections, the recorded images are
a blurred representation of the crystal structure. Here, an
analogon is shown, using real impulse response functions:
(a) Crystal structure, (b) Crystal potential, (c) Schematic
representation of the impulse response function, (d) Blurred
image of the crystal potential due to the lens imperfections.
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to reduce the number of unknown parameters to a few. In X-
ray crystallography, this problem can be solved by using direct
methods or Maximum entropy methods, which provide a
pathway toward the global maximum in parameter space. In
high-resolution electron microscopy, this problem can be
solved by deblurring the information, so as to unscramble the
influence of the different object parameters in the image. In
this way, the structural parameters can be uncoupled and the

dimension of the parameter space reduced. This can be
achieved in different ways: high voltage microscopy,
correction of the microscopic aberrations, or holographic
methods.

Holographic methods have the particular advantage
that they first retrieve the whole wave function in the image
plane, i.e. amplitude and phase. In this way, they use all possible
information. In the other two methods, one starts from the

Figure 2. Due to dynamical diffraction, scattering with the object structure will yield a complex exit wavefunction, which further will
be blurred by the microscope’s impulse response function.
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image intensity only and inevitably misses the information
that is predominantly present in the phase. Ideally, one should
combine high voltage microscopy or aberration correction
with holography so as to combine the advantage of
holography with a broader field of view, i.e. a larger
reconstructable field. However, this has not yet been done in
practice.

A full holographic reconstruction method consists of
three stages. First, one has to reconstruct the wave function
in the image plane (phase retrieval). Then one has to reconstruct
the exit wave of the object. Finally, one has to “invert” the
scattering in the object so as to retrieve the object structure.
Ideally, one should be able to disentangle the object parameters

to the level where the positions of all atom columns (viewed
along the incident beam) can be fitted independently. This
then leads to an approximate structure model.

This structure model then provides a starting point for
a final refinement by fitting with the original images (i.e., in the
high dimensional parameter space) that is sufficiently close to
the global maximum so as to guarantee convergence.

It has to be noticed that in case of perfect crystals, one
can combine the information in the high-resolution images
with that of an electron diffraction pattern. Since the diffraction
pattern usually yields information up to higher spatial
frequencies than the images, one can in this way extend the
resolution to beyond 0.1 nm.

Figure 3. Schematic representation of the focus variation wavefunction reconstruction procedure.
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Recently it has been shown how very accurate
structure determination can be achieved by starting from an

exit wave reconstruction, and further refinement using
dynamical electron diffraction data, yielding R factors well

Figure 4. An experimentally recorded focal series for Ba
2
NaNb

5
O

15
. The defocus values are indicated.
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below 5% (Jansen et al., 1997).

Holographic Reconstruction

Two main holographic approaches have been
developed to solve the phase problem: off axis holography
and focus variation. Here we will only mention the results of
the focus variation method. For the principles and the details
we refer to Schiske (1973), Kirkland et al. (1980), Kirkland
(1984), Saxton (1986), Van Dyck and Op de Beeck (1992), Coene
et al. (1992), and Op de Beeck and Van Dyck (1996). First a
series of about 20 images is taken under computer control, at
regular focus intervals at both sides of a reference focus.
Each image contains essentially the same information about
amplitude and phase of the reference image but scrambled in

a different way. By suitable image processing of the whole
image series it is possible to retrieve this amplitude and phase
separately. Figure 3 shows a schematical set-up.

Once the wave function in the image plane is retrieved,
one can easily reconstruct the exit wave of the object provided
the instrumental parameters are known with sufficient
accuracy. If the instrumental parameters are only
approximately known, the reconstructed exit wave still contains
residual aberrations, which can be eliminated in the final fitting
procedure. At this stage the resolution is only limited by the
information limit of the electron microscope and can, in case a
field emission source is used, reach the order of 0.1 nm (at 300
keV). It should be noted that the reconstruction can be done
off-line.

Figure 4 shows a part of through focus series of the

Figure 5. Reconstructed amplitude and phase of a series of 20 images of Ba
2
NaNb

5
O

15
. The amplitude (a) mainly shows the heavy

atoms, while the phase (b) represents the light atoms. The result of the structure reconstruction step is shown in (c) with the real
structure as inset.
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material Ba
2
NaNb

5
O

15
 and Figure 5 (top) shows the

reconstructed exit wave (to compare with the simulations in
Figure 2). In the exit wave all atom columns (in projection) can
be discriminated. The resolution in the exit wave clearly exceeds
the point resolution of the microscope, which for this
experiment (200 keV) is only of the order of 0.25 nm. However,
in this case the heavy columns are only revealed in the
amplitude of the exit wave (left) and the light columns only in
the phase (right).

In order to interpret the amplitude and phase images in
terms of mass and position of the projected columns, one has
to “invert” the dynamical scattering of the elections in the
object. For this purpose a simple and invertible albeit
approximate channelling theory has been proposed in which

Figure 6. One Gaussian function a = 300; σ = 70.

Figure 7. Simulated experiment with the N function of Figure
6 as the probability function, total number of counts N = 10000.

Figure 8. Log likelihood function log(L) as a function of the
position parameter a for the simulated experiment of Figure 7.

Figure 9. Sum of two Gaussian functions with parameters a
1

=300, a
2
 =700, σ=70.

Figure 10. Simulated experiment with the sum of the two N
functions of Figure 9 as the probability function, total number
of counts N = 10000.
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each atom column acts as a channel for the electrons so as to
keep a one to one correspondence between projected object
structure and exit wave. The details are given in Van Dyck and
Op de Beeck (1996). Figure 5 (bottom) shows a projection of
the structure obtained from the channelling theory. The
structure model obtained in this way yields accurate values
for the positions of the columns and approximate values for
the weights. (The model is shown in the inset.)

It should be noted that it is an intrinsic limitation of
high-resolution electron microscopy (HREM), that fast
electrons parallel to a column direction are insensitive to
variations along the beam direction but sensitive to
perpendicular variations. For instance, it is impossible to
discriminate between a column consisting of say atoms of
mass 50 every 0.5 nm and atoms of mass 100 every 1.0 nm.

In a final step, the approximate retrieved structure model
can be used as a good starting point for a fitting procedure
with the original dataset (the whole focal series).

Parameter Estimation

As shown above, the ultimate structure model is refined
by fitting theoretical to experimental data. We will now discuss
the fitting procedure in detail. Consider an experiment with
possible outcomes x

i
. These can be the pixels in an image

plane that are hit by the imaging electrons. In this respect, the
whole focal series described above can be regarded as one
experiment. Let us call {a

n
} the parameters of the model,

including object, interaction, imaging and recording.
By means of the model one should be able to predict

the probabilities p(x
i
/{a

n
}) that the outcome of the experiment

is x
i
, i.e. that the electron hits the pixel x

i
 given the information

that the model parameters are {a
n
}.

The whole experiment now consists in collecting N
events (N electrons reaching the image(s)). Let us call n

i
 the

frequency of the outcome x
i
 with

∑ =
i

i Nn

Figure 11. Log likelihood function log(L) as a function of the position parameters a
1
 and a

2
 for the simulated experiment of Figure

10.

(1)
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The problem then consists in estimating the model
parameters {a

n
} from the outcome {n

i
} of the experiment. All

the prior knowledge should be in the model, the only
unknowns being the parameters. The model may contain
parameters that are of interest, such as atom coordinates and
atom types and parameters that are not of interest such as
microscope settings or the structure of an amorphous layer.

In some experiments one has degrees of freedom that
can be chosen so as to optimise the experiment in function of
the desired parameters. This is called experimental design. In
Buist and Van den Bos (1996), it has for instance been shown
that the optimal focus sequence for the focus variation method
is close to equidistant.

If the probability density function of the observations
is known, it may be used to construct a precise estimator as
follows. First, the available observations are substituted in
their joint probability density function. This produces a
function of the parameters only, called the likelihood function
of the parameters. The maximum likelihood estimator of the
parameters is defined as the parameter values that maximize
the likelihood function. Maximum likelihood estimators have
a number of favorable properties. It is known (e.g. Van den
Bos, 1982) that if there exists an unbiased estimator that attains
the Minimum Variance Bound (or Cramer-Rao Bound), this
estimator is given by the Maximum Likelihood estimator. If the
outcome of the experiment is the set {n

i
}, the likelihood function

(L) is found with the aid of multinomial statistics:

( )
!n

 }a/{x  p
  N! =

i

ni
n

i

i

∏ L

where p(x
i
/{a

n
}) is the probability that the measurement yields

the value x
i
, given that the model parameters are {a

n
}. This

probability is given by the model. For instance, in case of
HREM, ) p(x

i
/{a

n
}) represents the probability that the electron

hits the pixel i, in the image if all parameters of the model
(object structure and imaging parameters) are given, n

i
 then

represents the measured intensity (in number of electrons) of
the pixel i. In practice, it is more convenient to use the logarithm
of the likelihood function, defined as log(L). Since log is a
monotonic function, log(L) yields the same maxima. We find
for log(L), using (2),

( ) constant +  }a/{x p log n  =log nii
i
∑ (L)

The base of the logarithm is not important for
maximization. Each possible set of parameters can be
represented by a point in parameter space. The dimension of
this space is equal to the number of parameters in the model.
The function log(L) can be calculated for each point in this
space. The maximum likelihood estimate for the model
parameters is then given by the point for which log(L) is maximal.
log(L) can then be considered as a fitness function. In principle
the search for the best parameter set is then reduced to the
search for optimal fitness in parameter space. Different
optimisation methods exist ( e.g., hill climbing, genetic
algorithms, Tabu search, simulated annealing....), but they all
fail if the dimension of the search space is too high.

As described above, the dimension of the search space
can be reduced drastically by using reconstruction schemes
that undo the imaging process so as to uncouple the model
parameters. In case of HREM, the reconstruction would be
ideal if all individual atom columns could be isolated.

Resolution

In order to study the aspects of resolution in the
framework of parameter estimation, we will use a very simple

Figure 12. Sum of two Gaussian functions with parameters a
1

=440, a
2
 = 560, σ =70.

Figure 13. Simulated experiment with the sum of the two N
functions of Figure 12 as the probability function, total number
of counts N = 10000.

(2)

(3)
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example. Consider an experiment that consists in localising a
one-dimensional object. The object has a shape f(x) and is
located at position a. The probability that the outcome of a
measurement is x

i
 is then given by:

( ) ( )a x f   /ax  p ii − =

Figure 6 shows an example with a Gaussian object with position
300 and standard deviation 70 (in pixel units). Figure 7 now
shows a simulated experiment using Eqn. (4) with N = 10000
samples. From this experiment one now has to estimate the
position of the Gaussian object. The loglikelihood function
log(L) for this experiment is shown in Figure 8. The maximum
likelihood estimate for a corresponds with the maximum of L.
The value may differ from the theoretical value. If the
experiment would be repeated, different values will be found
for a. It can be proven that the average over all possible
experiments yields the theoretical value for a and that the
standard deviation of a is given by

N
 = 0σσ 

where σ
0
 is the width of the Gaussian object and N is the

number of samples in the experiment.  The resolution of an
imaging system can now be described as follows. Suppose
the object would be an ideal point object, the “image” of which
is spread by the imaging system into a Gaussian peak. Then
σ

0
 would be a measure of the resolution of the system in the

original sense of Rayleigh.  However, as shown above, this
concept of resolution does not hold in the framework of
parameter estimation. Since the form of the object is known,
the figure of merit is now the standard deviation on the
estimated position of the object and it is equal to the Rayleigh
resolution divided by the square root of the number of samples
(counts).

Resolution in the sense of resolving power can be
studied on the hand of the following simple example.  The
experiment now consists of locating two identical one-
dimensional objects with the same shape function f(x) and
located at positions  a

1 
resp. a

2
.

The probability for an experimental outcome of x
i
 is

now

Figure 14. Log likelihood function log(L) as a function of the position parameters a
1
 and a

2
 for the simulated experiment of Figure

13.

(4)

(5)
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( ) ( ) ( )[ ]  ax  + f  ax  f    aa/x  p ii21i 21
2

1
 = −−

Figure 9 shows an example of two Gaussian objects with
standard deviation 70 at respective positions 300 and 700 (in
pixel units). Figure 10 shows a simulated experiment with N =
10000 samples (counts). The parameter space is now two-
dimensional. The log likelihood function log(L) of this
experiment is shown in Figure 11. (A contour map is also shown
in projection). L has two maxima, which are symmetrical along
the symmetry plane a

1 
= a

2
 as a consequence of the symmetry

of the problem. If the two peaks are very close as is shown in
Figure 12 with the corresponding experiment in Figure 13, the
two maxima of L will merge as shown in Figure 14. The peaks
are now unresolvable, due to a degeneracy of parameter space.

Figure 15. Log likelihood function log(L) as a function of the
distance parameter d = a

1
 - a

2
. In this case the two peaks can

be resolved.

Figure 16. Log likelihood function log(L) as a function of the
distance parameter d = a

1
 - a

2
. In this case the two peaks

cannot be resolved.

Figure 17. Distribution of the curvature factor B. If B < 0 the
two peaks cannot be resolved.

Resolving two objects (peaks) has now become a yes
or no problem. Figure 15 shows log(L) as a function of d, i.e.,
the parameter describing the distance between the peaks. Only
d > 0 is shown. The function is symmetrical for d < 0. Log(L)
shows a maximum at a non zero value for d indicating that the
peaks are resolved. Figure 16 shows the same log(L) in case of
degeneracy.  Here the maximum occurs at d = 0, i.e., the objects
are not resolved. In Van den Bos (1987) this degeneracy has
been described using catastrophe theory.  The problem has
been studied in more detail in Van den Bos (1992), Van den
Bos and Den Dekker (1995), Den Dekker (1996) and Den Dekker
and Van den Bos (1997). A critical parameter that judges the
ability to resolve the objects is the curvature of log(L) in the
point d = 0. If this curvature is negative, the objects are not
resolved, if it is positive they are resolved.  Figure 17 shows
the statistical distribution of this curvature B for the ensemble
of all possible experiments. The important point to note here
is that, one can define a probability of resolution, i.e., the
probability given by the unshaded area in Figure 17. The
probability that the objects will not be resolved is given by
the shaded area in Figure 17. This probability is a function of
d, σ

0
 and N and can be calculated explicitly (Bettens et al.,

1998, 1999):

[ ]
2

08
 erf 

2

1
 + 

2

1
 = 











σ
dN

 0)>P(B

with erf the error function.

Conclusion

Indirect and direct methods for interpreting HREM
images can be seen as different ways of matcfhing model

(6)

(7)
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parameters from an experiment. In case of unknown
structures, the problem becomes unmanageable unless the
model parameters can be uncoupled by holographic
reconstruction methods. The concept of resolution is
reconsidered in the framework of parameter estimation. It is
shown that the non-resolution of objects is due to a
degeneracy in parameter space. It leads to the definition of
probability of resolution that can be calculated explicitly.
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