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Abstract

The problem of quantitative interpretation of high-
resolution electron micrographsis studied in the framework
of parameter estimation. Idedlly, quantitative interpretation
means that unknown structural parameters of an object such
as atom types and coordinates are determined from fitting
withtheexperimental dataset. However, intheimaging process,
the influence of these parameters is completely scrambled
over alarge area of the image. As a consequence, the fitting
becomes a search processin the higher dimensional space of
all coupled parameters. The real importance of the so-called
direct methods such as holographic exit wave reconstruction
and direct structure retrieval is that they restore (deblur) to
some extent the imaging process so as to unscramble the
influence of the different model parameters. In this way the
dimension of the search space becomes manageable. In this
framework the concept of resolutionin the sense of Rayleigh
isnot valid anymore, but it hasto be replaced by the notice of
parameter precision. In case two atoms are very close, the
parameter space may become degenerate so that the atoms
cannot be discriminated. The probability of this degeneracy
to occur isafunction of the distance between the atoms and
the dose of theimaging particles.
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Introduction

The ultimate goal of high-resolution electron
microscopy isto determine the atomic structure of an object.
In this respect the electron microscope can be considered as
an information channe that carriesthisinformation from the
object to the observer.

The transfer of information proceeds in three
successive steps as sketched in Figure 1. Firdt, the electron
interacts with the atoms in the object, through multiple
scattering. Secondly, theexit wave of the object istransferred
through the microscope to the image plane. This processis
described by aconvolution product with theimpul seresponse
function (point spread function) of the electron microscope.
Sincetheimaging processis coherent, both theexit waveand
the impul se response function are two-dimensiona complex
functions with an amplitude and aphase. In the last step, the
imageisrecorded either on photographic filmor by acharge-
coupled device (CCD) camera. In this step only theintensity
of theimagewaveisrecorded and the phaseislost. Incoherent
effectsare changesin theimaging conditions causing changes
in the image intensity that are integrated during the time of
recording.

A major problem is the interpretation of the image.
Indeed, the structura information (atomic typesand positions)
of theobjectisusualy hidden intheimagesand cannot easily
be assessed. Therefore, aquantitative approachisrequiredin
which all stepsin theimaging processaretaken into account.
Two main approaches have been followed so far in the
literature:

(8 the indirect approach in which the images are
simulated for various plausible trid structures of the object
and compared with the experimental images.

(b) a direct approach in which the lost phase
information is retrieved using holographic techniques so as
to“deblur” theeffect of themicroscope and to reveal directly
the atomic structure of the object.

Inthispaper, wewill discussthe problem of quantitative
interpretation of the high-resolutionimagesin the framework
of parameter estimation. Itisshown that both direct and indirect
methods fit within this framework. But only direct methods
can make quantitative structure determination possible for
completely unknown objects. Wewill a so discussthe problem
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Figure 1. Duetolensimperfections, the recorded imagesare
a blurred representation of the crystal structure. Here, an
analogon is shown, using real impulse response functions:
(a) Crysta structure, (b) Crystal potential, () Schematic
representation of the impulse response function, (d) Blurred
image of the crystal potential dueto the lensimperfections.
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of resolution in the same context.
Quantitativel magel nter pretation

In principle, one is not interested in high-resolution
images as such but in the structure of the object under study.
High-resolution images are to be considered as data planes
fromwhich the structural information hasto beextractedina
quantitativeway. |deally, thisshould be done asfollows. one
hasamodd for theobject and for theimaging process (Figures
1 and 2), including electron object interaction, microscope
transfer and image detection. Themodel containsparameters
that haveto be determined by the experiment. The parameters
can be estimated from the fit between the theoretical images
and the experimental images. The goodness of the fit is
eva uated using acriterion of goodnessof fit such aslikelihood,
mean squaredifferenceor R-factor (cf. X-ray crystallography).
For each set of parametersof themodel, one can calculate the
value of this criterion of goodness of fit, so as to yield a
goodness of fit function in parameter space. The parameters
for which the goodness of fit ismaximal then yields the best
estimatesthat can be derived from theexperiment. Inasense,
oneis searching for amaximum (or minimum depending on
thecriterion) of the criterion of goodnessof fit inthe parameter
space, the dimension of which is equal to the number of
parameters.

The object model that describes the interaction with
the electrons consists of the assembly of the electrostatic
potential s of the congtituting atoms. Sincefor each atomtype
theelectrostatic potential isknown, themodel parametersthen
reduce to atom numbers and coordinates, Debye-Waller
factors, object thicknessand orientation (if inelastic scattering
isneglected). Theimaging processis characterised by asmall
number of unknown (or not exactly known) parameters such
as defocus, spherical aberration etc.

A major problemisnow that the structurd information
of theobject can bestrongly del ocalised by theimagetransfer
in the electron microscope (Figure 1) so that the effect of the
structural parameters is completely scrambled in the high-
resolution images. For instance, if the position of oneatomin
theobject ischanged, thisaffectstheimage over alarge area.
Due to this coupling one has to refine all parameters
smultaneoudy which posesacombinatoria problem. Indeed,
the dimension of the parameter space becomes so high that
one cannot use advanced optimisation techniques such as
genetic algorithms, simulated annealing, tabu search, etc.
without therisk of endinginlocal maxima. Furthermore, each
evaluation of the criterion of goodness of fit requires a full
image cal culation so that the procedureis very cumbersome.
Theproblemisonly manageableif theobjectisacrystal with
avery small unit cell and asmall number of object parameters
(Thust et al. 1994; Bierwolf and Hohenstein, 1994; L entzen
and Urban, 1996) or if sufficient prior knowledgeisavailable
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Figure2. Duetodynamicd diffraction, scattering with the object structurewill yield acomplex exit wavefunction, which further will

be blurred by the microscope’s impul se response function.
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to reduce the number of unknown parametersto afew. In X-
ray crystallography, thisproblem can be solved by using direct
methods or Maximum entropy methods, which provide a
pathway toward the global maximum in parameter space. In
high-resolution electron microscopy, this problem can be
solved by deblurring theinformation, so asto unscramblethe
influence of the different object parametersin theimage. In
thisway, the structural parameters can be uncoupled and the
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dimension of the parameter space reduced. This can be
achieved in different ways: high voltage microscopy,
correction of the microscopic aberrations, or holographic
methods.

Holographic methods have the particular advantage
that they first retrieve the whole wave function in the image
plane, i.e. amplitudeand phase. Inthisway, they usedl possible
information. In the other two methods, one starts from the
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Figure 3. Schematic representation of the focus variation wavefunction reconstruction procedure.

image intensity only and inevitably misses the information
that ispredominantly present inthe phase. 1dedlly, one should
combine high voltage microscopy or aberration correction
with holography so as to combine the advantage of
holography with a broader field of view, i.e. a larger
reconstructable field. However, thishas not yet been donein
practice.

A full holographic reconstruction method consists of
three stages. First, one has to reconstruct the wave function
intheimageplane (phaseretrieval). Then one hasto reconstruct
the exit wave of the object. Findly, one has to “invert” the
scattering in the object so asto retrieve the object structure.
Idedlly, one should beableto disentanglethe object parameters
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to thelevel wherethe positions of al atom columns (viewed
along the incident beam) can be fitted independently. This
then leads to an approximate structure model .

Thisstructure model then providesastarting point for
afinal refinement by fittingwith theoriginal images(i.e., inthe
high dimensiond parameter space) that issufficiently closeto
the globa maximum so asto guarantee convergence.

It hasto benoticed that in case of perfect crystals, one
can combine the information in the high-resolution images
withthat of an electron diffraction pattern. Sincethediffraction
pattern usually yields information up to higher spatial
frequencies than the images, one can in thisway extend the
resolution to beyond 0.1 nm.
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Figure4. An experimentally recorded focal seriesfor Ba,NaNb,O,.. The defocus values areindicated.

Recently it has been shown how very accurate exit wave reconstruction, and further refinement using
structure determination can be achieved by starting from an dynamical electron diffraction data, yielding R factors well
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Figure5. Reconstructed amplitudeand phase of aseriesof 20imagesof Ba,NaNb_O

Theamplitude (a) mainly showstheheavy

5715

atoms, while the phase (b) representsthe light atoms. The result of the structure reconstruction step is shown in (c) with thereal

structure as inset.

below 5% (Jansen et al ., 1997).
Holographic Reconstruction

Two main holographic approaches have been
developed to solve the phase problem: off axis holography
and focus variation. Herewewill only mention the results of
thefocus variation method. For the principles and the details
we refer to Schiske (1973), Kirkland et al. (1980), Kirkland
(1984), Saxton (1986), Van Dyck and Op deBeeck (1992), Coene
et al. (1992), and Op de Beeck and VVan Dyck (1996). First a
series of about 20 imagesistaken under computer control, at
regular focus intervals at both sides of a reference focus.
Each image contains essentially the same information about
amplitude and phase of the referenceimage but scrambled in
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adifferent way. By suitable image processing of the whole
image seriesitispossibleto retrieve thisamplitude and phase
Separately. Figure 3 shows aschematical set-up.

Oncethewavefunctionintheimageplaneisretrieved,
onecan easlly reconstruct theexit wave of the object provided
the instrumental parameters are known with sufficient
accuracy. If the instrumental parameters are only
approximately known, thereconstructed exit wavetill contains
residual aberrations, which can bediminated inthefind fitting
procedure. At this stage the resolution is only limited by the
information limit of theelectron microscopeand can, incasea
field emission sourceisused, reach theorder of 0.1 nm (at 300
keV). It should be noted that the reconstruction can be done
off-line.

Figure 4 shows a part of through focus series of the
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Figure7. Simulated experiment with the N function of Figure
6 astheprobability function, total number of countsN =10000.
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Figure8. Loglikelihood function log(L) asafunction of the
position parameter a for the simulated experiment of Figure7.
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Figure9. Sumof two Gaussian functionswith parametersa
=300,a,=700, 0=70.
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Figure 10. Simulated experiment with the sum of thetwo N
functionsof Figure 9 asthe probability function, total number
of countsN =10000.

material Ba,NaNb,O,, and Figure 5 (top) shows the
reconstructed exit wave (to compare with the smulationsin
Figure2). Intheexit waveall atom columns(in projection) can
bediscriminated. Theresolutionintheexit waveclearly exceeds
the point resolution of the microscope, which for this
experiment (200keV) isonly of theorder of 0.25 nm. However,
in this case the heavy columns are only revealed in the
amplitude of theexit wave (lft) and thelight columnsonly in
the phase (right).

Inorder tointerpret theamplitude and phaseimagesin
terms of massand position of the projected columns, one has
to “invert” the dynamical scattering of the elections in the
object. For this purpose a simple and invertible albeit
approximate channelling theory has been proposed in which
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Figure11. Log likelihood functionlog(L) asafunction of the position parametersa, and a, for the smulated experiment of Figure

10.

each atom column acts asachannel for the electrons so asto
keep a one to one correspondence between projected object
structureand exit wave. ThedetailsaregiveninVan Dyck and
Op deBeeck (1996). Figure5 (bottom) shows aprojection of
the structure obtained from the channelling theory. The
structure model obtained in this way yields accurate values
for the positions of the columns and approximate values for
theweights. (Themodel is shown in theinset.)

It should be noted that it is an intrinsic limitation of
high-resolution electron microscopy (HREM), that fast
electrons parallel to a column direction are insensitive to
variations along the beam direction but sensitive to
perpendicular variations. For instance, it is impossible to
discriminate between a column consisting of say atoms of
mass 50 every 0.5 nm and atomsof mass 100 every 1.0 nm.

Inafina step, theapproximateretrieved sructuremodel
can be used as a good starting point for a fitting procedure
with the original dataset (thewholefocal series).
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Parameter Estimation

Asshown above, the ultimate structuremodel isrefined
by fitting theoretical to experimental data. WWewill now discuss
the fitting procedure in detail. Consider an experiment with
possible outcomes x. These can be the pixels in an image
planethat are hit by theimaging el ectrons. Inthisrespect, the
whole focal series described above can be regarded as one
experiment. Let us call {a} the parameters of the model,
including object, interaction, imaging and recording.

By means of the model one should be able to predict
the probabilitiesp(x/{a }) that the outcome of the experiment
isx, i.e. that theelectron hitsthe pixel x giventheinformation
that themodel parametersare{a }.

The whole experiment now consists in collecting N
events (N electrons reaching the image(s)). Let uscal n the
frequency of the outcome x, with

> n =N (@



From high resolution imageto atomic structure

o —
B f ™
007 / Y
000 { !

00K ||| |

- [
- J |
- o4 R ]

g PR i ———r—

[ M 00 S0 400 S0 B0 e Al {2 ] fren )
u

Figure12. Sum of two Gaussian functionswith parametersa,
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Figure 13. Simulated experiment with the sum of thetwo N
functionsof Figure 12 asthe probability function, total number
of countsN = 10000.

The problem then consists in estimating the model
parameters{a } fromtheoutcome{n} of theexperiment. All
the prior knowledge should be in the model, the only
unknowns being the parameters. The model may contain
parametersthat are of interest, such as atom coordinates and
atom types and parameters that are not of interest such as
microscope settings or the structure of an amorphous layer.

In some experiments one has degrees of freedom that
can be chosen so asto optimise the experiment in function of
the desired parameters. Thisiscalled experimental design. In
Buist and Van den Bos (1996), it hasfor instance been shown
that the optimal focus sequencefor thefocusvariation method
is close to equidistant.

If the probability density function of the observations
isknown, it may be used to construct a precise estimator as
follows. First, the available observations are substituted in
their joint probability density function. This produces a
function of the parametersonly, called thelikelihood function
of the parameters. The maximum likelihood estimator of the
parametersis defined asthe parameter val ues that maximize
thelikelihood function. Maximum likelihood estimatorshave
anumber of favorable properties. It is known (e.g. Van den
Bos, 1982) that if there existsan unbiased estimator that attains
the Minimum Variance Bound (or Cramer-Rao Bound), this
egtimator isgiven by theMaximum Likelihood estimator. If the
outcomeof theexperimentistheset{ n}, thelikelihood function
(L) isfound withtheaid of multinomial statistics:

L:N!H—pn'(’“/{a"}) @
i n;!

wherep(x/{a}) isthe probability that the measurement yields
the value x, given that the model parametersare {a }. This
probability is given by the model. For instance, in case of
HREM, ) p(x/{a,}) representsthe probability that the electron
hits the pixel i, in the image if al parameters of the model
(object structure and imaging parameters) are given, n, then
representsthe measured intensity (in number of electrons) of
thepixe i. In practice, itismore convenient to usethelogarithm
of the likelihood function, defined as log(L). Since log is a
monotonic function, log(L) yiel dsthe same maxima. Wefind
forlog(L), using(2),

log(L)=>" nilogp( xi {ax} )+ constant ~ (3)

The base of the logarithm is not important for
maximization. Each possible set of parameters can be
represented by apoint in parameter space. The dimension of
thisspaceisequa to the number of parametersin the model.
The function log(L) can be calculated for each point in this
space. The maximum likelihood estimate for the model
parametersisthen given by thepoint for whichlog(L) ismaximal.
log(L) canthen be considered asafitnessfunction. In principle
the search for the best parameter set is then reduced to the
search for optimal fitness in parameter space. Different
optimisation methods exist ( e.g., hill climbing, genetic
algorithms, Tabu search, simulated annealing....), but they all
fal if the dimension of the search spaceistoo high.

Asdescribed above, the dimension of the search space
can be reduced drastically by using reconstruction schemes
that undo the imaging process so as to uncouple the model
parameters. In case of HREM, the reconstruction would be
ideal if al individual atom columnscould beisolated.

Resolution

In order to study the aspects of resolution in the
framework of parameter estimation, wewill useavery smple
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Figure14. Log likelihood functionlog(L) asafunction of the position parametersa, and a, for the simulated experiment of Figure

13.

example. Consider an experiment that consistsinlocalising a
one-dimensional object. The object has a shape f(x) and is
located at position a. The probability that the outcome of a
measurement isx isthen given by:

p(xfa)=f(x-a) @
Figure6 showsan examplewith aGaussian object with position
300 and standard deviation 70 (in pixel units). Figure 7 now
showsasimulated experiment using Egn. (4) with N = 10000
samples. From this experiment one now has to estimate the
position of the Gaussian object. The loglikelihood function
log(L) for thisexperiment isshown in Figure 8. Themaximum
likelihood estimatefor a correspondswith themaximumof L.
The value may differ from the theoretical value. If the
experiment would be repeated, different valueswill befound
for a. It can be proven that the average over al possible
experiments yields the theoretical value for a and that the
standard deviation of a is given by
o=

©

Sl
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where g, is the width of the Gaussian object and N is the
number of samplesin the experiment. The resolution of an
imaging system can now be described as follows. Suppose
the object would beanideal point object, the“image” of which
is spread by theimaging system into a Gaussian peak. Then
0, would be ameasure of the resolution of the system in the
original sense of Rayleigh. However, as shown above, this
concept of resolution does not hold in the framework of
parameter estimation. Since the form of the object isknown,
the figure of merit is now the standard deviation on the
estimated position of theobject anditisequal tothe Rayleigh
resolution divided by the squareroot of the number of samples
(counts).

Resolution in the sense of resolving power can be
studied on the hand of the following simple example. The
experiment now consists of locating two identical one-
dimensional objects with the same shape function f(x) and
located at positions a, resp. a,.

The probability for an experimental outcome of x is
now
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p(Xa/alaz):% [f(x-a)+f(x-a)] ©

Figure 9 shows an example of two Gaussian objects with
standard deviation 70 at respective positions 300 and 700 (in
pixel units). Figure 10 showsasimulated experiment withN=
10000 samples (counts). The parameter space is now two-
dimensional. The log likelihood function log(L) of this
experimentisshownin Figure11. (A contour mapisasoshown
inprojection). L hastwo maxima, which aresymmetrical along
thesymmetry planea, = a, asaconsequence of thesymmetry
of the problem. If thetwo peaksarevery closeasisshownin
Figure 12 with the corresponding experiment in Figure 13, the
two maximaof L will mergeasshownin Figure 14. The peaks
arenow unresolvable, dueto adegeneracy of parameter space.
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Resolving two objects (peaks) has now becomeayes
or no problem. Figure 15 showslog(L) asafunctionof d, i.e,
the parameter describing the distance between the peaks. Only
d>0isshown. Thefunctionissymmetrical for d<0. Log(L)
showsamaximum at anon zero valuefor dindicating that the
pesksareresolved. Figure 16 showsthesamelog(L) in case of
degeneracy. Herethemaximumoccursat d=0, i.e., theobjects
are not resolved. In Van den Bos (1987) this degeneracy has
been described using catastrophe theory. The problem has
been studied in more detail in Van den Bos (1992), Van den
Basand Den Dekker (1995), Den Dekker (1996) and Den Dekker
and Van den Bos (1997). A critical parameter that judgesthe
ability to resolve the objectsis the curvature of log(L) in the
point d = 0. If this curvature is negative, the objects are not
resolved, if it is positive they are resolved. Figure 17 shows
thestatistical distribution of thiscurvature B for theensemble
of all possible experiments. The important point to note here
is that, one can define a probability of resolution, i.e., the
probability given by the unshaded area in Figure 17. The
probability that the objects will not be resolved is given by
the shaded areain Figure 17. Thisprobability isafunction of
d, o, and N and can be caculated explicitly (Bettens et .,
1998,1999):

2
P(B> 0):% +1 erf [ g(i] ]

2 0,

@)

with erf the error function.
Conclusion

Indirect and direct methodsfor interpreting HREM
images can be seen as different ways of matcfhing model
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parameters from an experiment. In case of unknown
structures, the problem becomes unmanageable unless the
model parameters can be uncoupled by holographic
reconstruction methods. The concept of resolution is
reconsidered in the framework of parameter estimation. Itis
shown that the non-resolution of objects is due to a
degeneracy in parameter space. It leads to the definition of
probability of resolution that can be cal culated explicitly.
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