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Abstract

The unifying role that is one of the attractions of
image algebra is distinctly less obvious when we come to
include median filters and their many close relatives
(weighted median filters, rank-order filters, weighted rank-
order filters).  The convolutional filters, which are linear,
and the morphological filters, which are not, fit in naturally
and indeed have a pleasingly similar appearance in the
notation of image algebra.  The non-linear operation of
finding the median of a set of grey-level values (or selecting
any other member of a set of ranked values) is not
straightforward, however, since the task of rearranging the
values in ascending order is iterative, requiring a sequence
of comparisons.

In this connection, a template generated by the ori-
ginal image to be enhanced and the window representing
the zone around any given pixel, inside which the median is
to be taken, proves to be very useful; this is the simplest
example of the family of templates generated by suitable
combination of an image and a template.  The nature of
such templates is the main subject of this paper.
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Introduction

Among the methods of enhancing an image, median
filtering occupies a privileged role.  Unlike the (linear)
convolutional filters and the (nonlinear) morphological
filters, the median filter is the simplest of an extended family
of rank-order filters and their weighted counterparts, the
common feature of which is that the grey-level value at a
given pixel is replaced by another of the grey-level values
in a window surrounding that pixel.  The new value is
selected by ordering the grey-level values in the window,
perhaps after weighting them as a function of their distance
from the pixel to be filtered, in ascending order and retaining
a pre-determined member of that ordered set.  In the case of
median filtering, the values are not weighted and the central
value is selected.

Such filters have a large literature but their repre-
sentation in image algebra is less satisfactory than that of
the convolutional and morphological filters.  An iterative
procedure is proposed in Hawkes (1995b) and it was in
developing that procedure that the usefulness of the image
algebra construct that is the subject of this paper emerged.
The originality of this new sequence is that it creates a
template from an image and a template whereas the usual
tools of image algebra, generalized convolutions, combine
an image and a template to produce a new image.

Image Algebra Operations

The basic object of image algebra is the image,
which is the generic name for a host of different but familiar
kinds of image: binary images, grey-level images, vector
images (in which a set of values, for example, an energy-
loss spectrum, is associated with each pixel), multiple-valued
images (in which a single object gives rise to several images,
for example, those associated with the various detectors in
a scanning electron microscope) and image-valued images
(in which an entire image is associated with each pixel).
This last type of image is so important that is given a special
name: an image-valued image is called a template.  It is
particularly useful in the representation of convolutional
filters and is also important in mathematical morphology,
since structuring elements can be represented by templates.
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An easy way of picturing a template is provided by functions
of two (vector) variables f(r, z), where r = (p, q) and z = (x,
y).  Then with each value of z (pixel address), is associated
a function of r (an image).

The operations between a simple scalar-valued im-
age and a template that are in routine use in image algebra
all have the general character of a convolution.  If t is a
template and a is an image, of the form:

a = {(x,a(x)) x ∈  X}

t = {(y,t(y)) y ∈  Y}

t
y
 ≡ t(y) ={(x,t

y
(x)) x ∈  X}

then three generalized convolutions are defined

(i)
b = b ⊕  t = {(y,b(y)) ...}

b(y) = Σ
x

a(x)t
y
(x)

(ii)
b  = {(y,b(y)) ...}

b(y) = V a(x)t
y
(x)

(iii)
b  = {(y,b(y)) ...}

b(y) = V a(x) + t
y
(x)

For our present purposes it is sufficient to assume
that the pixel addresses (x) are the usual matrix labels of
discrete arrays and that the pixel values are real numbers or
integers.  Other situations (and other types of image than
the simple scalar-valued image assumed here) can be
accommodated but we shall not consider those in this
account.  For extensive discussion, see Davidson (1992,
1993), Dougherty and Sinha (1995), Hawkes (1995a), Ritter
(1991), and Ritter et al. (1990).

The first of these generalized convolutions is very
similar to and in practice often identical with the everyday
convolution.  In such calculations, no pixel is privileged
and it does not seem that any potentially useful information
is lost or obscured.  This is not so obviously true of the
other two generalized convolutions.  The max operation (or
of course, min operation) selects a particular value from a
set of products (ii) or sums (iii) and returns that value to the
image b, which is the “result” of the calculation.  In the

language of mathematical morphology, dilation (or erosion)
of an image (a) by a structuring element (t, represented by a
template) generates a new image (b).

A simple example shows that here, however, unlike
the linear convolution (i), a potentially useful piece of
information is lost.  Suppose that the template in (iii) is
essentially a window so that the operation consists in se-
lecting the largest grey-level value in a window surrounding
each pixel in turn.  The resulting image b will consist of
these maximum values.  What we cannot know from b are
the addresses of these maximum values: we know what they
are but not where they were!  If this additional information
is to be made available, the result of the calculation must
not be a simple image b, as in (ii) or (iii) but some more
elaborate type of image.  If we wish to retain just the maximum
value and its address then a vector-valued image might be
sufficient, the grey-level values of b being of the form (b

max
,

(i, j)) where b
max

 is the maximum value and (i, j) indicates its
address.  Some convention would of course have to be
adopted if several pixels in the window in the foregoing
example reached the maximum value.  It is, however, much
more satisfactory in general to allow the “more elaborate
type of image” to be a template so that, for each pixel of the
image a, a (binary) image would be created indicating the
site(s) of pixels reaching the maximum value; the set of such
binary images would constitute a template.  The equivalent
in mathematical morphology would be the creation of a new
structuring element from the original image and structuring
element instead of just an image.

Related Work

Among the properties of median (and indeed all rank-
order) filters, the fact that they commute with thresholding
is of especial interest.  By this we mean that if a grey-level
image with a finite number of discrete grey levels (0 to 255
for example) is thresholded to form a stack of binary images
and the median filter applied to each, then the result of
adding the resulting (filtered) binary images is the same as
that of applying the median filter directly to the original
grey-level image (see, for example, Figure 72.7 in Hawkes
and Kasper, 1994).  This was first noticed by Nakagawa and
Rosenfeld (1978) and major contributions were
subsequently made by Justusson (1981), Tyan (1981), Serra
(1982), and Fitch et al. (1984, 1985).  Its interest is obvious,
for the act of finding the median of a set of binary values
merely requires the number of ones (or zeros) to be counted;
no ordering is required.  This work culminated in the analysis
of Maragos and Schafer (1987), who showed formally that
any median or related filter is equivalent to a maximum of
morphological erosions (or a minimum of dilations) and can
hence be calculated by max and min operations without
sorting of grey-level values into ascending (or descending)

(1)

(2)

(3)
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order.  A detailed examination of the relation between this
way of analysing rank-order filters and that proposed in
Hawkes (1995b) will be published separately.  We mention
the work of Maragos and Schafer (1987) here, however, not
only because of its direct relevance to the problem of repre-
senting and implementing these filters efficiently but also
because the interplay between structuring element (tem-
plate) and the median window is directly relevant to our
earlier suggestion concerning a new operation of the form
image + template → template.

Examples

The obvious example of the usefulness of an opera-
tion that generates a template from an image and a template
is the median filter.  As before, let a be a simple image and let
t be a binary template representing a window.  Then the
image b,

b(p,q) = V t
pq

(i,j)a(i,j)

has grey-level values equal to the maximum within the
window for each pixel of the image a.  We now introduce a
template s, which again has the form of a window but inside
the window s has weight b(p,q) at the points that attain this
maximum value and zero at every other point.  This is easy
to define:

s
pq

(i,j) = b(p,q)χ≥
b(p,q)

{t
pq

(i,j)a(i,j)}

or

s
pq

(i,j) = b(p,q)χ≥
b(p,q)

(t
pq

 *a)

or

s = bχ≥
b
(t * a)

in which χ is the characteristic function.
The role of this template in the image algebra repre-

sentation of median (and related) filters is explained in
Hawkes (1995b).  For each position of the window (tem-
plate), the maximum grey-level is found.  A new template is
then created, the values of which are equal to the maximum
if the image reaches the maximum value at that point in the
window or zero otherwise.  Subtraction of this from the
grey-level values inside the window thus replaces the maxima
by zero while leaving all the others unaffected.  The process
is iterated until the median (or any other member of the
rank) is found.  It is easy to allow for the case when more
than one pixel in the window reaches the maximum value.

We have chosen to illustrate the usefulness of templates
generated by combining an image and a template in some
suitable way with the aid of this very elementary case, since
it is easily understood.  Certainly, if this example in which
the templates involved are simple windows were typical of
the applications of such derived templates, it would be
scarcely worth drawing attention to them.  In practice,
templates usually have a much more complex structure
(structuring elements, Fourier and similar transform
operators, ...) and may be adaptative and space-variant.  It
is with these more complicated cases in mind that we draw
attention to the usefulness of derived templates.

Median filters are thus not the only examples and
others will emerge as the use of image algebra becomes
more commonplace.  All morphological operations require
finding the maximum (or minimum) of a set of values obtained
in some way from those of an image and a structuring
element and no record is kept of the address of the pixel at
which the maximum occurred.  The notion of slope
transforms for morphological systems, comparable to Fourier
transforms for linear convolutional cases, is still very new
(Maragos 1994a,b, 1995; Dorst and van den Boomgaard,
1994a,b; van den Boomgaard and Smeulders, 1994) but it
can be anticipated that the type of template examined here
will be needed there.  These transforms arise when we enquire
whether the fact that the Fourier transform maps
convolution products into direct products has any analogue
for “generalized” convolutions of the type represented by
(iii) above.  It is found that there is indeed such a transform
but the image algebraic representation has not yet been
analysed in detail.  It can however, be safely anticipated
that the transform can be represented in terms of a template
as in the better known case of the Fourier transform.
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Discussion with Reviewers

W.O. Saxton:  Can you say whether existing image algebra
packages allow new templates such as you envisage to be
created and used?
Author:  Certainly the tools needed are present in these
packages.  A little work will be required to create each new
template.

W.O. Saxton:  Do any of the interesting results about the
commuting of ranking and multiple thresholding continue
to hold for the ranking operators involving weighting
according to distance from the pixel under consideration?
Author:  Weighting is accomplished by repeating the
weighted grey-level as many times as the value of the
weight.  The commuting rule therefore does not survive in
its original form.

N. Bonnet:  Several standard implementations of the median
filter are used in the image processing software: The ranking
method (in which no use is made of the results obtained for
the previous position of the moving window) and the
histogram-based method, which allows reusability and is
hence much faster, especially when the neighbourhood
considered is large.  Is your image algebra implementation
related more specifically to one of these two algorithms or
is it completely independent?  How does it compare in terms
of computational complexity (i.e., in terms of computational
load)?
Author:  It can be used equally easily for either algorithm.  I
think that the computational load is much the same!

N. Bonnet:  Median-like nonlinear filters are now beginning
to be used for multi-valued images (multispectral images,
for instance).  Do you think that your approach can be
generalized to handle such situations?
Author:  Certainly, in principle at least.  But it would be
necessary to consider specific situations to give a more
helpful answer.

N. Bonnet:  Please give a list of the available software
packages for image processing using image algebra.
Author:  See the new handbook (Ritter and Wilson, 1996) or
the Proceedings of the earlier SPIE Proceedings volumes
on this subject: volumes 1350, 1568, 1769, 2030, 2300 and
2568 (1990–1995).
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