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NUCLEATION, GROWTH AND COARSENING IN PHASE-SEPARATING SYSTEMS

Abstract

In this work, we have re-examined the classical problem
of nucleation and growth.  A new model considers the
correlations between droplets and naturally incorporates the
crossover from the early-stage, nucleation-dominated regime
to the scaling, late-stage, coarsening regime within a single
framework.  Results are reported for three-dimensional growth
in three dimensions, and the growth of two-dimensional
droplets on a two-dimensional substrate.  Since the method
involves only interface equations, it permits the simulation of
much larger systems than can be studied using other methods.
In particular, results are given for the variation with time of the
number of droplets, the excess supersaturation, and the droplet
distribution function, for different concentrations and
temperatures.
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Introduction

Metastable states decay towards equilibrium via the
introduction of finite-size fluctuations.  The energy for the
formation of a droplet of the stable phase is determined by the
competition between the volume energy (which favors growth)
and the droplet surface energy (which favors dissolution).
This competition defines a critical size Rc for nucleation of a
droplet.  The kinetics of phase separation from such a
metastable state has been intensively studied and the early
stages of nucleation [2, 3, 4, 6, 7, 8, 9, 17] and late stages of
coarsening [11] are well understood.  Much less, however, is
known about the cross-over regime.  In 1980, Langer and
Schwartz [10] used a mean-field approach to study the non-
linear dynamical equations of motion for a phase separating
system for the entire time regime.  The importance of a
theoretical description that includes the correlation effects
has been emphasized by the abundant experimental data on
these processes [14, 15, 19].  Moreover, the growing interest
in the formation of clusters on surfaces calls for new theoretical
developments to account for the increasing number of
experimental results reported [21].

Here, we report on a study of the decay of metastable
states, which involves a model of self-consistent equations
to describe nucleation, growth and coarsening in phase
separating systems.  Our approach has combined steady-
state homogeneous nucleation theory with classical Lifshitz-
Slyozov theory (Ostwald ripening) [11], modified to account
for the correlations among the droplets.  This new formalism
naturally incorporates the cross-over from the early-stage
nucleation to the late-stage scaling regime without ad-hoc
assumptions.  We have performed simulations of the entire
time regime for two-dimensional domains (in dimension d = 2)
and three-dimensional domains (in d = 3).

Model

In this section, we restrict the equations to d = 3.  We
introduce the capillary length lc = 2σνm/(kT) and the
characteristic time τc = l/{DCeq(∞)νm}; τc is the time it takes a
monomer to diffuse over a distance comparable to the capillary
length.  These quantities involve the surface tension σ, the
molecular volume νm, the temperature T, the Boltzmann
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constant k, the solute concentration in the matrix at a planar
interface Ceq(∞), and the diffusion constant D.  We also
introduce a dimensionless concentration field θ(r,t) = {C(r,t)-
Ceq(∞)}/Ceq(∞).  Its value, far from any droplet, is the time-
dependent supersaturation χ(t).  The energy of a droplet of
radius R’ is thus given by: E(R’)/kT = 4πσ{R’2 - 2χ(t)R’3/(3lc)}.
Minimization of this energy with respect to R’ gives the critical
radius for nucleation of a droplet, R’.  In our study, we will
express units of length and time in terms of lc and τc.  Thus, the
(dimensionless) critical radius is given by Rc = R’/lc = 1/χ(t).
The height of the nucleation barrier is given by E(R’) evaluated
at the critical radius: Ec/kT = {χ0/χ(t)}2, where χ = (4πσl)/(3kT)
[10].  In terms of these quantities, the field-theoretic steady-
state nucleation rate in d = 3 can be written in dimensionless
form as [5]:
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The nucleation rate represents the number of droplets
nucleated per unit volume per unit time for a given
supersaturation.  In the simulations, the radius of every newly
nucleated droplet is chosen from a gaussian distribution
centered at Rc, with a width dRc.

The time evolution of the system is given by the
solution of the multi-droplet diffusion equation for the
concentration field θ(r,t).  In the monopole approximation [18,
20]:
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where the coefficients Qi describe the strength of the source
or sink of the current for diffusion.  We assume spherical
droplets in local equilibrium: the concentration near the interface
is determined by the local curvature and the local surface
tension.  This is the Gibbs-Thomson boundary condition θ(Ri)
= l/Ri [21].  An approximate solution for Eq. (2) in terms of the
N coefficients Qi and an integration coefficient Q0, that takes
into account the time evolution of the supersaturation χ(t), is
evaluated on the surface of droplet i:
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where rj is the center of mass of droplet j, and  (t) is the mean
radius of the droplets.  For a consistent description, Q0(t) =
χ(t) - l/ (t) must be valid at late times.

The growth law of a droplet is obtained by writing a
local continuity equation around a volume that encloses only
the droplet, R(dRi/dt) = Qi.  The conservation of mass requires
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where φ is the constant volume fraction of the minority phase.
The time derivative of this expression is:
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The third term is the decrease of χ(t) due to nucleation of
droplets.  The second term accounts for the variation of χ(t)
due to growth/dissolution of existing droplets.  A mean-field
treatment of χ(t) gives Σi Qi = N {R(t) χ(t) - 1} in d = 3, i.e., the
background is assumed to be in local equilibrium.  Eqs. (3) and
(5) represent a set of N + 1 linear coupled equations for the N
coefficients Qi and the coefficient Q0.  The growth equation,
the nucleation rate equation, and the conservation law
constitute the set of equations used in our simulations.  Time
evolution starts in an initial supersaturated state, χ(t=0) = φ.
At a given instant t, the nucleation rate, the critical radius, and
the growth law, are used to compute the minimum time required
to nucleate or eliminate one droplet.  This, in turn, determines
∂χ/∂t nuc.  Radii Ri and supersaturation χ(t) are updated using
the resulting minimum dt.  This updating of Ri and χ(t) modifies
the minimum dt, which must be computed self-consistently.

Results and Discussion

The time evolution is determined by three parameters:
the width dRc of the nucleation rate distribution function, the
nucleation parameter χ0, and the total volume fraction φ.  The
first two determine the initial radius distribution function and
the subsequent cross-over behaviour, while the effects of φ
persist to late times.  The time evolution is divided into three
stages: a nucleation, a diffusive growth, and a coarsening
stage.  Nucleation of droplets produce the initial depletion of
the supersaturation.  While nucleation is proceeding, the first
nuclei start to grow, seizing material from the supersaturation
χ(t).  This diffusive growth stage is marked by the high increase
in the in slope of  (t) and decrease in that of χ(t), and by a
nearly constant droplet density n(t).  Finally, when the
supersaturation is sufficiently reduced, its role is confined to
mediating the exchange of material among the droplets.  The
critical radius for nucleation becomes slaved to the mean radius
of droplets, i.e., Rc = 1/χ =  (t).  Growth is a global, interactive
phenomenon, and time evolution proceeds through Ostwald
ripening [11]: material diffuses away from the smaller, large-
curvature droplets (which dissolve), to the larger, low-
curvature droplets (which grow).  Coarsening is characterized
by universal, φ-dependent scaling form of the droplet
distribution function and by power-law behaviour [1, 12, 13,
16, 18, 20]:  (t) = { 3 (0) + K(φ)t}1/3 and N(t) = N(0) 3(0)/
{ 3(0) + K(φ)t}-1, where the coarsening rate K(φ) is a
monotonically increasing function of φ.  Figure 1 shows the
time evolution for a d = 2 system with volume fraction φ = 0.10.
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Figure 2 shows the dependence of the droplet density
n(t) and the supersaturation χ(t) on χ0 for d = 3 and d = 2, and
a volume fraction φ = 0.05.  As Figure 2 shows, the cross-over

to the scaling regime can take several decades in time.  The
activation energy is given by Ec/(kT) = {χ0/χ(t)}(d-1).  Thus,
the nucleation rate increases and the maximum of n(t) is higher

Figure 1.  Droplet morphology
for a sample d = 2 system, with
volume fraction φ = 0.05 and χ0
= 1/3.  From left to right and top
to bottom, times shown are: t =
40 (nucleation regime), 2,830
(time corresponding to the
maximum number of droplets),
63,000 (diffusive regime), and
214,000 (coarsening regime).

Figure 2.  Top and bottom
panels show the dependence
of the droplet density n(t) and
the supersaturation χ(t) on χ0
for φ = 0.05.  Left column: d = 3
system with χ0 = 1/7 (thick solid
line), 1/6 (long-dash line), 1/5
(short-dash line), and 1/4.5 (thin
solid line).  Right column: d = 2
system with χ0 = 1/4 (thick solid
line), 1/3 (long-dash line), and
1/2 (short-dash line).  Time is
measured in units of the
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and occurs sooner with decreasing χ0 and increasing φ.  For
small φ and small χ0, χ(t) depletes rapidly initially and diffusive
growth is minor, favoring a relative early onset of Ostwald
ripening [11] with its characteristic power-law behaviour.
However, for larger χ0, very few droplets with nearly equal
radii are nucleated, and the excess of supersaturation is
eliminated by the positive growth of all droplets, which hardly
interact.  Thus, their number stays constant and the droplet
distribution function is quite narrow during this stage.  After
χ(t) has dropped to very low values, large droplets start
growing at the expense of small ones.  However, since the
droplet distribution function is narrow, it takes some time to
introduce a dispersion of radii large enough for n(t) to start to
decrease again.

Some early times for the radius distribution functions
ƒ(R,t) for d = 3, φ = 0.05 and χ0 = 1/6 are shown in Figure 3, left
panel.  With the nucleation of critical droplets, ƒ(R,t) develops
a high peak centered at Rc.  As supersaturation diminishes, Rc
increases and the newly nucleated droplets have larger radii
than the older ones, making ƒ(R,t) asymmetric.  Before the
droplet density n(t) reaches its maximum at t = t2, nucleation is
the only mechanism to eliminate the excess of supersaturation.
At t2, the size of the initial droplets has fallen well behind the
critical size, and their presence produces a long tail for R < 
(t).  These subcritical droplets cost too much surface energy
and their dissolution causes the decay of n(t) immediately

after t2.  However, the system still has quite an excess of
supersaturation and nucleation is still an inexpensive way of
eliminating it.  Between t2 and t4, there is intensive dissolution
and creation of droplets.  The growth of droplets from the
background produces a bump in ƒ(R,t = t4) for large R’s, which
becomes a second peak between t4 and t5, creating a bimodal
distribution ƒ(R,t).  This marks the cross-over between the
nucleation and the diffusive regimes.  After t5, the peak for R
<  (t) rapidly decreases in height, while the growth peak
increases and moves towards larger R’s.  Finally, the right
panel in Figure 3 shows the distribution function for the
ripening regime.  Also shown in this figure are the Lifshitz-
Slyozov [11] results, which corresponds to the limits φ = 0
(this is the ripening stage for the Langer and Schwartz model
[10]), and the results of a simulation for φ = 0.083.

Summary

We have introduced a new formalism for nucleation
and growth that combines steady-state homogeneous
nucleation theory with Ostwald ripening theory [11] and
includes the correlations among droplets.  The set of self-
consistent equations naturally incorporates the cross-over
from the early-stage nucleation to the late-stage scaling regime
without ad hoc assumptions.  At present, we are generalizing
this formalism for the time evolution of three-dimensional

Figure 3.  Left panel:  Early stages for the droplet distribution function for a d = 3 system with φ = 0.05 and χ0 = 1/6.  Times shown
are: t1 = 4,785, t2 = 10,675, t3 = 26,582, t4 = 30,648 and t5 = 53,960.  On the left-hand-side, note that the distribution function becomes
broader with increasing time.  The solid line represents the results of our unpublished mean-field theory based on a Thomas-Fermi
approximation [20].  Right panel:  Ripening stage for the previous droplet distribution function (triangles) at t = 3 x 106, and for a
system with φ = 0.083.  The thin solid line corresponds to the Lifshitz-Slyozov result [10].  Time is measured in units of the
characteristic diffusion time defined in the text.
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clusters on d = 2 surfaces, which is especially important for
thin film systems [21].

References

[1] Ardell AJ (1990) Late-stage two-dimensional
coarsening of circular clusters. Phys. Rev. B41, 2554-2556.

[2] Becker R, Döring W (1935) Kinetische Behandlung
der Keimbildung in übersättigten Gebilden (Kinetic theory for
nucleation of supersaturated structures). Ann. Phys. 24, 719-
752.

[3] Coleman S (1977) Fate of the false vacuum:
Semiclassical theory. Phys. Rev. D15, 2929-2936.

[4] Farkas L (1927) Keimbildungsgeschwindigkeit in
übersättigten Dämpfen (Velocity of nucleation in
supersaturated vapors). Z. Physik. Chem. 125, 236-242.

[5] Gunther NJ, Nicole DA, Wallace DJ (1980) Goldstone
modes in vacuum decay and first-order phase transitions. J.
Phys. A13, 1755-1767.

[6] Gunton JD, Droz M (1983) Introduction to the
Theory of Metastable and Unstable States. Lecture Notes in
Physics, vol. 183. Springer-Verlag, Heidelberg, Germany. pp.
49-58.

[7] Kaischew R, Stranski IN (1935) Über den
Mechanismus des Gleichgewichts kleiner Kriställchen. II (On
the mechanism of the equilibrium of small crystals. II). Z.
Physik. Chem. 26, 114-116.

[8] Langer JS (1967) Theory of the condensation point.
Ann. Phys. (NY) 41, 108-157.

[9] Langer JS (1969) Statistical theory of the decay of
metastable states. Ann. Phys. (NY) 54, 258-275.

[10] Langer JS, Schwartz AJ (1980) Kinetics of
nucleation in near-critical fields. Phys. Rev. A21, 948-958.

[11] Lifshitz IM, Slyozov VV (1961) The kinetics of
precipitation from supersaturated solid solutions. J. Phys.
Chem. Solids 19, 35-50.

[12] Marder M (1987) Correlations and Ostwald
ripening. Phys. Rev. A36, 858-874.

[13] Marqusee JA, Ross J (1984) Theory of Ostwald
ripening: Competitive growth and its dependence on volume
fraction. J. Chem. Phys. 80, 536-543.

[14] Siebert ED, Knobler CM (1984) Measurements of
homogeneous nucleation near a critical solution temperature.
Phys. Rev. Lett. 52, 1133-1136.

[15] Siebert ED, Knobler CM (1985) Analysis of light-
scattering measurements near a cloud point. Phys. Rev. Lett.
54, 819-822.

[16] Tokuyama M, Enomoto Y (1992) Dynamics of
crossover phenomenon in phase-separating systems. Phys.
Rev. Lett. 69, 312-315.

[17] Volmer M, Weber A (1926) Keimbildung in
übersättigten Gebilden (Nucleation of supersaturated
structures). Z. Physik. Chem. 119, 277-301.

[18] Voorhees PW (1985) The theory of Ostwald
ripening. J. Stat. Phys. 38, 231-252.

[19] Wong NC, Knobler CM (1978) Light scattering
studies of phase separation in isobutyric acid + water mixtures.
J. Chem. Phys. 69, 725-735.

[20] Yao JH, Elder KR, Guo H, Grant M (1992) Ostwald
ripening in two and three dimensions. Phys. Rev. B45, 8173-
8176.

[21] Zinke-Allmang M, Feldman LC, Grabow MH (1992)
Clustering on surfaces. Surf. Sci. Rep. 16, 377-458.

Discussion with Reviewers

T. Lookman:  How good is the approximation when the results
are compared to experimental observations?
Authors:  We hope that our paper will motivate careful
experiments on the issue.

Reviewer II:  In relation to correlations effects: the authors
state several times in the paper that they include the effects of
the correlation of droplets; can correlation effects be presented.
Authors:  All our figures include those correlation effects and
are different from those that would be obtained in absence of
such correlations.  The right panel to Figure 3 shows one
possible comparison.

Reviewer II:  These simulations represent the cross-over regime
between early stage nucleation and late stage ripening.  As
support for the correct form of such a cross-over, do the
authors find that the details of late stage ripening in their
model (i.e., the droplet size distribution), approach ripening
predictions at late times?
Authors:  In fact, the details of the late stage ripening in our
model closely approach the ripening predictions at late times.
Comparisons will be presented elsewhere.

Reviewer II:  The solid lines in Figure 3 are the results of a
mean field theory that includes droplet correlation effects.
Can you comment further on the terminology used?  Does a
mean field theory not ignore correlations?
Authors:  The mean-field theory used by, say, Lifshitz-Slyozov
theory [11] or Langer-Schwartz theory [10], considers a single
droplet and the effect of all other droplets only appear through
the droplet distribution function.  As a consequence, some of
the predictions, such as, the shape of the distribution function
or the slope of the mean radius, are only valid when the volume
fraction φ → 0.  For non-zero φ, the steady state problem for
ripening resembles a homogeneous electron gas, since
droplets interact via the Laplace equation in the steady-state
limit and charge neutrality is invoked.  Yao et al. [20] introduced
screening effects among the droplets and approximated the
many-droplet correlation effects in the same manner as the
Thomas-Fermi mechanism for Coulomb systems.  Our
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approach is an extension of that work [20].

Reviewer II:  I am rather surprised that the mean field predictions
plotted in Figure 3 agree so well with simulations that have
droplet interactions.  I would have thought that the inclusions
of the interactions would alter the results.  In fact, the agreement
appears so good that I do not see why the simulations are
even required!
Authors:  How the mean field predictions compare with
simulations depends on the parameter and time regimes.  For
instance, for the case shown with volume fraction φ = 0.05,
the comparison is good for values of the nucleation parameter
χ0 ≤ 1/6 and becomes poor for larger values of χ0.  Also, the
comparison is poorer with volume fractions φ > 0.05.  The
simulations within the limits of the model always give the
exact results.  The Thomas-Fermi approach give approximate
results, quite good for certain parameters regimes, and thus,
provide an inexpensive way of obtaining rough estimates.
Further discussions of the mean field approach and its
limitations are scheduled for another publication.

Reviewer II:  The following points are concerned with how
the authors have dealt with small cluster sizes in their
simulations.  (a).  What is the smallest droplet size allowed in
the simulations?  Since the nucleation stage includes a
Gaussian distribution of droplet sizes, it appears that sizes
arbitrarily close to zero are permitted.  The droplet size
distributions in Figure 3 also indicate this since they appear
to fall gradually to zero as the droplet size decreases.  (b).
Why is a Gaussian distribution of droplet sizes chosen for the
nucleation stage?  This allows for droplets which are less
than the critical size which are unstable and should not nucleate
at all!  What happens to these unstable droplets and why are
they introduced in the first place?  (c).  The Gibbs-Thomson
boundary condition is valid only for “large” droplets since
the supersaturation diverges as the particle size approaches
zero.  During the nucleation stage and during ripening stages
of growth (where droplet dissolution occurs) some very small
drop-lets seem present.  When does the divergence in the
su-persaturation caused by the boundary condition become
unphysical?  Do the authors take this into account?  (d).  I find
it very curious that during the ripening stages of the
simulations, the particle dissolution results in a locally high
enough supersaturation to create a “second nucleation stage”.
It seems that if ripening processes result in particle dissolution,
then why would a new droplet nucleate?  Would the large
droplet nearby (which is causing the dissolution of the small
droplet) not prevent re-nucleation?
Authors:  (a).  The droplet size in the simulation is picked from
a quite narrow Gaussian random number distribution, of width
dRc.  Sizes arbitrarily close to zero have a small chance of
occurring.  The droplets distribution functions in the second
panel of Figure 3 are obtained as an average over 30 runs.  The

resulting distribution function is further smoothed using
standard filtering techniques.  This extrapolates the droplet
distribution function smoothly to zero.  In the scale shown in
Figure 3, the error bars are of order of 4 units.  (b).  The model
can flexibly admit any choice of distribution function for the
nucleation rate; a Gaussian distribution is customarily
assumed in the standard literature.  Subcritical droplets can
be nucleated (they eventually dissolve) and they provide an
important source of fluctuations.  A distribution function that
allows subcritical droplets is also consistent with the late-
stage distribution function, where the critical radius becomes
the mean radius.  Langer and Schwartz [10] also discuss this
point.  (c).  No divergence of the supersaturation at the droplet
interface is ever observed for the simple reason that long
before that stage the droplet is energetically not favored and
dissolves.  This is taken into account by considering the growth
law of each individual droplet: R(t + dt) = R(t) + d ⋅ dtQi(t).  For
very small droplets, Qi(t) is a very large negative number.  Thus,
we can compute a minimum time dtmin for the disappearance of
a droplet: dtmin = -Rin(t)/{d Qmin(t)}.  Integration of the equations
is performed in very small, variable time steps dt.  When dt =
dtmin, all those droplets, whose radius would be zero after the
time integration, are eliminated from the system.  (d).  This is a
misinterpretation.  There is no second nucleation stage during
the ripening stages.  The bimodal distribution shown in Figure
3 signals the cross-over from the nucleation-dominated regime
to the diffusion-dominated regime.  The ripening regime for
this system is shown in right panel of Figure 3 to further
illustrate this point.


