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Abstract

Inthiswork, wehavere-examinedtheclassical problem
of nucleation and growth. A new model considers the
correlations between droplets and naturally incorporatesthe
crossover from the early-stage, nucleation-dominated regime
to the scaling, late-stage, coarsening regime within asingle
framework. Resultsarereported for three-dimensiona growth
in three dimensions, and the growth of two-dimensional
droplets on atwo-dimensional substrate.  Since the method
involvesonly interface equations, it permitsthe simulation of
much larger systemsthan can be studied using other methods.
Inparticular, resultsaregivenfor thevariation with timeof the
number of droplets, the excess supersaturation, and thedropl et
distribution function, for different concentrations and
temperatures.
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Introduction

Metastable states decay towards equilibrium via the
introduction of finite-size fluctuations. The energy for the
formation of adroplet of the stable phaseisdetermined by the
competition between the volumeenergy (which favorsgrowth)
and the droplet surface energy (which favors dissolution).
This competition definesacritical sizeR_for nucleation of a
droplet. The kinetics of phase separation from such a
metastable state has been intensively studied and the early
stages of nucleation [2, 3, 4, 6, 7, 8, 9, 17] and late stages of
coarsening [11] arewell understood. Much less, however, is
known about the cross-over regime. In 1980, Langer and
Schwartz [10] used amean-field approach to study the non-
linear dynamical equations of motion for a phase separating
system for the entire time regime. The importance of a
theoretical description that includes the correlation effects
has been emphasized by the abundant experimental data on
these processes[14, 15, 19]. Moreover, the growing interest
intheformation of clusterson surfacescallsfor new theoretical
developments to account for the increasing number of
experimental resultsreported [21].

Here, we report on astudy of the decay of metastable
states, which involves a model of self-consistent equations
to describe nucleation, growth and coarsening in phase
separating systems. Our approach has combined steady-
state homogeneous nucl eation theory with classical Lifshitz-
Slyozov theory (Ostwald ripening) [11], modified to account
for the correlationsamong the droplets. Thisnew formalism
naturally incorporates the cross-over from the early-stage
nuclestion to the late-stage scaling regime without ad-hoc
assumptions. We have performed simulations of the entire
timeregimefor two-dimensional domains(indimensiond=2)
and three-dimensiona domains(ind = 3).

Modd

In this section, we restrict the equationstod = 3. We
introduce the capillary length | = 20v_/(kT) and the
characteristictimet_ =1/ DCeq(oo)vm} ;T isthetimeittakesa
monomer to diffuseover adistance comparabletothe capillary
length. These quantities involve the surface tension o, the
molecular volume v, the temperature T, the Boltzmann
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constant k, the solute concentration in the matrix at a planar
interface C_(e0), and the diffusion constant D. We also
introduce adimensionless concentration field 6(r,t) ={ C(r ,t)-
Ceq(oo)}/Ceq(oo). Its value, far from any droplet, is the time-
dependent supersaturation x(t). The energy of a droplet of
radiusR’ isthusgivenby: E(R')/KT =4ng{R'2- 2x(OR'¥(31 )} -
Minimization of thisenergy withrespect toR’ givesthecritical
radius for nucleation of adroplet, R’. In our study, we will
expressunitsof lengthandtimeintermsof |_andt_. Thus, the
(dimensionless) critical radiusisgivenby R = R/l = 1/x(t).
Theheight of thenucleation barrierisgivenby E(R’) evaluated
athecritica radius: E /KT ={X /X (D} wherex = (4md)/(3KT)
[20]. Intermsof these quantities, the field-theoretic steady-
state nucleation ratein d = 3 can be written in dimensionless
formas|[5):

a2 X psseqy (Ko g
Xo Xo X(®
The nucleation rate represents the number of droplets
nucleated per unit volume per unit time for a given
supersaturation. |nthesimulations, theradiusof every newly
nucleated droplet is chosen from a gaussian distribution
centered a R, withawidth dR.

The time evolution of the system is given by the
solution of the multi-droplet diffusion equation for the
concentrationfield B(r,t). Inthe monopoleapproximation[18,
2:
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where the coefficients Q. describe the strength of the source
or sink of the current for diffusion. We assume spherical
dropletsinloca equilibrium: the concentration near theinterface
is determined by the local curvature and the local surface
tension. Thisisthe Gibbs-Thomson boundary condition6(R))
=I/R [21]. Anapproximatesolutionfor Eq. (2) intermsof the
N coefficients Q and an integration coefficient Q,, that takes
into account thetime evolution of the supersaturation x(t), is

evaluated on the surface of droplet i:
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wherer  isthecenter of massof dropletj, andR (t) isthemean
radius of the droplets. For a consistent description, Q,(t) =
X(®) - I/R(t) must bevalid at latetimes.

The growth law of adroplet is obtained by writing a
local continuity equation around avolumethat enclosesonly
thedroplet, R(dR/dt) = Q.. Theconservation of massrequires

N(t)
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where @isthe constant volumefraction of theminority phase.
Thetimederivative of thisexpressionis:
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The third term is the decrease of x(t) due to nuclestion of
droplets. The second term accounts for the variation of x(t)
dueto growth/dissolution of existing droplets. A mean-field
treatment of x(t) givesZ Q =N{R() x(t) - 1} ind=3,i.e, the
backgroundisassumedto beinloca equilibrium. Egs. (3) and
(5) represent aset of N + 1 linear coupled equationsfor theN
coefficients Q and the coefficient Q,. The growth equation,
the nucleation rate eguation, and the conservation law
constitute the set of equations used in our smulations. Time
evolution startsin an initial supersaturated state, X(t=0) = .
Atagiveningtant t, thenucleation rate, thecritical radius, and
thegrowth law, areused to computetheminimumtimerequired
tonucleate or eiminate onedroplet. This, inturn, determines
ox/atl], . Radii R and supersaturation x (t) are updated using
theresultingmini mum dt. Thisupdatingof R and x(t) modifies
theminimum dt, which must be computed self—consi stently.

Resultsand Discussion

Thetimeevolutionisdetermined by three parameters:
thewidth dR _of the nucleation rate distribution function, the
nucleation parameter X , and thetotal volumefraction@. The
first two determinetheinitial radiusdistribution function and
the subsequent cross-over behaviour, while the effects of @
persist tolatetimes. Thetimeevolutionisdivided into three
stages: a nucleation, a diffusive growth, and a coarsening
stage. Nucleation of droplets producetheinitia depletion of
the supersaturation. While nucleation isproceeding, thefirst
nuclei start to grow, seizing material from the supersaturation
X(t). Thisdiffusvegrowth stageismarked by thehighincrease

inthein slope of R (t) and decrease in that of (t), and by a
nearly constant droplet density n(t). Finaly, when the
supersaturation is sufficiently reduced, itsroleis confined to
mediating the exchange of material among thedroplets. The
critical radiusfor nucleation becomesd aved to themeanradius
of droplets,i.e, R =1/x= R (t). Growthisaglobal, interactive
phenomenon, and time evolution proceeds through Ostwald
ripening [11]: materia diffusesaway fromthesmaller, large-
curvature droplets (which dissolve), to the larger, low-
curvaturedroplets (which grow). Coarseningischaracterized
by universal, @-dependent scaling form of the droplet
distribution function and by power-law behaviour [1, 12, 13,
16, 18, 20]:R (t) = {R? (0) + K (@)t} ** and N(t) = N(O)R*(0)/
{R30) + K(@)t}2, where the coarsening rate K(¢) is a
monotonically increasing function of ¢. Figure 1 showsthe
timeevolutionfor ad =2 systemwith volumefraction ¢=0.10.
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the supersaturation x(t) on x,
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Figure 2 showsthe dependence of the droplet density to the scaling regime can take several decadesintime. The
n(t) and the supersaturation X (t) on X, ford=3andd = 2, and activation energy is given by E/(KT) = {x/x(t)} . Thus,
avolumefraction @=0.05. AsFigure2 shows, the cross-over thenucleation rateincreases and the maximum of n(t) ishigher
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Figure3. Left panel: Early stagesfor thedroplet distribution functionfor ad = 3 sysemwith ¢=0.05and x , = 1/6. Timesshown
are: t1=4,785,t2=10,675, t3= 26,582, t4 = 30,648 and t5=53,960. Ontheleft-hand-side, notethat the distribution function becomes
broader withincreasingtime. Thesolidlinerepresentstheresultsof our unpublished mean-field theory based on aThomas-Fermi
approximation[20]. Right panel: Ripening stagefor the previousdroplet distribution function (triangles) at t = 3x 10° and for a
system with @ = 0.083. The thin solid line corresponds to the Lifshitz-Slyozov result [10]. Time is measured in units of the

characteristic diffusiontimedefined in thetext.

and occurs sooner with decreasing X, and increasing ¢. For
small gand small X, x(t) depletesrapidly initialy and diffusive
growth is minor, favoring a relative early onset of Ostwald
ripening [11] with its characteristic power-law behaviour.
However, for larger X, very few droplets with nearly equal
radii are nucleated, and the excess of supersaturation is
eliminated by the positive growth of all droplets, which hardly
interact. Thus, their number stays constant and the droplet
distribution function is quite narrow during this stage. After
X(t) has dropped to very low values, large droplets start
growing at the expense of small ones. However, since the
droplet distribution function is narrow, it takes sometime to
introduce adispersion of radii large enough for n(t) to start to
decrease again.

Some early timesfor the radius distribution functions
f(R;t) ford=3, 9=0.05andx,= /6 areshowninFigure3, left
pandl. Withthenucleation of critical droplets, f(R,t) develops
ahigh peak centered a R . Assupersaturation diminishes, R
increases and the newly nucleated droplets have larger radii
than the older ones, making f(R,t) asymmetric. Before the
droplet density n(t) reachesitsmaximumat t =t2, nuclestionis
theonly mechanism to diminatethe excessof supersaturation.
Att2, thesizeof theinitia dropletshasfallen well behind the
critical size, and their presence producesalong tail for R<R
(t). These subcritical droplets cost too much surface energy
and their dissolution causes the decay of n(t) immediately

after t2. However, the system dtill has quite an excess of
supersaturation and nucleation is still an inexpensive way of
eliminatingit. Betweent2 andt4, thereisintensivedissolution
and creation of droplets. The growth of droplets from the
background producesabumpin f(R,t =t4) for largeR’s, which
becomesasecond pesk between t4 and t5, creating abimodal
distribution f(R,t). This marks the cross-over between the
nucleation and thediffusiveregimes. After t5, the peak for R
<R (t) rapidly decreases in height, while the growth peak
increases and moves towards larger R's. Findly, the right
panel in Figure 3 shows the distribution function for the
ripening regime. Also shown in thisfigure are the Lifshitz-
Slyozov [11] results, which corresponds to the limits @ = 0
(thisistheripening stagefor the Langer and Schwartz model
[20]), and theresultsof asimulation for ¢p=0.083.

Summary

We have introduced a new formalism for nuclestion
and growth that combines steady-state homogeneous
nucleation theory with Ostwald ripening theory [11] and
includes the correlations among droplets. The set of self-
consistent equations naturally incorporates the cross-over
fromtheearly-stage nucleation to thelate-stage scaling regime
without ad hoc assumptions. At present, we aregeneralizing
this formalism for the time evolution of three-dimensional
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clusters on d = 2 surfaces, which is epecially important for
thinfilm systems[21].
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Discussion with Reviewers

T.Lookman: How good istheapproximationwhentheresults
are compared to experimental observations?

Authors: We hope that our paper will motivate careful
experiments on theissue.

Reviewer 11: In relation to correlations effects: the authors
state several timesinthe paper that they includethe effects of
the correlation of droplets; can correlation effectsbe presented.
Authors: All our figuresincludethose correl ation effectsand
are different from those that would be obtained in absence of
such correlations. The right panel to Figure 3 shows one
possible comparison.

Reviewer |1: Thesesmulationsrepresent thecross-over regime
between early stage nucleation and late stage ripening. As
support for the correct form of such a cross-over, do the
authors find that the details of late stage ripening in their
model (i.e., the droplet size distribution), approach ripening
predictions at late times?

Authors: Infact, the detail s of the late stage ripening in our
model closely approach theripening predictionsat latetimes.
Comparisonswill be presented el sewhere.

Reviewer I1: Thesolid linesin Figure 3 are the results of a
mean field theory that includes droplet correlation effects.
Can you comment further on the terminology used? Doesa
mean field theory not ignore correlations?

Authors Themean-fieldtheory used by, say, Lifshitz-Slyozov
theory [11] or Langer-Schwartz theory [10], consdersasingle
droplet and the effect of al other dropletsonly appear through
thedroplet distribution function. Asaconsequence, some of
thepredictions, such as, the shape of thedistribution function
or thed opeof themeanradius, areonly vaid whenthevolume
fraction @ - 0. For non-zero ¢, the steedy state problem for
ripening resembles a homogeneous electron gas, since
dropletsinteract viathe Laplace equation in the steady-state
limit and chargeneutrality isinvoked. Yaoetal.[20] introduced
screening effects among the droplets and approximated the
many-droplet correlation effects in the same manner as the
Thomas-Fermi mechanism for Coulomb systems. Our
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approach isan extension of that work [20].

Reviewer |1: | amrather surprised that themeanfield predictions
plotted in Figure 3 agree so well with simulations that have
dropletinteractions. | would havethought that theinclusions
of theinteractionswould ater theresults. Infact, theagreement
appears so good that | do not see why the simulations are
evenrequired!

Authors: How the mean field predictions compare with
simul ations depends on the parameter and timeregimes. For
instance, for the case shown with volume fraction ¢ = 0.05,
thecomparisonisgood for values of the nucleation parameter
X, < 1/6 and becomes poor for larger values of x. Also, the
comparison is poorer with volume fractions @ > 0.05. The
simulations within the limits of the model dways give the
exact results. The Thomas-Fermi approach give approximate
results, quite good for certain parameters regimes, and thus,
provide an inexpensive way of obtaining rough estimates.
Further discussions of the mean field approach and its
limitations are scheduled for another publication.

Reviewer |1: The following points are concerned with how
the authors have dealt with small cluster sizes in their
simulations. (a). What isthesmallest droplet sizealowedin
the simulations? Since the nucleation stage includes a
Gaussian distribution of droplet sizes, it appears that sizes
arbitrarily close to zero are permitted. The droplet size
distributions in Figure 3 also indicate this since they appear
to fall gradually to zero as the droplet size decreases. (b).
Why isaGaussian distribution of droplet sizeschosenfor the
nuclestion stage? This alows for droplets which are less
thanthecritical szewhich areunstableand should not nucleste
a all! What happens to these unstable droplets and why are
they introduced in thefirst place? (c). The Gibbs-Thomson
boundary condition is valid only for “large’ droplets since
the supersaturation diverges as the particle size approaches
zero. During the nucleation stage and during ripening stages
of growth (where dropl et dissol ution occurs) somevery small
drop-lets seem present. When does the divergence in the
su-persaturation caused by the boundary condition become
unphysical? Do theauthorstakethisinto account? (d). | find
it very curious that during the ripening stages of the
simulations, the particle dissolution resultsin alocally high
enough supersaturation to createa” second nucl eation stage”.
It seemsthat if ripening processesresultin particledissolution,
then why would a new droplet nucleate? Would the large
droplet nearby (which is causing the dissolution of the small
droplet) not prevent re-nucleation?

Authors (a). Thedroplet Szeinthesmulationispickedfrom
aquitenarrow Gaussian random number distribution, of width
dR. Sizes arbitrarily close to zero have a small chance of
occurring. The droplets distribution functionsin the second
panel of Figure 3 are obtained asan averageover 30runs. The

resulting distribution function is further smoothed using
standard filtering techniques. This extrapolates the droplet
distribution function smoothly to zero. Inthescaleshownin
Figure 3, theerror barsare of order of 4 units. (b). Themodel
can flexibly admit any choice of distribution function for the
nucleation rate; a Gaussian distribution is customarily
assumed in the standard literature. Subcritical droplets can
be nucleated (they eventualy dissolve) and they provide an
important source of fluctuations. A distribution function that
allows subcritical droplets is aso consistent with the late-
stage distribution function, where the critical radiusbecomes
themeanradius. Langer and Schwartz [10] also discussthis
point. (c). Nodivergenceof the supersaturation at the droplet
interface is ever observed for the simple reason that long
before that stage the droplet is energetically not favored and
dissolves. Thisistakeninto account by considering thegrowth
law of eachindividual droplet: R(t +dt) = R(t) + d [eitQ(t). For
very small droplets, Q(t) isavery largenegativenumber. Thus,
wecan computeaminimumtimedt, ;. for thedisappearance of
adroplet:dt . =-R (){dQ,, (t)}. Integration of theeguations
isperformedinvery small, variabletime stepsdt. Whendt =
dt .. al those droplets, whose radius would be zero after the
timeintegration, areeliminated fromthesystem. (d). Thisisa
misinterpretation. Thereisno second nucleation stageduring
theripening stages. Thebimodal distribution shownin Figure
35 gnasthecross-over fromthe nuclestion-dominated regime
to the diffusion-dominated regime. The ripening regime for
this system is shown in right panel of Figure 3 to further
illustrate this point.



