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Abstract

Experiments show that faceting of a vicinal surface
can be driven by surface reconstruction, which often occurs
only on sufficiently wideterraces. We study the dynamics of
steps near an isolated reconstructed terrace using a simple
one-dimensional model that assignsalower freeenergy (due
to reconstruction) for terraces with width greater than some
critical width w.. When mass is conserved localy, through
surface diffusion, we find that the growth of areconstructed
terrace can induce the growth of another such terrace nearby.
This induced nucleation process is analyzed using asimple
and physically suggestive picture where analytic results can
be obtained. The faceted surfaces arising from this process
are predicted to have a periodic distribution of reconstructed
terraces separated by step bunches. The long time behavior
of the faceting is obtained using a scaling ansatz. A similar
analysisis carried out for the non-conserved case.
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Introduction

Surface reconstruction can often cause a vicinal
surface with a single macroscopic orientation to facet into
surfaces with different orientations [18]. Generally the
reconstruction occurs on a particular low index “flat” face,
andlowersitsfreeenergy relativeto that of an unreconstructed
surface with the same orientation. However the same
reconstruction that producesthelower freeenergy for theflat
face generally increases the energy of surface distortions
such as steps which disturb the reconstruction. Thus,
reconstruction is often observed only on terraces wider than
some critical terrace width w.. When steps are uniformly
distributedinitially andif w_ismuch greater than the average
terrace spacing w,, step fluctuations leading to the formation
of asufficiently wideterrace, a“critical nucleus’, arerequired
for the reconstruction to begin. Continued growth of the
reconstructed region can makethevicina surfacefacetintoa
“flat” reconstructed surface and amuch more sharply inclined
unreconstructed surface with closely bunched steps. In this
paper, weexaminethedynamicsof faceting after suchaninitial
nucleation event.

Experimental examplesincludethe 7x7 reconstruction
on Si(111) surfaces [12] and the formation of (nx1) oxygen
chainsonan O/Ag(110) surface[11]. Both havebeen observed
only on large (w>w,) terraces, where the critical width w,
dependsontemperature, pressure and some other parameters.
However, faceting experiments on these and some other
systems, such as Pt(111) and Au(111), show a noticeable
regularity inthesizeand spacing of theflat facets[12, 15, 19]
though the extent of regularity is different depending on the
system. It seems hard to reconcile these regularities with a
picture of random nucleation of the reconstructed regions.

Whilethereareanumber of different factors(including,
in particular, elastic interactions[15, 19]) that can contribute
to thefacet spacing in particular systems, we argue that there
exists a rather genera kinetic mechanism that can lead to
regular featuresinthefaceting process. Thismechanism may,
in part, explain some aspects of theregularity found in recent
experiments.

We consider the case where the reconstruction
effectively occurs only on terraces wider than some critical
terrace width w, and assign a lower free energy (due to
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recondtruction) for terraceswider thanw.. If w_ismuch greater
than theinitial average terrace spacing w,, anucleation event
is required to form the first wide terrace. The subsequent
temporal and spatial behavior of thefaceting process depends
crucially on the mechanism of masstransport on the surface.
When mass transport isglobal, through areservair, asin the
case of evaporation and condensation, the nucleated facet
continuesto grow indefinitely in the absence of another nearby
therma nucleation event. All neighboring terraces become
smaller as the reconstructed facet grows and this makes
nucleation near the growing facet lesslikely.

However, when mass transport is local, as in mass
movement through surface diffusion without direct ad-atom
hops between terraces, we find the facet does not continueto
grow indefinitely. Inthiscase, themotion of astepisdirectly
coupled to the motion of neighboring steps. Because of this
coupling, a growing nucleus can induce the formation of
another nucleusnearby [3, 4] which“ callides’” with theorigina
facet. Thiscanlead to apropagation of nucleation events|[6].
Thefaceted surfaceformed in thisinduced nucleation process
exhibit very different characteristics from the conventiona
thermally nucleated one. Inthisprocess, the average number
of steps in a bunch, n,, and final facet size, W, are mainly
selected by the kinetics.

Modd

We concentrate on the kinetics of faceting onavicina
surface after the initial formation of a reconstructed critical
nucleus. We assume that reconstruction occurs quickly once
asuitableterraceisformed. Inmost cases, oncesuchanucleus
iscreated, it propagates much faster inthedirection paralel to
the steps and quickly forms an elongated cigar like shape.
The steps which bound the latera regions of the elongated
nucleus are usualy almost straight [12]. Thus, it seems
plausiblethat the growth of the nucleated facet inthedirection
perpen-dicular to the steps can be well described by a one-
dimensional (1D) terrace step (TS) model, even though it
cannot describe theinitial two-dimensiona (2D) nucleation
eventitself. The1D variable, thepositionof thenthstep x in
our TSmodel isthe coarse grained aver age (over the lateral
size L, of the elongated nucleus) position of the nth step.

The projected free-energy density (this is the free
energy per unit projected surface area; use of the projected
free energy alows a direct analogy to the phase separation
dynamics of aliquid-vapor system [18]) of avicina surface
inclined at an average angle 8to thelow-index reference plane
on which reconstruction can occur (referred to hereafter as
theflat surface) iswell described by [2, 5, 14, 17, 18]

fr,u(s) = fl’,UO + BI’,LIS+ gr,u§ (1)

Here sis the density of steps, which is proportional to the
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Figurel. Freeenergiesfor theunreconstructed surfacef and
reconstructed surfacef, versusslopes. Thecritica slope, s,
and the slope of the surface at step bunches, s, are given by
s.= g/eands, = (&/29)". Thethick curvein (a) representsthe
free energy of ahypothetical systeminwhich all terracesare
reconstructed (unreconstructed) when the average dope, s,
is less than (greater than) s. In (b), a free-energy curve is
shown which takes into account a distribution of terrace
widths. Thefree Fermion model isused to get thedistribution
foragivens.

dopeof the surface, tan 6, and the subscriptsu and r indicate
a surface that is completely unreconstructed (u) or
reconstructed (r). Thefirst term, , isthe surface energy per
unit area of the flat surface and S is the free energy per unit
lengthtoform anisolated step. Thelast termisthefreeenergy
dueto the effective interactions between the steps. Thisterm
includes the entropic repulsion between steps (due to
fluctuationsaong the step edge) aswell as possible energetic
contributions such as elastic or dipole interactions [10]. In
most cases, the effective interaction between steps of the
same signisrepulsive (g > 0). Hence, the free energy of the
vicind surface, f_, isconvex downward (asshowninFig. 1).
Therefore, the vicinal surface of a single phase (either
completely unreconstructed or reconstructed) is stable with
respect to faceting.

Reconstruction induced faceting naturally arises if
surface reconstruction occurs only on largew > w_ terraces.
Thismeansthat f issmaller thanf for s<s = 1/w_butthat f
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islarger than f for s>s. Asdiscussed earlier, this can be
understood by assuming that the free energy of the
reconstructed flat surface hasalower value (-¢ per unit areg;
f0=1 °- &) than theunreconstructed flat surface but effectively
ahigher energy codt (&, per unitlength; 8 = 3, + € for forming
anisolated step[17]. Thecritical dopes isthengivenby s =
g/easshowninFigure 1. Thethick curveinFigure 1a, given
by

f(s) =1 (98(s-s) +1(96(s.-9) ©
=f(9)-(1-5s)eb(s-s)

with © the unit step function, represents the free energy of a
hypothetical system in which all terraces are reconstructed
(unreconstructed) when the average slope s is less than
(greater than) s.. (For smplicity, we usethe samevaue of g
for the reconstructed and unreconstructed surfaces. The
change in g, Ag, between the two surfaces does not play an
important roleinwhat follows.) Asinearlier work [9, 13], we
assume this same expression can be applied locally to give

~

f(w), thefreeenergy of anindividual terracewithwidthw=21/
S. Thus, wemmef(w) =f(1/w)), evenin caseswhereadjacent
terrace widths vary. This yields a smple two state model
whereeach terraceiseither reconstructed or unreconstructed,
depending only on its width.

Inared system, for given averagedopes, therewould
be adistribution of terrace widths around the average terrace
width w = 1/s. Near s, we would expect to find both
reconstructed and unreconstructed terracesin alarge system.
Thiswould removethecuspat s, inf(s) and produceasmoothly
varying curve in thisregion. In Figure 1b, a modified free
energy curveis shown, which takesinto account, in acrude
way, adistribution of terracewidths. ThefreeFermion model
[5] isused to get thedistribution of widths. For agivens, the
relativenumber of terraces of whichthewidthislarger thanw,
and their relative area are calculated [7]. We assume that
reconstruction takes place on al of these wide terraces and
takes into account the resulting free-energy change to

determineanew 17(3). Asexpected, thisremovesthe cusp at

s.in Eq. (2) and produces asmooth free-energy curve.

However, in either model, the free energy of the
combined system loses overal convexity, and the uniform
systemisunstable. Thus, “ phase separation” occurs between
the two “phases’ of which the properties are determined by
theusua tie bar construction (asindicated by the dashed line
in Figure 1). In particular, the slope of the step bunches
coexist-ing with thereconstructed flat surfaceisgivenby s =
(e/2g)¥2 asshownin Figure 1. Notethat thecurvein Figure 1b
is a coarse- grained free energy resulting from an average
over many terrace widths. The free energy of an individual
terrace near the el ongated nucleusismore properly described
by thecurvein Figure 1a.
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Figure 2. Labeling of steps and terraces. The chemical
potential, & , of step n isdefined asthe differencein thetotal
surfacefree energy beforeand after an atom isremoved from

step n.

Kinetics

In the previous section, we showed that surface
reconstruction can cause a faceting on avicinal surface and
obtained the equilibrium slopes of the faceted surfaces from
thermo-dynamic arguments. However, thisdoes not explain
the spatid distribution of terracesand step bunches. Thekey
factor indetermining thesizes of thefinal facetsishow far the
facet nuclei arefrom each other when they form (or how often
they are created when facets grow slowly compared to the
creation of anucle). Thisrequiresastudy of thekinetics of
step motion as influenced by the attachment/detachment
kineticsof atomsat the step edges. Thisinturn can berelated
to the chemical potential at the step edge[9].

Thechemical potentid, & , of step n (which separates
the n-1 and the nth terrace; see Figure 2) is de-fined as the
differencein thetotal surfacefree energy before and after an
atomisremoved from stepn. We assumethat the free-energy
density on aterrace with width w can be approximated by

Fw)=f(1/w). Then, & isgivenby

&, = {FW)+FW, I Fw,)+F(w, )}
=L, [{w, f(w)~(w-8) 7 (w-8)}
+H{w,, 7w, )-(w, +8) F(w, ,+8)}]

=0, W W), - 0, WFW),,, ©)

Herew, (W) isthe average distance between step nand n+1
before (after) an atomisremoved from the step, L= 1disthe
length of a step edge (i.e, the lateral size of the facet), and

F(w,) =L w, f(w,) isthesurfacefreeenergy of thenthterrace.
When we assume that the reconstruction effectively occurs
only when agiventerraceiswider than somew,, f(wn) canbe
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accurately approximated asin Eq. (2):

W) = £y (w)-(1-w/w ) eB(w -w) @
As mentioned in the previous section, the use of a critical
width model for thereconstruction of anindividual terraceas
inEg. (4) ismoreaccuratethanisthe useof theuniformterrace
approximation to describe f(s) as in Eq. (2). The latter is
inaccurate near s, as shown in Figure 1b.

FromEgs. (3) and (4), thechemical potential & of step
nisgiven by

£,=[(20w°,) - (2gw") + 5
gOw_-w) - 8w, -w)}]

We now assume that the velocity of astep is proportiona to
the changein free energy produced by itsmotion [9]. Recall
that the motion of steps results from the movement of atoms
at steps. Therefore, the step kinetics depends on the
mechanism of mass transport on the surface. There are two
limiting cases, depending on whether the adatoms on each
terrace obey alocal conservation condition.

Themassisnot locally conser ved (casel) when atoms
at a step edge exchange with a vapor reservoir (evaporation
condensation) or with a terrace reservoir that forms by fast
direct adatom hopsbetween different terraces. Ineither case,
steps move according to the chemical potential difference
between the step and the reservoir:

0%,=D, (§,-€.) ©
where D, isan effective step reservoir exchange coefficient.
Thechemical potentia of thereservoir & isset at zerowhen
thereisno net motion of steps. Notethat the mass movement
iseffectively non-local sincean atom from agiven step cango
to distant steps through the reservoir. Thus, no direct
correlation between the motion of neighboring steps is
expected.

However, when the mass movement is locally
conserved (case 1), as in mass movement through surface
diffusion without direct adatom hops between terraces, the
current between step n and step n+1 is proportiona to (& -
¢ ,,). Thus, the net velocity of stepniis

Ix%,=D{(&,- &)+ (& - &) ™
where D, is some effective diffusion coefficient between
neighboring steps. (Wefollow reference [9], assuming D, is
independent of the terrace width, and neglecting possible
“Schwoebel” asymmetries. Rettori and Villain [16] used a
diffusion coefficient which is proportiond to the inverse of
theterracewidth. Themain resultsof our work, theexistence
of induced nucleation, holds for both cases.) This causes a
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Figure3. Surfaceprofilesat different timesincasel (a), andin
casell (b). (a) Att=0 (top one), thereisonly one terrace
whichiswider thanw_ (inthemiddl€). Theother terracesare
uniform with widthw, <w._. (b) Att =0 (not shown), the
configuration is the same as in (a) but the evolution of the
surface profileis very dif-ferent fromthat in casel. Inthis
case, agrowing flat facet induces a new nucleus for another
flat facet. Here, w,/w, = 1/20andw /w, = 3.

coupling of the motion of neighboring steps and, aswe will
see, can lead to induced nucleation.

Growth of theReconstructed Terrace

Let us consider the case where only one (thermally
nucleated) terraceislarger thanw_at timet = 0. The surface
profilesatt > 0 are obtained by (numerically) integrating the
differential Egs. (6) and (7) with ¢ givenby Eq. (5). For casel,
as shown in Figure 2a, the nucleated facet continuesto grow
indefinitely. The width of the facet increases as t¥? [8], as
showninthe Appendix, and dl neighboring terracesbecome
smaller. Thus, further nucleation near the growing terraceis
lesslikely.

On the other hand, for case Il, the facet does not
continue to grow indefinitely, in contrast to what simple
thermodynamic consideration would predict [12]. Rather, it
growsonly to acertain size and staysthere (Fig. 2b). Thisis
because the local mass conservation causes a growing facet
to induce a new nucleus which “collides’ with the origina
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facet asit grows.

To understand this process, we first consider the
motion of stepsintheinitial stagesof faceting near theoriginal
reconstructed terrace. Let the origin be the middle of this
“zeroth” terraceasshownin Figure 3. Weassumethe system
isinthenucleation regimewithw, <w,, andfirst consider the
smplest case, the early stages of the faceting withw, <<w,,
wherew, = 1/s, isthe spacing between stepsinabunchat t =
co. Thisimplies € >> p, where p(w) = p, = 2g/w? is the
repulsive pressure” between stepswith the average spacing.
Inthis case, € setstherelevant time and energy scalesfor the
faceting and step repulsions play an important role in the
kinetics only when the spacing w approaches w, and p(w) =
&

With L ocal Conservation
Zeroth order pictureand induced nucleation

Let us consider the behavior of stepsfor casell first.
We will see that there is a quasi-steady state in which step
1,[0n form an effective bunch of sizen. All these stepsmove
right with essentially the samevel ocity for sometimeinterval,
t-t  foreachgivenn>0.

Att=0, al terraces except the zeroth one are smaller
thanthe critical width (w, =w_<w_forn>1). Thechemical
potential at the nth step, & , given by Eq. (5), iszeroforn>2
and is approximately £ = € - p_ at step 1 since the repulsion
fromstep 2isp,. (Weignoretherepulsionfrom step Owhich
isevensmdlerthanp,.) Sinceé, >¢ ,, alomsmovefromstep
1to step 2, dlowing the facet to grow. Thus, step 1 moves
right and step 2 movesleft, i.e., w, decreasesand w, incr eases.
This contrasts with the behavior in the non-conserved case
(see next subsection), where all steps move to the right and
only w, increases.

Because this movement aso produces an increased
repulsiveinteraction between step 1and 2, £, increasesalittle
and becomes higher than &,. Although some atoms at step 2
can then moveto step 3, the net motion of step 2 isstill tothe
leftaslongas(é, - €,) > (&, - §,): moreatomscomefromstep 1
thangotostep 3. However, astimegoeson (and &, continues
toincrease while ¢, decreases), (¢, - £,) eventually becomes
smallerthan (¢, - &,). Both step 1 and step 2 now movetothe
right and w, now decreases. Thisoccurswhentherepulsive
interaction between step 1 and step 2 becomes large enough
to drive step 2 to theright; the spacing between the two steps
is then of order w,. Both steps 1 and 2 move right with
essentially the same vel ocity asthefacet continuesto expand.

Figure4ashowsx , the position of step n, asafunction
of timet. Wedefinethecollision timet, asthetimeat which
step 2 first beginsto moveto theright. Sincee>> p,, step 3
hasbarely movedfort <t,. If weignorethissmall change, we
havethefollowing zer oth or der picturewhereanaytica results
can beobtained. Step 1 movesright with aconstant velocity,
V,, and step 2 moves left with another constant velocity until
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Figure 4. The step positions and the terrace widths as a
function of time. Herew,/w, = 1/20. Recall thatw, =X -X.
when comparing (a) and (b).

they collide at t =t,. The sys-tem then quickly achieves a
quasi-steady state where both steps 1 and 2 move right with
asmaller congtant velocity, V,. Now atomsfrom both steps- 1
and 2 effectively contribute to the motion of step 3, which
moves|eft until it collideswithstep 2 (att=t ). Fort>t,, steps
1, 2and 3moveright withthevelocity, V,, whilestep 4 moves
left, and so on. Hence, inthissimplelimit, al terracesat any
given time t, can be categorized into five groups: (1) the
reconstructed growing terrace (terrace 0); (2) the terracesin
the bunch which move together with the velocity V, (terrace
1,[n-1); (3) aterrace of which thewidthisrapidly decreasing
tojointhebunch (terracen); (4) aterrace of whichthewidthis
increasing dueto local conservation (terracen+1); and (5) the
remaining unperturbed terraces with initial terrace width w,
(terrace n+2,M)1 Note that only two consecutive terraces,
terraces n and n+1, change their widths rapidly during the
timeintervalt -t .

Asshowninthe Appendix, thevelocity of steps1,h
fort  <t<t isgivenby

V. =6(2n+1)D &{ n(n*+2ne+2n+1)} ®

inthezeroth order picture. SinceV, ~n*for largen, we expect
t-t ~1V -n®and, therefore, t ~n*. On the other hand, the
width of the zeroth terrace at t = t_is proportional to n since
there are n stepsin the step bunch. Thus, in the absence of
other nucleation events, wehavew,(t ) ~n~t ¥#,in agreement
withtheclassic continuum trestment of Mullins[8]. A detailed
caculation (Appendix) showsthat

W(t) = (4/3)(72D ) Y4(w)* 14 ©

in the absence of another nucleation event where w = W-W,.
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Figure4b showsthewidthsof thefirst four terracesas
afunction of time. Asexplained, fort <t , w, decreaseswhile
w, (not shown) and w, increase. Fort , <t<t , w decreases
whilew_ , increases. Hence, w, hasits maxi-mum, w ™ at t =
t .. In the zeroth order picture, w ™ and t_ satisfy the
following equations

-1
n er(nax

2n-1| &
W =w, +
o 3n—2{Z o ak?-1

2
t, —t_1+vv”‘a"/B/ fLen? /2n+1ﬂ

—-W,

wk

+
2k +1
(10)

For large n, w ™ increases linear ly with n {w, ™ = (w/3)n}
andt increasesasn®{t =w/(18D¢) n‘}. Notethat thereisa
largetimeinterval At ™~ (w ™)%aroundt_ whereterracen
islarger than any of its neighbors.

Oneimportant physical implication of thisobservetion
is that new nuclel for reconstruction can be induced by a
growing nucleus. Sincew ™ increaseswithn, for any given
critical terrace width, w,, thereis an integer n such that w ™
>w.. Letn bethesmallest nsuchthatw ™ >w. Oncew,
getslarger thanw,, reconstruction can occur. Asw,, continues
to grow, it will induce another nucleusat 2n,. Then, w, , will
inducew, , andsoon (seeFig. 3c). All flat facet sizes(W) { all
step bunch sizes (W,)} are essentially the same and given by
W=nw{W,=(n-1)w} sincethenuclei are separated by the
same number of steps, n,. The velocity of the nucleation
frontislinear int becauseit alwaystakesthe sameamount of
time to induce a nucleus. This propagation is much faster
than the conventional faceting through surface diffusion (~ t¥
4 or through evaporation condensation (~ t*?) [8].

Inreal materials, thiskinetic facet size selectionwould
not be sharp due to thermal fluctuations. However, in the
zeroth order approximation, asidefromtheoriginal facet, only
oneterraceislarger thanw_ at agiventime. Asnand hence
w ™ increase, thereisanincreasing long interval At ™ where
terracenislarger than any othersdueto theinduced nucleation
mechanism. A therma fluctuationleadingtoawidthw>w_is
morelikely to occur on such awideterrace. Thus, evenwhen
thermal fluctuations contributeto achieving awidthw >w,,
thisismost likely to happen onthat largest terrace and probably
whenw ™ s closeto w..

The width distribution in front of the growing facet
can be obtained in the zeroth approximation. For each
quasi-steady state, t | <t<t ,inwhichthestepsinthebunch,
steps 1,[Jh, movetogether withthesamevelocity, V,, wehave

2666 =Va (1)
for al k<n. Thereisaboundary conditioné_,, =0, but, the
other boundary condition at k = O depends on how the
reconstructed facet nucleated. For athermally nucleated facet

22

at step 0, we expect the chemical potential to satisfy &, =-&,
dueto symmetry. However, for aninduced facet, thereisno
flux acrossthereconstructed terrace. Therefore, the effective
chemical potential at step Oisgivenby & = &,. Ascalculated
inthe Appendix, terracewidthsaregiven by

w, = W { 1+h (n)k-h,(n)k*+h (n)k%} 22, (2
fortheé,=-¢, case, whereh(n) isdefined inthe Appendix. If
thereisno net flux acrossthe zeroth terrace (¢, = ¢,),

- -1/3
ek?
n(n + 1)(2n + 1)

(3n2 +3n +1)6k
n(n +1)(2n +1)

W(k) =W 1-

13
wheree =g/e={1-(w,/w,)%.
Longtimebehavior and scaling

Thissimple zeroth order picture must certainly bresk
downif w_, calculated in the nth quasisteady state from egs.
(12) and (13) becomesof order w,. Therepulsiveinteraction
from step n+1 should then be taken into account even in the
initial motion of step n. However, even for late times with

>ty ,where W, _(tn, )=Ww,, it Seemsreasonableto assume

that the steps near the growing reconstructed terrace (with k
<< n) have the same velocity. We will use this observation
and simple scaling arguments to obtain the time dependent
widthsof terracesin the bunch next toagrowing facet. These
are compared with direct numerical integration and may be
useful ininterpreting experiments.

We assume the terrace widths near the facet are till
givenby Egs. (12) and (13) with somemonotonicaly incressing
function n(t). We further assume that the front of the step
bunch propagateswith asimple power of time, i.e., n(t) = V't~.
Then, ast goesto infinity, the terrace widths are functions of
one scaling variable v = kt?;

ARy (14
fortheé,=- &, case, and
s & -1/3
- _ 3
vv(v)—wb{l Tv+—2VT3v } (15)

forthe,=¢, case. Wecanshow that S must be/aby calculating
aw, fromEq. (7) withw(k,t) = w(kt#). Sincethechangeinthe
scaling variable dv for the given finite Ak becomes
infinitesmally small ast goes to infinity (dv = Akt*?), it is
natural to treat v as a continuous variable at sufficiently late
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Figure5. Terracewidthsasafunction of thescaling variable,
v=kt?with 3 = 1/4for w,/w_=1/10. Thesmall v behavior is
shown in theinsets. Terrace widths with ten different times
are shown in each panel. Clearly, al of them collapse to a
singlecurve. Thesmaller circlesrepresent thelater times. For
the §,=-¢, case(a), theterrace width increases quadratically
for smal vwhileitincreaseslinearly inthe § = ¢, case(b). The
solidlinesininsetsaregivenby w, + ¢ v?in(a) andw, +cvin
(b) where ¢, and c, are constants chosen to best fit the data.

times,

Figure 5 shows the terrace widths as a function of v.
Terrace widths with ten different times (smaller circle, later
time) are shown in each panel. Thewidthsat different times
clearly collapseto asinglecurve, indicating the high accuracy
of the scaling assumption. For small v, the terrace width
increasesquadr atically in Figure5awhileitislinear in Figure
5b aspredicted from Egs. (14) and (15);

wlv) = Wn(“v%vzj for &=,
(16

wv) =

w,| 1+ C v
b W for & =¢;

Hence, by measuring theterracewidthsnear the growing facet
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Figure 6. The step positions and the terrace widths as a
function of time. Herew,/w, = 1/20. Recall thatw =X -X
when comparing Figures 6a and 6b.

at sufficiently long times (smdll v), wecantell whether thereis
net flux across the reconstructed terrace.

Without L ocal Conservation

Zeroth order pictureand quasi-steady state

In this sub-section, we again consider the smplest
limiting case, the early stages of faceting in the non-conserved
case with w, << w_ and obtain the terrace widths near the
growing facet. We start with the same configuration asin the
locally conserved case. Asshownin Figure 6, aquasi-steady
state also existshere, whereall stepsinthebunch, steps 1,[Jh
moveright with essentially thesamevelocity, V.. However,in
this case, there is no step which moves left (backwards).
Instead, step n+1 barely moves to the right from its initial
positionuntil thestepn“collides’ withit and pushesit rapidly
to the right. Then, the system quickly achieves a new
quasi-steady state where steps 1,[Jh+1 move right with a
smaller constant velocity, V. Since step n+1 increases its
velocity from essentially zero to V_, in a very short time
interval, we can dtill associate acollision time, t_in thisnon
local case, with the time when this sudden change in the
velocity of step n+1 occurs. For preciseness, we definet_as
thetime at which the velocity of step n+1 isequd to half the
velocity of stepn. Asshowninthe Appendix, thevelocity of
steps 1,[Ihin thenth quasi-steady stateisgivenby V. =D &/
n. Ineffect, the pressurefrom the reconstructed facet isdivided
by the number of steps in the uniformly moving bunch.
Therefore, we expect in the nth quasi-steady state interval
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At =(w,-w,)/V =wn/(D g) andwehavet =wn¥(2D g). On
the other hand, the width of the zeroth terrace has increased
att=t by asmuch asthe widths of terraces 1, 2,IIJh have
decreased, sincethe position of step n+1 hashardly changed.
Therefore, in the absence of other nuclestion events, we have
w(t )-w,(t=0) = wn = 2D ew" (t )2 This exhibits a t"?
dependencein agreement with the classi ¢ continuum trestment
of Mullins[8].

Figure 6b showsthewidths of thefirst few terracesas
afunction of time. As discussed above, w, remains almost
congtant (initia value, w) fort<t, . Fort, , <t<t,,itdecreases
linearly to nearly thefina step bunch width and then decreases
very sowly from that to thefinal sizew, fort>t,. Sincethe
terraces in the bunch change their width so little after they
join the bunch, al steps in the bunch move with essentialy
the same velocity as assumed in the quasi-steady state
approximation. Inthe zeroth approximation, thewidth of the
kth terrace in front of the growing facet is given by (see

Appendix)

w, = (1-ekiny™Bw,

(17)

fork=1,Mhwheree =1- (w,/w,)% Fork>n, terracewidths
remainat theirinitial valuew,.

Continuum appr oximation for bunch shapenear thefacet

Asdiscussed inthelocal conservation case, thissmple
zeroth order picture must certainly break downif w -1 from Eq.
(17) isof order w,. This break-down occursin the non local

casewheret >ty with t, such that

N

e e

:Wa

(18)

As before, we use scaling arguments and the quasi-steady
state solution, Eq. (17) with n(t) = v't?, to describe the (long)
time dependent shape of the growing step bunch near the
facet. Thistime, weget S=Y2whenwe put the scalingw(kt)
=w(kt?) in Eq. (6). Theterrace widthsare now given by

wv) = (1— ek /vt 2)_113Wb

_(1 sy Y3 )
=\l-ev/v ) W,.
Using the scaling variable v = kt¥2implies that the profileis
described on a scale which increases as t*2. Therefore, it is
natural to describe the surface height with a continuous
variable, z at longtimes. Inthislimit, Eq. (19) becomes

24

1 1 -1/3
az»{zt 2]:[1—§zt2 /VTJ W (20

or, with scaling variablesu = xt¥? and v = zt*2,

u(v)= (1— ev/ vT)_l/SWb,

whereu’ =du/dv. By integrating both sidesof the Eq. (21) and
by solving it for z= vt¥2, we get the surface profile,

1 3/27]
Zé{xt 2 —ul]
1-|11-—= .

A

(1)

2(x,t)=t"2 )

ol <,

where u, = x t"? is the rescaled position of the interface
between flat reconstructed surface and the step bunch. Note
that Eq. (22) isthe profilefor the step bunch region and hence
is valid only for x, < x < x" where x" is the end of the step
bunch defined by z(x"t) = v't"2. For x <x , we have a facet
withz=0fromthedefinitionof x, whilefor x>x', theprofileis
given by the unperturbed initial surface, z=sx.

Now we need to determine the two constants v' and
u, in Eq. (22). This equation should describe the profile
accurately for z<< Z', sowerequirethat it satisfy Eq. (6) or the
corresponding continuum equation for z = gz exactly at x,.
The continuum equation for z can be derived easily from Eq.
(6) sincez =- sx, wheres=Z = d zistheslopeof theprofileat
X

£=2g9D d$=6gD 2%7". 23)
The self consistency condition at X, gives
uVvi=2DZg, (24

since z(x,,t) = -u,t¥%2w, from the definition of u,. Inwhat
follows, weuse Eq. (24) to determinev' when different choices
aremadeforu,.

Surface profiles at different times determined from
numericaly integrating the discrete equations are shown in
Figure 7, using scaling variablesu = xt¥? and v = 22 In
Figure 7a, we show surfaceprofilesat four differentt withn=
10, 15, 30 and 90 for w. = w,/w, = 1/10. Again the scaling
ansatz is very accurately obeyed.

These results are compared with the approximate
continuous profiles given by Eq. (22), using two different
valuesof u {V'isgivenby equation (24)} . Thedashedlineis

thecasewherewedirectly fit u, to thenumerical profileat tp, .
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(b)

Xt

Figure7. Surface profiles at different times are shown with
scaling variables, u=xt¥?and v = ztV?for two different vaues
of w/w_: 1/10 (a), and 2/3 (b). They are compared with the
continuous profiles (dashed lines and dotted lines) given by
Eq. (22) withtwo different valuesof u,. Theopencircleonthe
u axisrepresentstheextrapol ated value (at t = o) of therescaled
position of thefirst step. Seetext for the value of u;'sin the
continuous profiles and the definition of the collision time

tf\ s,

We seethat two profilescoincidevery well dmost everywhere
withthis choice of u,.

The other continuous profile, the dotted line, is
obtained by acrude matching of Eq. (22) at u" = X't to the
unperturbed initia profile(thethinsolidline), givenby v=u/
w.. Notethat theslope, s=d z=V/(u) from Eq. (22) iss at u".
An gpproximation to u, can be obtained by imposing v(u’) =
su"andusing Eq. (24). Ingenerd, thisapproximation givesa
lower bound tou, sincev' = v(u’) must bedightly smaller than
s,u' in real profiles. With this approximation, it is
straightforward to calculate u, and V. They are given by

25

3 1 1/2
Ul = |:2Dr£\Na(1_EWr +E i j:|
1/2 1/2
VT - 2Dr€ @_W?)/(l_gwr +1Wr3j .
W, 2 2

Thedotted lineistheprofileof Eq. (22) withtheabove
u, and v'. Aswe can seein Figure 7, the re-scaled surfaces
profilesat different timesapproach asinglecurveastincreases.
The open circle represents the limiting value of the rescaled
position of thefirst step, lim,__ x (t)t*?, whichis obtained by
anextra-polation. For small w, thisextrapolated value, and u,
inEq. (22), arevery close. For example, thedifferenceisless
than 0.2% for w, < 1/10. Note that the shapes of rescaled
profilesareamost the same (except the degree of discreteness)
for different times, especialy for larget. Hence, we expect
that there would be no noticeable difference between the
rescaled profile at t = oo and the dotted line.

Whenw isnot sosmall, Eq. (22) isinaccurate near u’
=x"tY2but still describestheprofilerather well for small v. In
Figure 7b, we show surface profilesat four dif-ferentt withn
=15, 20, 40 and 80 for w. = 2/3. Asin Figure 7a, they are
compared with two continuous profiles, onewith u, from ty,
andtheother usingu, fromEq. (22). Thistime, theextrapolated
vaueof u, from numerical profilesisdlightly larger than the
value given by Eq. (25). Thisdiscrepancy isunderstandable
since Eq. (22) isinvalid near u" unlessw, << 1. Our crude
patching of Eq. (22) at u' with an outer (u> u') solution of Eq.
(23), v=su, describing theunperturbedinitia profile (z=0for
u>u'), isagood approximation only forw. — 0.

Wemay beableto develop amore accurate continuum
profileif we use abetter approximation for the outer solution
and animproved matching procedure. For example, wecould
approximate Eq. (23) by

(2

z=6gD s’z" (26
for the outer region and use the solution [8] for the above
equation as the outer solution. Matching it with the inner
solution of Eq. (22) over some proper regionin (u,,u’) could
giveanimproved approximation for the profile over theentire
region[1].

Nevertheless, the naive patching using the
unperturbed configuration for the outer region, Eq. (25) till
seemsaccurate enough to alow an estimate of someimportant
parametersin the reconstruction driven faceting process. We
can estimate (the upper bound of) D & by measuring thetime
dependence of the reconstructed facet growth, X (t);
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(a)
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Figure8. Terracewidthsasafunction of thescaling variable,
v=kt#with 3= Y4for two different values of w,/w_: 1/10 (a),
and 2/3 (b). Terrace widths at different times collapse to a
single curve for each given w,/w,. This curve is compared
with Eq. (28). Ininsets, terrace widthsshow alinear increase
for small v. They arecompared with Eq. (29).

-1/2 _
Xlt 1/2

ey

D,.szKl—§wr +1w,3ﬂ
2" 2

from Eq. (25). Thisvauecanasobeextracted fromtheprofile
near thereconstructed facet at later times. AsshowninFigure
7, thedotted lines describe the shape of the profilewell near v
=0 (except for theoveral shift) evenwhenw isnotsmall. The
inverse slope (terrace width) of the dotted lines can be
calculated from Egs. (19) and (25) andisgiven by

W W g T 13
wv)={1-| —=2 1-2w +=wW2 | v w,.
2D,e 2" 2

We seethat it increaseslinearly for small v,

2w,

26

1/2
W, W 3
\N(V) = Wb +_b[—2Da€] (1_5

1 1/2
3 ’+5W?j v

(29)

In Figure 8 we plot terrace widths (from the numerical
integration) versus the scaling variable v. As expected the
terrace widths at different times collapse to a single curve.
Thiscurveiscompared with Egs. (28) and (29). Asshownin
theinsets, theterracewidthsincreaselinearly with vfor small
v and the slopeis not much different from the value given by
Eq. (29). Inan experiment, by measuring the terrace widths
near the growing facet at sufficiently longtimes(small v), one
canestimateD efromEq,. (29).

ConcludingRemarks

The principa conclusion from this analysisisthat a
growing nucleus can inducetheformation of another nucleus
nearby when the mass is conserved locally. This induced
nucleation processisanayzed using adetailed surface profile
near thegrowing terrace obtained fromaphysicaly suggestive
zeroth order picture. Theresulting regular order hasapurely
kinetic origin. Thelong time behavior of thefacetingisalso
obtained fromthiszeroth order profile using scaling variables.
A similar analysisis carried out for the non-conserved case.

For quantitative comparison with experiments, more
sudiesareneeded, including adetailed analysisof a2D model.
In particular, therole of thermal fluctuationsin the nucleation
process needs to be understood better. Work along these
lines is underway. However, many of the qualitative
predictions of the present 1D model may be tested in
experiments. For faceting dominated by induced nucleation,
we expect to seethe propagation of nucleation and regularity
inthefaceted surfaces. Also, asshowninFigure5, wecantell
the induced nuclei from the thermally nucleated ones by
carefully analyzing the terrace width distribution near the
growing facet, since the small v behavior strongly depends
on whether thereis net flux across the reconstructed terrace.

Appendix

In the zeroth order approximation, for the nth quasi-

steady state (t , <t<t ), wehave
0% = 0, (A1)
fork=2,[Mhwithaboundary condition ¢, =0. Thechemica
potential given by Eq. (5) can bewrittenasé, = p, ,-p, where
the “pressure” of the kth terrace, p, = 2g/w,? + & B(w,-w.).
Sincethe pressure on thereconstructed terraceisalmost equal

to £ and the pressure on an unperturbed terrace with width w,
is2g/iw_? (for k> n), we have
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25 zpk—l W) =P~

where€ =€ - 2g/w°.
|. With local conservation

For the locally conserved case, the velocity of the

steps are given by

dtxn = (an_gn-l_fml) (l 1)
whereweset D_= 1for convenience. FromEgs. (A1) and (11),
wehave: 2($,,-6) = (§60) + (S €id)-

The symmetric case (§, = -§,). For a thermally
nuclested facet, we expect that the chemical potential at step
O satisfies (&, = -¢,) dueto symmetry. By solving Egs. (A1),
(A2) and (11), with thisboundary condition, we get

35[— (2n+1)k* + (Zn2 + 4n+1)k -n(n +1)I

$i = ,
: n(n3 +2n2+2n +1) (12
and the velocity of stepsk = 1,Jh, V_isgiven by
V, =6g(2n+1)/ { n(m+2r*+2n+1)} (13

Theadatom flux ® (n) moving left fromthestepk=1tok=0
during the nth quasisteady state is given by

®,(n)=(&-&)=n(n+1)(2n+1)*V, (14)
whilethe adatom flux moving right fromthestepk=ntok =
(n+1), @(n)isnV, - @ (n). Sinceonly { @/(P+P,)} of atoms
removed from the terrace k (for t_, <t <t) moveright, we
expect

k ~
Aw, = ZM(AWk + W= AW,q), (15

whereAw, =w ™ -w_. Inother words, we have arecurrence
relation between w ™'s:

2n-1| S Wk n_1Wma"—
Wi = w, + +) K
SR ;2k+1 kZ:; az-1 |19

Step n moves right with velocity V. and step n+1 moves | eft
with velocity ?V /(2n+1). The time required for these two
neighboring stepsto collideist -t and is given by

t-t  =w™{V (1+m)/(2n+1)}. 17)
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Att , the zeroth terrace width is given by

wolt =t,)=

ZV (18)

~tey)

Now, let usconsder theasymptotic valueof Egs. (16), (17) and

(18) for larget. Forlargen,w, ™ =wn/3andt -t  =wn*/18¢.
Thus, the width of the facet increases as
n
Wo (t) = WO(t = 0) + szn (tn
k=1
(19)

- 2(725)1/4(W)3/4t1/4_

Thefactor 2infront of the second termisfromthefact that the
facet growsin both directions.
The pressure on the kth terrace is obtained from Eq.

(12

k

Pk =€- Z 4
1=1 (110)
= efu+ by (k- () + ),

where
h (n) ={ 3(2n2+4n+1)—§ (2n+1)-3n(n+1)}/D(n),
h,(n) ={ 3(2*+4n+1)-3(2n+1)]/2D(n),
h,(n) = (2n+1)/2D(n) (112)

with D(n) = e{ en(n*+2n?+2n+1)}. Theterracewidth, w,, is
now given by
w, = w{ 1+h, (Mk-h,(n)k>+h (ke 2 (112
Notethat both h,(n) and h,(n) are proportional to n*for large
n. Therefore, the linear term, h, (n)k, can be ignored in the
continuum limit where both nand k go to infinity.
Theasymmetriccase(§,=¢§,). Fortheinducednucle,
thereisnoflux acrossthereconstructed terrace, henceé = ¢&,.
In the steady state, ¢, should be quadraticink since V, (2¢,-
¢..-¢,.,) is constant for k = 1,Ih. With the boundary
conditions ;= ¢ and ¢ ,, =0, the chemical potential at step

n+l

kk<n), &, fort_ <t<t canbewrittenas

= a{k(k-1)-n(n+1)} (113)
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with a constant a = -3/{n(n+1)(2n+1)} which is
obtained from the constraint, Eq. (A2). Then, thevelocity of
steps 1,[h, isgiven by

V =6/ n(n+1)(2n+1)} (124)

Sinceall atomsfromthestep k(k> 0) goright inthiscase, the
step n+1 moves left with the velocity, nV_. Therefore, the
recursion relation between thew ™*sisnow given by w ™ =
w, + (n-1)(w_,"™-w,)/n, and from w,"™* = w_ we have

wm=w +{(n-1)/2}w

(115

Thisresult can be understood easily from the fact the w, and
w ™ arethesameintheé = ¢, case. Sincetheposition of the
step n+lisnot changed at t_,, we have w+w ™ =2w_+ (n-
D(w,w,). Fromw, =w ™, wegetw ™ =w_+{(n-1)/2}w.
Step n moves right with velocity V. and step n+1 moves | eft
withvelocity nV_. Thetimerequired for thesetwo neighboring
stepsto collide, At =t -t_, isgiven by

At =wm™{(n+1)V }
={n(2n+1)/6e} Qw,+H (n-1)/2}w}

~ (W /68)r¢

(116)

Hence, t isgivenby t = (24 /w)
The pressureand theterrace widthsare obtained again
fromthechemical potentia. From Eq. (113),

ek ekl 1)

P = e n )

11
G2 3neifk @k 9
=gll- +
n(n+ 1)(2/1 + 1) n(n+ 1)(2n+1)
wheree = /e and the terrace width, w,, is given by
(r? +3n+ 1k ek’ "
Wy =wy| 11— + .
n(n + 1)(217 + 1) n(n + 1)(2n + 1)
(118

I1. Without L ocal Conservation
In the non-conserved case, the velocity of the steps
aregiven by ox = &, wherewe set the diffusion constant D,
=1for smplicity. For thenth quasi-steady state (t_, <t<t),
we have
ox=&=¢n (112)
fork<n, fromEq. (A1) and (A2) with the boundary condition
¢..,=0. Sincet -t isthetimerequired for the nth terraceto
shrinktow, fromw, t -t =/, wherew =w_-w,. Att , the
zerothterracewidth, w(t=t ) = w (t=0)+nw, wheret =% _ (t-
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t ) =n(n+1)w/2¢. Therefore, wehave

w,(t=t ) = w(t=0) + 2(25 W) 22 (112)
From & =&/n, the pressure and width of the kth terrace are
given by

P ={py(KN)e} = & 1-(eK/en)} 13
w, = (p/29)*° = w{ 1-(Ek/en)}

fork<n. For k= n, terraceshavetheinitia averagewidth and
pressure, w, and p,.
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Discussion with Reviewers

N.C.Bartdt: Theuseof alD mode isjudtified by referringto
experimental observations of linear facet edgesof Si(111). |
would argue that this is slightly dangerous because the
spectacular linearity on Si(111) is probably associated with
(elastic) effects not included in the authors model. Can the
1D modd bejustified moregenerally?

Authors: Indeed, surface elasticity hasastrong influenceon
the surface morphology of the Si(111) faceted surface, and
probably producesthe extremelinearity of the facet edgesas
noted above. However, rather linear facet edges have been
found in severa other systems, including GaAs(001) and O/
Ag(110), not al of which exhibit strong surface elasticity
effects. Anelongated, rather linear facet edge is expected in
general if faceting occursthrough nucl eation of reconstructed
regions since the reconstruction propagates asymptotically
much faster (~t) inthedirection parallel to the step edge than
in the perpendicular direction (~t¥2 or t¥4). We believe that
the 1D variable, the averaged position of the step over these
linear regions would properly describe the faceting process
onascaesmaller thanthelateral sizeof thefacet. Thevalidity
of using the 1D free energy, Eq. (4), has not been shown
rigoroudly but the result of 2D numerical models seems to
agreewiththe 1D freeenergy.

N.C. Bartelt: Theauthorsusethefreefermion distribution of
terrace widths to determine the smoothing of the cuspin the
freeenergy. Whengislarge(asitison Si(111), for example),

29

thedistribution can bemuch smaller than this. Sotheauthors
are probably over-estimating the smoothing of the cusp.
However, inthe sectionsM odel and Kineticsit isargued that
the smoothed free-energy curveisnot what one should usein
the calculation of the step dynamics. What, then should one
use the smoothed free-energy curve for? Is it physically
mesaningful ?

Authors. The free energy one should use depends on the
time and spatial scale on which the system isto be described.
Thelong time behavior of the system can be described using
thetrue equilibrium free energy, whichisthelower envelope
of thethick curves. It predicts the phase separation and the
properties of each phase. The smoothed curve in Figure 1b
representsahypothetical (non-equilibrium) freeenergy of the
system at themoment thereconstructionisallowed (e.g., when
thesystemisquenched bel ow the reconstruction temperature)
with instantaneous reconstruction occurring on sufficiently
wideterraces. If thesystemiswell described by alocal slope,
coarse-grained over several terraces, which might bethe case
inthespinodal decomcosition regime, theshort timedynamics
might be more appropriately described by the smoothed free
energy curve. However, for the motion of individua (linear)
steps on ascae smaller than lateral facet size as considered
here, the cusped free energy in Figure laisthe onewe should
use.

N.C. Bartelt: Oneof themost interesting conclusionsof this
work isthe periodicity of thefinal faceted statein the case of
conserved dynamics. From the authorsresults, isit possible
togiveaqualitative discussion about how thefinal periodicity
dependson the parametersof the problem? For example, how
sengitive is the periodicity to the magnitude of the step step
interactions?

Authors: Thefinal periodicity dependence onthe parameters
aregiveninEq. (10) (and below) inthelimit of the zeroth order
approximation. Inthislimit, the periodicity mainly depends
on theratio between the critical width and the average width
of theterrace (w/w,). Wedo not have aquantitative analysis
for the predicted periodicity when the zeroth approximationis
not valid. Inthismoregeneral case, webelievethat theeffects
of thermal fluctuations are so important that the numerical
predictionsof our 1D model, which doesnot permit additional
thermal nucleation, are not very meaningful. In fact, the
numericaly predicted periodicity of the 1D model is quite
different fromthat of 22D model wherethermal nucleation can
takeplace. Theperiodicity ismuch smaller and lesssensitive
to step step interactionsin the 2D model. The results of the
2D model will bediscussed elsewhere.



