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THE DYNAMICS OF STEPS ON VICINAL SURFACES DURING RECONSTRUCTION-
DRIVEN FACETING

Abstract

Experiments show that faceting of a vicinal surface
can be driven by surface reconstruction, which often occurs
only on sufficiently wide terraces.  We study the dynamics of
steps near an isolated reconstructed terrace using a simple
one-dimensional model that assigns a lower free energy (due
to reconstruction) for terraces with width greater than some
critical width wc.  When mass is conserved locally, through
surface diffusion, we find that the growth of a reconstructed
terrace can induce the growth of another such terrace nearby.
This induced nucleation process is analyzed using a simple
and physically suggestive picture where analytic results can
be obtained.  The faceted surfaces arising from this process
are predicted to have a periodic distribution of reconstructed
terraces separated by step bunches.  The long time behavior
of the faceting is obtained using a scaling ansatz.  A similar
analysis is carried out for the non-conserved case.
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Introduction

Surface reconstruction can often cause a vicinal
surface with a single macroscopic orientation to facet into
surfaces with different orientations [18].  Generally the
reconstruction occurs on a particular low index “flat” face,
and lowers its free energy relative to that of an unreconstructed
surface with the same orientation.  However the same
reconstruction that produces the lower free energy for the flat
face generally increases the energy of surface distortions
such as steps which disturb the reconstruction.  Thus,
reconstruction is often observed only on terraces wider than
some critical terrace width wc.  When steps are uniformly
distributed initially and if wc is much greater than the average
terrace spacing wa, step fluctuations leading to the formation
of a sufficiently wide terrace, a “critical nucleus”, are required
for the reconstruction to begin.  Continued growth of the
reconstructed region can make the vicinal surface facet into a
“flat” reconstructed surface and a much more sharply inclined
unreconstructed surface with closely bunched steps.  In this
paper, we examine the dynamics of faceting after such an initial
nucleation event.

Experimental examples include the 7×7 reconstruction
on Si(111) surfaces [12] and the formation of (n×1) oxygen
chains on an O/Ag(110) surface [11].  Both have been observed
only on large (w>wc) terraces, where the critical width wc
depends on temperature, pressure and some other parameters.
However, faceting experiments on these and some other
systems, such as Pt(111) and Au(111), show a noticeable
regularity in the size and spacing of the flat facets [12, 15, 19]
though the extent of regularity is different depending on the
system.  It seems hard to reconcile these regularities with a
picture of random nucleation of the reconstructed regions.

While there are a number of different factors (including,
in particular, elastic interactions [15, 19]) that can contribute
to the facet spacing in particular systems, we argue that there
exists a rather general kinetic mechanism that can lead to
regular features in the faceting process.  This mechanism may,
in part, explain some aspects of the regularity found in recent
experiments.

We consider the case where the reconstruction
effectively occurs only on terraces wider than some critical
terrace width wc, and assign a lower free energy (due to
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reconstruction) for terraces wider than wc.  If wc is much greater
than the initial average terrace spacing wa, a nucleation event
is required to form the first wide terrace.  The subsequent
temporal and spatial behavior of the faceting process depends
crucially on the mechanism of mass transport on the surface.
When mass transport is global, through a reservoir, as in the
case of evaporation and condensation, the nucleated facet
continues to grow indefinitely in the absence of another nearby
thermal nucleation event.  All neighboring terraces become
smaller as the reconstructed facet grows and this makes
nucleation near the growing facet less likely.

However, when mass transport is local, as in mass
movement through surface diffusion without direct ad-atom
hops between terraces, we find the facet does not continue to
grow indefinitely.  In this case, the motion of a step is directly
coupled to the motion of neighboring steps.  Because of this
coupling, a growing nucleus can induce the formation of
another nucleus nearby [3, 4] which “collides” with the original
facet.  This can lead to a propagation of nucleation events [6].
The faceted surface formed in this induced nucleation process
exhibit very different characteristics from the conventional
thermally nucleated one.  In this process, the average number
of steps in a bunch, nb, and final facet size, Wf, are mainly
selected by the kinetics.

Model

We concentrate on the kinetics of faceting on a vicinal
surface after the initial formation of a reconstructed critical
nucleus.  We assume that reconstruction occurs quickly once
a suitable terrace is formed.  In most cases, once such a nucleus
is created, it propagates much faster in the direction parallel to
the steps and quickly forms an elongated cigar like shape.
The steps which bound the lateral regions of the elongated
nucleus are usually almost straight [12].  Thus, it seems
plausible that the growth of the nucleated facet in the direction
perpen-dicular to the steps can be well described by a one-
dimensional (1D) terrace step (TS) model, even though it
cannot describe the initial two-dimensional (2D) nucleation
event itself.  The 1D variable, the position of the nth step xn in
our TS model is the coarse grained average (over the lateral
size Ly of the elongated nucleus) position of the nth step.

The projected free-energy density (this is the free
energy per unit projected surface area; use of the projected
free energy allows a direct analogy to the phase separation
dynamics of a liquid-vapor system [18]) of a vicinal surface
inclined at an average angle θ to the low-index reference plane
on which reconstruction can occur (referred to hereafter as
the flat surface) is well described by [2, 5, 14, 17, 18]

fr,u(s) = fr,u
0 + βr,us + gr,us3

Here s is the density of steps, which is proportional to the

slope of the surface, tan θ, and the subscripts u and r indicate
a surface that is completely unreconstructed (u) or
reconstructed (r).  The first term, f0, is the surface energy per
unit area of the flat surface and β is the free energy per unit
length to form an isolated step.  The last term is the free energy
due to the effective interactions between the steps.  This term
includes the entropic repulsion between steps (due to
fluctuations along the step edge) as well as possible energetic
contributions such as elastic or dipole interactions [10].  In
most cases, the effective interaction between steps of the
same sign is repulsive (g > 0).  Hence, the free energy of the
vicinal surface, fr,u, is convex downward (as shown in Fig. 1).
Therefore, the vicinal surface of a single phase (either
completely unreconstructed or reconstructed) is stable with
respect to faceting.

Reconstruction induced faceting naturally arises if
surface reconstruction occurs only on large w > wc terraces.
This means that fr is smaller than fu for s < sc ≡ 1/wc but that fr

(1)

Figure 1.  Free energies for the unreconstructed surface fu and
reconstructed surface fr versus slope s.  The critical slope, sc,
and the slope of the surface at step bunches, sb, are given by
sc = εs/ε and sb = (ε/2g)1/3.  The thick curve in (a) represents the
free energy of a hypothetical system in which all terraces are
reconstructed (unreconstructed) when the average slope, s,
is less than (greater than) sc.  In (b), a free-energy curve is
shown which takes into account a distribution of terrace
widths.  The free Fermion model is used to get the distribution
for a given s.
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is larger than fu for s > sc.  As discussed earlier, this can be
understood by assuming that the free energy of the
reconstructed flat surface has a lower value (-ε per unit area;
fr

0 = fu
0 - ε) than the unreconstructed flat surface but effectively

a higher energy cost (εs per unit length; βr = βu + εs) for forming
an isolated step [17].  The critical slope sc is then given by sc =
εs/ε as shown in Figure 1.  The thick curve in Figure 1a, given
by

f(s) = fu(s)θθθθθ(s - sc) + fr(s)θθθθθ(sc - s)
= fu(s) - (1 - s/sc)εθθθθθ(s - sc)

with θθθθθ the unit step function, represents the free energy of a
hypothetical system in which all terraces are reconstructed
(unreconstructed) when the average slope s is less than
(greater than) sc.  (For simplicity, we use the same value of g
for the reconstructed and unreconstructed surfaces.  The
change in g, ∆g, between the two surfaces does not play an
important role in what follows.) As in earlier work [9, 13], we
assume this same expression can be applied locally to give

(w), the free energy of an individual terrace with width w = 1/
s.  Thus, we assume (w) = f(1/w), even in cases where adjacent
terrace widths vary.  This yields a simple two state model
where each terrace is either reconstructed or unreconstructed,
depending only on its width.

In a real system, for given average slope s, there would
be a distribution of terrace widths around the average terrace
width w = 1/s.  Near sc, we would expect to find both
reconstructed and unreconstructed terraces in a large system.
This would remove the cusp at sc in f(s) and produce a smoothly
varying curve in this region.  In Figure 1b, a modified free
energy curve is shown, which takes into account, in a crude
way, a distribution of terrace widths.  The free Fermion model
[5] is used to get the distribution of widths.  For a given s, the
relative number of terraces of which the width is larger than wc
and their relative area are calculated [7].  We assume that
reconstruction takes place on all of these wide terraces and
takes into account the resulting free-energy change to
determine a new (s).  As expected, this removes the cusp at
sc in Eq. (2) and produces a smooth free-energy curve.

However, in either model, the free energy of the
combined system loses overall convexity, and the uniform
system is unstable.  Thus, “phase separation” occurs between
the two “phases” of which the properties are determined by
the usual tie bar construction (as indicated by the dashed line
in Figure 1).  In particular, the slope of the step bunches
coexist-ing with the reconstructed flat surface is given by sb ≡
(ε/2g)1/3 as shown in Figure 1.  Note that the curve in Figure 1b
is a coarse- grained free energy resulting from an average
over many terrace widths.  The free energy of an individual
terrace near the elongated nucleus is more properly described
by the curve in Figure 1a.

Kinetics

In the previous section, we showed that surface
reconstruction can cause a faceting on a vicinal surface and
obtained the equilibrium slopes of the faceted surfaces from
thermo-dynamic arguments.  However, this does not explain
the spatial distribution of terraces and step bunches.  The key
factor in determining the sizes of the final facets is how far the
facet nuclei are from each other when they form (or how often
they are created when facets grow slowly compared to the
creation of a nuclei).  This requires a study of the kinetics of
step motion as influenced by the attachment/detachment
kinetics of atoms at the step edges.  This in turn can be related
to the chemical potential at the step edge [9].

The chemical potential, ξn, of step n (which separates
the n-1 and the nth terrace; see Figure 2) is de-fined as the
difference in the total surface free energy before and after an
atom is removed from step n.  We assume that the free-energy
density on a terrace with width w can be approximated by

(w) = f(1/w).  Then, ξn is given by

   ξn = {F(wn)+F(wn-1)}–{F(wn′)+[F(wn′–1)}

= Ly [{wn (wn)–(wn-δδδδδ) (wn-δδδδδ)}

       + {wn-1 (wn-1)-(wn-1+δδδδδ) (wn-1+δδδδδ)}]

  ≈ ∂ω(w (w)) wn - ∂ω(w (w)) wn-1

Here wn (wn′) is the average distance between step n and n+1
before (after) an atom is removed from the step, Ly = 1/δ is the
length of a step edge (i.e., the lateral size of the facet), and
F(wn) ≡ Lywn (wn) is the surface free energy of the nth terrace.
When we assume that the reconstruction effectively occurs
only when a given terrace is wider than some wc, (wn) can be

(2) Figure 2.  Labeling of steps and terraces.  The chemical
potential, ξn, of step n is defined as the difference in the total
surface free energy before and after an atom is removed from
step n.

(3)
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accurately approximated as in Eq. (2):

(wn) = U(wn)-(1-wc/wn)εθθθθθ(wn-wc)

As mentioned in the previous section, the use of a critical
width model for the reconstruction of an individual terrace as
in Eq. (4) is more accurate than is the use of the uniform terrace
approximation to describe f(s) as in Eq. (2).  The latter is
inaccurate near sc as shown in Figure 1b.

From Eqs. (3) and (4), the chemical potential ξn of step
n is given by

ξn = [(2g/w 
3
n-1) - (2g/w3

n) +
        ε{θθθθθ(wn-1-wc) - θθθθθ(wn-wc)}]

We now assume that the velocity of a step is proportional to
the change in free energy produced by its motion [9].  Recall
that the motion of steps results from the movement of atoms
at steps.  Therefore, the step kinetics depends on the
mechanism of mass transport on the surface.  There are two
limiting cases, depending on whether the adatoms on each
terrace obey a local conservation condition.

The mass is not locally conserved (case I) when atoms
at a step edge exchange with a vapor reservoir (evaporation
condensation) or with a terrace reservoir that forms by fast
direct adatom hops between different terraces.  In either case,
steps move according to the chemical potential difference
between the step and the reservoir:

∂txn = Dr (ξn - ξres)

where Dr is an effective step reservoir exchange coefficient.
The chemical potential of the reservoir ξres is set at zero when
there is no net motion of steps.  Note that the mass movement
is effectively non-local since an atom from a given step can go
to distant steps through the reservoir.  Thus, no direct
correlation between the motion of neighboring steps is
expected.

However, when the mass movement is locally
conserved (case II), as in mass movement through surface
diffusion without direct adatom hops between terraces, the
current between step n and step n+1 is proportional to (ξn-
ξn+1).  Thus, the net velocity of step n is

∂txn = Ds {(ξn - ξn+1) + (ξn - ξn-1)}

where Ds is some effective diffusion coefficient between
neighboring steps.  (We follow reference  [9], assuming Ds is
independent of the terrace width, and neglecting possible
“Schwoebel” asymmetries.  Rettori and Villain [16] used a
diffusion coefficient which is proportional to the inverse of
the terrace width.  The main results of our work, the existence
of induced nucleation, holds for both cases.)  This causes a

coupling of the motion of neighboring steps and, as we will
see, can lead to induced nucleation.

Growth of the Reconstructed Terrace

Let us consider the case where only one (thermally
nucleated) terrace is larger than wc at time t = 0.  The surface
profiles at t > 0 are obtained by (numerically) integrating the
differential Eqs. (6) and (7) with ξn given by Eq. (5).  For case I,
as shown in Figure 2a, the nucleated facet continues to grow
indefinitely.  The width of the facet increases as t1/2 [8], as
shown in the Appendix, and all neighboring terraces become
smaller.  Thus, further nucleation near the growing terrace is
less likely.

On the other hand, for case II, the facet does not
continue to grow indefinitely, in contrast to what simple
thermodynamic consideration would predict [12].  Rather, it
grows only to a certain size and stays there (Fig. 2b).  This is
because the local mass conservation causes a growing facet
to induce a new nucleus which “collides” with the original

Figure 3.  Surface profiles at different times in case I (a), and in
case II (b).  (a)  At t = 0 (top one), there is only one terrace
which is wider than wc (in the middle).  The other terraces are
uniform with width wa < wc.  (b)  At t = 0 (not shown), the
configuration is the same as in (a) but the evolution of the
surface profile is very dif-ferent from that in case I.  In this
case, a growing flat facet induces a new nucleus for another
flat facet.  Here, wb/wa = 1/20 and wc/wa = 3.

(4)

(5)

(6)

(7)
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facet as it grows.
To understand this process, we first consider the

motion of steps in the initial stages of faceting near the original
reconstructed terrace.  Let the origin be the middle of this
“zeroth” terrace as shown in Figure 3.  We assume the system
is in the nucleation regime with wa < wc, and first consider the
simplest case, the early stages of the faceting with wb << wa,
where wb = 1/sb is the spacing between steps in a bunch at t =
∞.  This implies ε >> pa where p(wa) ≡ pa = 2g/wa

3 is the
repulsive “pressure” between steps with the average spacing.
In this case, ε sets the relevant time and energy scales for the
faceting and step repulsions play an important role in the
kinetics only when the spacing w approaches wb and p(w) ≈
ε.

With Local Conservation
Zeroth order picture and induced nucleation

Let us consider the behavior of steps for case II first.
We will see that there is a quasi-steady state in which step
1,⋅⋅⋅,n form an effective bunch of size n.  All these steps move
right with essentially the same velocity for some time interval,
tn-tn-1 for each given n > 0.

At t = 0, all terraces except the zeroth one are smaller
than the critical width (wn = wa < wc for n ≥ 1).  The chemical
potential at the nth step, ξn, given by Eq. (5), is zero for n ≥ 2
and is approximately  ≡ ε - pa at step 1 since the repulsion
from step 2 is pa.  (We ignore the repulsion from step 0 which
is even smaller than pa.)  Since ξ1 > ξ 2, atoms move from step
1 to step 2, allowing the facet to grow.  Thus, step 1 moves
right and step 2 moves left, i.e., w1 decreases and w2 increases.
This contrasts with the behavior in the non-conserved case
(see next subsection), where all steps move to the right and
only w0 increases.

Because this movement also produces an increased
repulsive interaction between step 1 and 2, ξ2 increases a little
and becomes higher than ξ3.  Although some atoms at step 2
can then move to step 3, the net motion of step 2 is still to the
left as long as (ξ1 - ξ2) > (ξ2 - ξ3): more atoms come from step 1
than go to step 3.  However, as time goes on (and ξ2 continues
to increase while ξ1 decreases), (ξ1 - ξ2) eventually becomes
smaller than (ξ2 - ξ3).  Both step 1 and step 2 now move to the
right and w2 now decreases.  This occurs when the repulsive
interaction between step 1 and step 2 becomes large enough
to drive step 2 to the right; the spacing between the two steps
is then of order wb. Both steps 1 and 2 move right with
essentially the same velocity as the facet continues to expand.

Figure 4a shows xn, the position of step n, as a function
of time t.  We define the collision time t1 as the time at which
step 2 first begins to move to the right.  Since ε >> pa, step 3
has barely moved for t < t1.  If we ignore this small change, we
have the following zeroth order picture where analytical results
can be obtained.  Step 1 moves right with a constant velocity,
V1, and step 2 moves left with another constant velocity until

they collide at t = t1.  The sys-tem then quickly achieves a
quasi-steady state where both steps 1 and 2 move right with
a smaller constant velocity, V2.  Now atoms from both steps- 1
and 2 effectively contribute to the motion of step 3, which
moves left until it collides with step 2 (at t = t2).  For t > t2, steps
1, 2 and 3 move right with the velocity, V3, while step 4 moves
left, and so on.  Hence, in this simple limit, all terraces at any
given time t, can be categorized into five groups: (1) the
reconstructed growing terrace (terrace 0); (2) the terraces in
the bunch which move together with the velocity Vn (terrace
1,⋅⋅⋅,n-1); (3) a terrace of which the width is rapidly decreasing
to join the bunch (terrace n); (4) a terrace of which the width is
increasing due to local conservation (terrace n+1); and (5) the
remaining unperturbed terraces with initial terrace width wa
(terrace n+2,⋅⋅⋅).  Note that only two consecutive terraces,
terraces n and n+1, change their widths rapidly during the
time interval tn+1 - tn.

As shown in the Appendix, the velocity of steps 1,⋅⋅⋅,n
for tn-1 < t < tn is given by

Vn = 6(2n+1)Dsε/{n(n3+2n2+2n+1)}

in the zeroth order picture.  Since Vn ~ n3 for large n, we expect
tn-tn-1~1/Vn~n3 and, therefore, tn ~ n4.  On the other hand, the
width of the zeroth terrace at t = tn is proportional to n since
there are n steps in the step bunch.  Thus, in the absence of
other nucleation events, we have w0(tn) ~ n ~ tn

1/4, in agreement
with the classic continuum treatment of Mullins [8].  A detailed
calculation (Appendix) shows that

w0(t) ≈ (4/3)(72Dsε)1/4( )3/4 t1/4

in the absence of another nucleation event where  = wa-wb.

Figure 4.  The step positions and the terrace widths as a
function of time.  Here wb/wa = 1/20.  Recall that wn = xn+1-xn
when comparing (a) and (b).

(8)

(9)
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Figure 4b shows the widths of the first four terraces as
a function of time.  As explained, for t < t1, w1 decreases while
w0 (not shown) and w2 increase.  For tn-1 < t < tn, wn decreases
while wn+1 increases.  Hence, wn has its maxi-mum, wn

max at t =
tn-1.  In the zeroth order picture, wn

max and tn satisfy the
following equations
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For large n, wn
max increases linearly with n {wn

max ≈ ( /3)n}
and tn increases as n4 {tn ≈ /(18Dsε) n4}.  Note that there is a
large time interval ∆tn

max ~ (wn
max)3 around tn-1 where terrace n

is larger than any of its neighbors.
One important physical implication of this observation

is that new nuclei for reconstruction can be induced by a
growing nucleus.  Since wn

max increases with n, for any given
critical terrace width, wc, there is an integer n such that wn

max

> wc.  Let nb be the smallest n such that wn
max > wc.  Once wnb

gets larger than wc, reconstruction can occur.  As wnb continues
to grow, it will induce another nucleus at 2nb.  Then, w2nb will
induce w3nb and so on (see Fig. 3c).  All flat facet sizes (Wf) {all
step bunch sizes (Wb)} are essentially the same and given by
Wf ≈ nb  {Wb ≈ (nb-1)wb} since the nuclei are separated by the
same number of steps, nb.  The velocity of the nucleation
front is linear in t because it always takes the same amount of
time to induce a nucleus.  This propagation is much faster
than the conventional faceting through surface diffusion (~ t1/

4) or through evaporation condensation (~ t1/2) [8].
In real materials, this kinetic facet size selection would

not be sharp due to thermal fluctuations.  However, in the
zeroth order approximation, aside from the original facet, only
one terrace is larger than wa at a given time.  As n and hence
wn

max increase, there is an increasing long interval ∆tn
max where

terrace n is larger than any others due to the induced nucleation
mechanism.  A thermal fluctuation leading to a width w > wc is
more likely to occur on such a wide terrace.  Thus, even when
thermal fluctuations contribute to achieving a width wn > wc,
this is most likely to happen on that largest terrace and probably
when wn

max is close to wc.
The width distribution in front of the growing facet

can be obtained in the zeroth approximation.  For each
quasi-steady state, tn-1 < t < tn, in which the steps in the bunch,
steps 1,⋅⋅⋅,n, move together with the same velocity, Vn, we have

2ξk-ξk+1-ξk-1 = Vn

for all k < n.  There is a boundary condition ξn+1 = 0, but, the
other boundary condition at k = 0 depends on how the
reconstructed facet nucleated.  For a thermally nucleated facet

at step 0, we expect the chemical potential to satisfy ξ0 = -ξ1
due to symmetry.  However, for an induced facet, there is no
flux across the reconstructed terrace.  Therefore, the effective
chemical potential at step 0 is given by ξ0 = ξ1.  As calculated
in the Appendix, terrace widths are given by

wk = wb{1+h1(n)k-h2(n)k2+h3(n)k3}-1/3,

for the ξ0 = -ξ1 case, where hi(n) is defined in the Appendix.  If
there is no net flux across the zeroth terrace (ξ0 = ξ1),
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3}.

Long time behavior and scaling
This simple zeroth order picture must certainly break

down if wn-1 calculated in the nth quasisteady state from eqs.
(12) and (13) becomes of order wa.  The repulsive interaction
from step n+1 should then be taken into account even in the
initial motion of step n.  However, even for late times with

t> cnt , where cnw 1− ( cnt ) ≈ wa, it seems reasonable to assume
that the steps near the growing reconstructed terrace (with k
<< nc) have the same velocity.  We will use this observation
and simple scaling arguments to obtain the time dependent
widths of terraces in the bunch next to a growing facet.  These
are compared with direct numerical integration and may be
useful in interpreting experiments.

We assume the terrace widths near the facet are still
given by Eqs. (12) and (13) with some monotonically increasing
function n(t).  We further assume that the front of the step
bunch propagates with a simple power of time, i.e., n(t) = v†tβ.
Then, as t goes to infinity, the terrace widths are functions of
one scaling variable v ≡ kt-β;
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for the ξ0 = ξ1 case.  We can show that β must be ¼ by calculating
∂twk from Eq. (7) with w(k,t) = w(kt-β).  Since the change in the
scaling variable dv for the given finite ∆k becomes
infinitesimally small as t goes to infinity (dv = ∆kt-1/2), it is
natural to treat v as a continuous variable at sufficiently late

(10)

(11)

(12)

(13)

(14)

(15)
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times.
Figure 5 shows the terrace widths as a function of v.

Terrace widths with ten different times (smaller circle, later
time) are shown in each panel.  The widths at different times
clearly collapse to a single curve, indicating the high accuracy
of the scaling assumption.  For small v, the terrace width
increases quadratically in Figure 5a while it is linear in Figure
5b as predicted from Eqs. (14) and (15);

( ) ≈vw     





 + 2

†21 v
v
e~wb     for    ξ0 = -ξ1,
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Hence, by measuring the terrace widths near the growing facet

at sufficiently long times (small v), we can tell whether there is
net flux across the reconstructed terrace.

Without Local Conservation

Zeroth order picture and quasi-steady state
In this sub-section, we again consider the simplest

limiting case, the early stages of faceting in the non-conserved
case with wb << wa and obtain the terrace widths near the
growing facet.  We start with the same configuration as in the
locally conserved case.  As shown in Figure 6, a quasi-steady
state also exists here, where all steps in the bunch, steps 1,⋅⋅⋅,n
move right with essentially the same velocity, Vn.  However, in
this case, there is no step which moves left (backwards).
Instead, step n+1 barely moves to the right from its initial
position until the step n “collides” with it and pushes it rapidly
to the right.  Then, the system quickly achieves a new
quasi-steady state where steps 1,⋅⋅⋅,n+1 move right with a
smaller constant velocity, Vn+1.  Since step n+1 increases its
velocity from essentially zero to Vn+1 in a very short time
interval, we can still associate a collision time, tn in this non
local case, with the time when this sudden change in the
velocity of step n+1 occurs.  For preciseness, we define tn as
the time at which the velocity of step n+1 is equal to half the
velocity of step n.  As shown in the Appendix, the velocity of
steps 1,⋅⋅⋅,n in the nth quasi-steady state is given by Vn = Dr /
n.  In effect, the pressure from the reconstructed facet is divided
by the number of steps in the uniformly moving bunch.
Therefore, we expect in the nth quasi-steady state interval

Figure 5.  Terrace widths as a function of the scaling variable,
v = kt-β with β = 1/4 for wb/wa = 1/10.  The small v behavior is
shown in the insets.  Terrace widths with ten different times
are shown in each panel.  Clearly, all of them collapse to a
single curve.  The smaller circles represent the later times.  For
the ξ0 = -ξ1 case (a), the terrace width increases quadratically
for small v while it increases linearly in the ξ0 = ξ1 case (b).  The
solid lines in insets are given by wb + c1v

2 in (a) and wb + c2v in
(b) where c1 and c2 are constants chosen to best fit the data.

Figure 6.  The step positions and the terrace widths as a
function of time.  Here wb/wa = 1/20.  Recall that wn = xn+1-xn
when comparing Figures 6a and 6b.

(16)
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∆tn ≈ (wa-wb)/Vn = n/(Dr ) and we have tn ≈ n2/(2Dr ).  On
the other hand, the width of the zeroth terrace has increased
at t = tn by as much as the widths of terraces 1, 2,⋅⋅⋅,n have
decreased, since the position of step n+1 has hardly changed.
Therefore, in the absence of other nucleation events, we have
w0(tn)-w0(t=0) ≈ n ≈ 2Dr

1/2(tn)
1/2.  This exhibits a t1/2

dependence in agreement with the classic continuum treatment
of Mullins [8].

Figure 6b shows the widths of the first few terraces as
a function of time.  As discussed above, wk remains almost
constant (initial value, wa) for t < tk-1.  For tk-1 < t < tk, it decreases
linearly to nearly the final step bunch width and then decreases
very slowly from that to the final size wb for t > tk.  Since the
terraces in the bunch change their width so little after they
join the bunch, all steps in the bunch move with essentially
the same velocity as assumed in the quasi-steady state
approximation.  In the zeroth approximation, the width of the
kth terrace in front of the growing facet is given by (see
Appendix)

wk = (1 - k/n)-1/3 wb

for k = 1,⋅⋅⋅,n where  = 1 - (wb/wa)
3.  For k > n, terrace widths

remain at their initial value wa.
Continuum approximation for bunch shape near the facet

As discussed in the local conservation case, this simple
zeroth order picture must certainly break down if wn-1 from Eq.
(17) is of order wa.  This break-down occurs in the non local

case where t > cnt  with cnt  such that
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As before, we use scaling arguments and the quasi-steady
state solution, Eq. (17) with n(t) = v†tβ, to describe the (long)
time dependent shape of the growing step bunch near the
facet.  This time, we get β = ½ when we put the scaling w(k,t)
= w(kt-β) in Eq. (6).  The terrace widths are now given by
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Using the scaling variable v = kt-1/2 implies that the profile is
described on a scale which increases as t1/2.  Therefore, it is
natural to describe the surface height with a continuous
variable, z, at long times.  In this limit, Eq. (19) becomes
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or, with scaling variables u = xt-1/2 and v = zt-1/2,
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where u′ = du/dv.  By integrating both sides of the Eq. (21) and
by solving it for z = vt1/2, we get the surface profile,
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where u1 = x1t
-1/2 is the rescaled position of the interface

between flat reconstructed surface and the step bunch.  Note
that Eq. (22) is the profile for the step bunch region and hence
is valid only for x1 < x < x† where x† is the end of the step
bunch defined by z(x†,t) = v†t1/2.  For x < x1, we have a facet
with z = 0 from the definition of x1 while for x > x†, the profile is
given by the unperturbed initial surface, z = sax.

Now we need to determine the two constants v† and
u1 in Eq. (22).  This equation should describe the profile
accurately for z << z†, so we require that it satisfy Eq. (6) or the
corresponding continuum equation for  ≡ ∂tz exactly at x1.
The continuum equation for  can be derived easily from Eq.
(6) since  = - s , where s = z′ ≡ ∂xz is the slope of the profile at
x;

 = 2gDr∂xs
3 = 6gDrz′

2z″.

The self consistency condition at x1 gives

u1v
† = 2Dr ,

since (x1,t) = -u1t
-1/2/2wb from the definition of u1.  In what

follows, we use Eq. (24) to determine v† when different choices
are made for u1.

Surface profiles at different times determined from
numerically integrating the discrete equations are shown in
Figure 7, using scaling variables u ≡ xt-1/2 and v ≡ zt-1/2.  In
Figure 7a, we show surface profiles at four different tn with n =
10, 15, 30 and 90 for wr ≡ wb/wa = 1/10.  Again the scaling
ansatz is very accurately obeyed.

These results are compared with the approximate
continuous profiles given by Eq. (22), using two different
values of u1 {v† is given by equation (24)}.  The dashed line is
the case where we directly fit u1 to the numerical profile at 4nt .

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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We see that two profiles coincide very well almost everywhere
with this choice of u1.

The other continuous profile, the dotted line, is
obtained by a crude matching of Eq. (22) at u† = x†t-1/2 to the
unperturbed initial profile (the thin solid line), given by v = u/
wa.  Note that the slope, s = ∂xz = v′(u) from Eq. (22) is sa at u†.
An approximation to u1 can be obtained by imposing v(u†) =
sau† and using Eq. (24).  In general, this approximation gives a
lower bound to u1 since v† = v(u†) must be slightly smaller than
sau† in real profiles.  With this approximation, it is
straightforward to calculate u1 and v†.  They are given by
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The dotted line is the profile of Eq. (22) with the above
u1 and v†.  As we can see in Figure 7, the re-scaled surfaces’
profiles at different times approach a single curve as t increases.
The open circle represents the limiting value of the rescaled
position of the first step, limt→∞ x1(t)t-1/2, which is obtained by
an extra-polation.  For small wr, this extrapolated value, and u1
in Eq. (22), are very close.  For example, the difference is less
than 0.2% for wr < 1/10.  Note that the shapes of rescaled
profiles are almost the same (except the degree of discreteness)
for different times, especially for large t.  Hence, we expect
that there would be no noticeable difference between the
rescaled profile at t = ∞ and the dotted line.

When wr is not so small, Eq. (22) is inaccurate near u†

= x†t-1/2 but still describes the profile rather well for small v.  In
Figure 7b, we show surface profiles at four dif-ferent tn with n
= 15, 20, 40 and 80 for wr = 2/3.  As in Figure 7a, they are
compared with two continuous profiles, one with u1 from 4nt
and the other using u1 from Eq. (22).  This time, the extrapolated
value of u1 from numerical profiles is slightly larger than the
value given by Eq. (25).  This discrepancy is understandable
since Eq. (22) is invalid near u† unless wr << 1.  Our crude
patching of Eq. (22) at u† with an outer (u > u†) solution of Eq.
(23), v = sau, describing the unperturbed initial profile (  = 0 for
u > u†), is a good approximation only for wr → 0.

We may be able to develop a more accurate continuum
profile if we use a better approximation for the outer solution
and an improved matching procedure.  For example, we could
approximate Eq. (23) by

 = 6gDrsi
2z″

for the outer region and use the solution [8] for the above
equation as the outer solution.  Matching it with the inner
solution of Eq. (22) over some proper region in (u1,u

†) could
give an improved approximation for the profile over the entire
region [1].

Nevertheless, the naive patching using the
unperturbed configuration for the outer region, Eq. (25) still
seems accurate enough to allow an estimate of some important
parameters in the reconstruction driven faceting process.  We
can estimate (the upper bound of) Drε by measuring the time
dependence of the reconstructed facet growth, x1(t);

Figure 7.  Surface profiles at different times are shown with
scaling variables, u = xt-1/2 and v = zt-1/2 for two different values
of wb/wa: 1/10 (a), and 2/3 (b).  They are compared with the
continuous profiles (dashed lines and dotted lines) given by
Eq. (22) with two different values of u1.  The open circle on the
u axis represents the extrapolated value (at t = ∞) of the rescaled
position of the first step.  See text for the value of u1’s in the
continuous profiles and the definition of the collision time

int ’s.
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from Eq. (25).  This value can also be extracted from the profile
near the reconstructed facet at later times.  As shown in Figure
7, the dotted lines describe the shape of the profile well near v
= 0 (except for the overall shift) even when wr is not small.  The
inverse slope (terrace width) of the dotted lines can be
calculated from Eqs. (19) and (25) and is given by
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We see that it increases linearly for small v;
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In Figure 8 we plot terrace widths (from the numerical
integration) versus the scaling variable v.  As expected the
terrace widths at different times collapse to a single curve.
This curve is compared with Eqs. (28) and (29).  As shown in
the insets, the terrace widths increase linearly with v for small
v and the slope is not much different from the value given by
Eq. (29).  In an experiment, by measuring the terrace widths
near the growing facet at sufficiently long times (small v), one
can estimate Drε from Eq. (29).

Concluding Remarks

The principal conclusion from this analysis is that a
growing nucleus can induce the formation of another nucleus
nearby when the mass is conserved locally.  This induced
nucleation process is analyzed using a detailed surface profile
near the growing terrace obtained from a physically suggestive
zeroth order picture.  The resulting regular order has a purely
kinetic origin.  The long time behavior of the faceting is also
obtained from this zeroth order profile using scaling variables.
A similar analysis is carried out for the non-conserved case.

For quantitative comparison with experiments, more
studies are needed, including a detailed analysis of a 2D model.
In particular, the role of thermal fluctuations in the nucleation
process needs to be understood better.  Work along these
lines is underway.  However, many of the qualitative
predictions of the present 1D model may be tested in
experiments.  For faceting dominated by induced nucleation,
we expect to see the propagation of nucleation and regularity
in the faceted surfaces.  Also, as shown in Figure 5, we can tell
the induced nuclei from the thermally nucleated ones by
carefully analyzing the terrace width distribution near the
growing facet, since the small v behavior strongly depends
on whether there is net flux across the reconstructed terrace.

Appendix

In the zeroth order approximation, for the nth quasi-
steady state (tn-1 < t < tn), we have

∂txk = ∂tx1,

for k = 2,⋅⋅⋅,n with a boundary condition ξn+1 = 0.  The chemical
potential given by Eq. (5) can be written as ξk = pk-1-pk where
the “pressure” of the kth terrace, pk = 2g/wk

3 + ε θ(wk-wc).
Since the pressure on the reconstructed terrace is almost equal
to ε and the pressure on an unperturbed terrace with width wa
is 2g/wa

3 (for k ≥ n), we have

Figure 8.  Terrace widths as a function of the scaling variable,
v = kt-β with β = ½ for two different values of wb/wa: 1/10 (a),
and 2/3 (b).  Terrace widths at different times collapse to a
single curve for each given wb/wa.  This curve is compared
with Eq. (28).  In insets, terrace widths show a linear increase
for small v.  They are compared with Eq. (29).
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I.  With local conservation
For the locally conserved case, the velocity of the

steps are given by

∂txn = (2ξn-ξn-1-ξn+1)

where we set Ds = 1 for convenience.  From Eqs. (A1) and (I1),
we have: 2(ξk+1-ξk) = (ξk-ξk-1) + (ξk+2-ξk+1).

The symmetric case (ξξξξξ0 = -ξξξξξ1).  For a thermally
nucleated facet, we expect that the chemical potential at step
0 satisfies (ξ0 = -ξ1) due to symmetry.  By solving Eqs. (A1),
(A2) and (I1), with this boundary condition, we get
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and the velocity of steps k = 1,⋅⋅⋅,n, Vn is given by

Vn = 6 (2n+1)/ {n(n3+2n2+2n+1)}

The adatom flux Φl(n) moving left from the step k = 1 to k = 0
during the nth quasisteady state is given by

Φl(n) = (ξ1-ξ0) = n(n+1)(2n+1)-1Vn

while the adatom flux moving right from the step k = n to k =
(n+1), Φr(n) is nVn - Φl(n).  Since only {Φr/(Φl+Φr)} of atoms
removed from the terrace k (for tk-1 < t < tk) move right, we
expect
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Step n moves right with velocity Vn and step n+1 moves left
with velocity n2Vn/(2n+1).  The time required for these two
neighboring steps to collide is tn-tn-1 and is given by

tn-tn-1 = wn
max/{Vn(1+n2)/(2n+1)}.

At tn, the zeroth terrace width is given by
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Now, let us consider the asymptotic value of Eqs. (I6), (I7) and
(I8) for large t.  For large n, wn

max ≈ n/3 and tn-tn-1 ≈ n3/18 .
Thus, the width of the facet increases as
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The factor 2 in front of the second term is from the fact that the
facet grows in both directions.

The pressure on the kth terrace is obtained from Eq.
(I2):
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where

h1(n) = {3(2n2+4n+1)- 2
1 (2n+1)-3n(n+1)}/D(n),

h2(n) = {3(2n2+4n+1)-3(2n+1)]/2D(n),
h3(n) = (2n+1)/2D(n)

with D(n) = /{εn(n3+2n2+2n+1)}.  The terrace width, wk, is
now given by

wk = wb{1+h1(n)k-h2(n)k2+h3(n)k3}-1/3

Note that both h1(n) and h2(n) are proportional to n-2 for large
n.  Therefore, the linear term, h1(n)k, can be ignored in the
continuum limit where both n and k go to infinity.

The asymmetric case (ξξξξξ0 = ξξξξξ1).  For the induced nuclei,
there is no flux across the reconstructed terrace, hence ξ0 = ξ1.
In the steady state, ξk should be quadratic in k since Vk (2ξk-
ξk+1-ξk-1) is constant for k = 1,⋅⋅⋅,n.  With the boundary
conditions ξ0 = ξ1 and ξn+1 = 0, the chemical potential at step
k(k ≤ n), ξk, for tn-1 < t < tn can be written as

ξk = a{k(k-1)-n(n+1)}

(A2)

(I1)

(I2)

(I3)

(I4)

(I5)

(I6)

(I7)

(I8)
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with a constant a = -3 /{n(n+1)(2n+1)} which is
obtained from the constraint, Eq. (A2).  Then, the velocity of
steps 1,⋅⋅⋅,n, is given by

Vn = 6 /{n(n+1)(2n+1)}

Since all atoms from the step k(k > 0) go right in this case, the
step n+1 moves left with the velocity, nVn.  Therefore, the
recursion relation between the wn

max′s is now given by wn
max =

wa + (n-1)(wn-1
max - wb)/n, and from w1

max = wa we have

wn
max = wa + {(n-1)/2}

This result can be understood easily from the fact the w0 and
wn

max are the same in the ξ0 = ξ1 case.  Since the position of the
step n+1 is not changed at tn-1, we have w0+wn

max = 2wa + (n-
1)(wa-wb).  From w0 = wn

max, we get wn
max = wa + {(n-1)/2} .

Step n moves right with velocity Vn and step n+1 moves left
with velocity nVn.  The time required for these two neighboring
steps to collide, ∆tn = tn-tn-1, is given by

∆tn = wn
max/{(n+1)Vn}

= {n(2n+1)/6 }⋅{w0+{(n-1)/2} }
           ≈ ( w~ /6 )n3

Hence, tn is given by tn ≈ (24 / )1/4

The pressure and the terrace widths are obtained again
from the chemical potential.  From Eq. (I13),

where  = /ε and the terrace width, wk, is given by

II.  Without Local Conservation
In the non-conserved case, the velocity of the steps

are given by ∂txk = ξk, where we set the diffusion constant Dr
= 1 for simplicity.  For the nth quasi-steady state (tn-1 < t < tn),
we have

∂txk = ξk = /n

for k ≤ n, from Eq. (A1) and (A2) with the boundary condition
ξn+1 = 0.  Since tn-tn-1 is the time required for the nth terrace to
shrink to wb from wa, tn-tn-1 = n / , where  = wa-wb.  At tn, the
zeroth terrace width, w0(t=tn) ≈ w0(t=0)+n , where tn = Σ=1 (ti-

ti-1) = n(n+1) /2 .  Therefore, we have

w0(t=tn) ≈ w0(t=0) + 2(2 )1/2t1/2

From ξk = /n, the pressure and width of the kth terrace are
given by

pk = {p0-(k/n) } = ε{1-( k/εn)}

wk = (pk/2g)-1/3 = wb{1-( k/εn)} -1/3

for k < n.  For k ≥ n, terraces have the initial average width and
pressure, wa and pa.

Acknowledgements

We are grateful to D. J. Liu, J.E. Reutt-Robey, and E.D.
Williams for helpful discussions and M.G. Spell for excellent
mauscript preparation.  This work was supported by the NSF
MRG with continuing support from the NSF MRSEC under
contract DMR 96 32521.

References

[1] Bender CM, Orszag SA (1978) Advanced
Mathematical Methods for Scientists and Engineers. McGraw-
Hill, New York. p. 426.

[2] Gruber EE, Mullins WW (1967) On the theory of
anisotropy of crystalline surface tension. J. Phys. Chem. Solids
28, 875–887.

[3] Heffelfinger JR, Bench MW, Carter CB (1995) On
the faceting of ceramic surfaces. Surf. Sci. 343, L1161– L1166.

[4] Hibino H, Homma Y, Ogino T (1995) Real  space
observation of (111) facet formation on vicinal Si(111) surfaces.
Phys. Rev. B 51, 7753–7761.

[5] Jayaprakash C, Rottman C, Saam WF (1984) Simple
model for crystal shapes:  Step step interactions and facet
edges. Phys. Rev. B 30, 6549–6554.

[6] Jeong HC, Weeks JD (1995) Faceting through the
propagation of nucleation. Phys. Rev. Lett. 75, 4456–4459.

[7] Joós B, Einstein TL, Bartelt NC (1991) Distribution
of terrace widths on a vicinal surface within the one-
dimensional free fermion model. Phys. Rev. B 43, 8153– 8162.

[8] Mullins WW (1957) Theory of thermal grooving. J.
Appl. Phys. 28, 333–339.

[9] Nozières P (1987) On the motion of steps on a vicinal
surface. J. Phys. France 48, 1605–1608.

[10] Nozières P (1992) Shape and growth of crystals.
In: Solids far from equilibrium. Godrèche C (ed.). Cambridge
University Press, Cambridge, U.K. pp. 1–154.

[11] Ozcomert JS, Pai WW, Bartelt NC, Reutt-Robey JE
(1994) Kinetics of oxygen induced faceting of vicinal Ag(110).
Phys. Rev. Lett. 72, 258–261.

[12] Phaneuf RJ, Bartelt NC, Williams ED, Œwiech W,
Bauer E (1991) Low energy electron-microscopy investigations

(I15)

(I16)

(I17)

(I18)

(II1)

(II2)

(II3)

(I14)



Dynamics of steps on vivinal surfaces

29

of orientational phase separation on vicinal Si(111) surfaces.
Phys. Rev. Lett. 67, 2986–2989.

[13] Phaneuf RJ, Bartelt NC, Williams ED, Œwiech W,
Bauer E (1993) Crossover from metastable to unstable facet
growth on Si(111). Phys. Rev. Lett. 71, 2284– 2287.

[14] Pokrovsky VL, Talapov AL (1979) Ground state,
spectrum, and phase diagram of two dimensional incomsurate
crystals. Phys. Rev. Lett. 42, 65–67.

[15] Pourmir F, Rousset S, Gauthier S, Sotto M, Klein J,
Lecoeur J (1995) Superperiodicity in the thermal faceting of
Au(111) vicinal surfaces. Surf. Sci. 324, L337– L342.

[16] Rettori A, Villain J (1988) Flattening of grooves on
a crystal surface: A method of investigation of surface
roughness. J. Phys. France 49, 257-267.

[17] Williams ED, Bartelt NC (1991) Thermodynamics
of surface morphology. Science 251, 393–400.

[18] Williams ED, Bartelt NC (1996) Thermodynamics
and statistical mechanics of surfaces. In: Handbook of Surface
Science, Vol. I, Physical Structure. Unertl WN (ed.). Elsevier
Science, Amsterdam, Netherlands. pp. 51-99.

[19] Yoon M, Mochrie SGJ, Zehner DM, Watson GM,
Gibbs D (1995) Periodic step bunching on a miscut Pt(111)
surface. Surf. Sci. 338, 225–235.

Discussion with Reviewers

N.C. Bartelt:  The use of a 1D model is justified by referring to
experimental observations of linear facet edges of Si(111).  I
would argue that this is slightly dangerous because the
spectacular linearity on Si(111) is probably associated with
(elastic) effects not included in the authors’ model.  Can the
1D model be justified more generally?
Authors:  Indeed, surface elasticity has a strong influence on
the surface morphology of the Si(111) faceted surface, and
probably produces the extreme linearity of the facet edges as
noted above.  However, rather linear facet edges have been
found in several other systems, including GaAs(001) and O/
Ag(110), not all of which exhibit strong surface elasticity
effects.  An elongated, rather linear facet edge is expected in
general if faceting occurs through nucleation of reconstructed
regions since the reconstruction propagates asymptotically
much faster (~t) in the direction parallel to the step edge than
in the perpendicular direction (~t1/2 or t1/4).  We believe that
the 1D variable, the averaged position of the step over these
linear regions would properly describe the faceting process
on a scale smaller than the lateral size of the facet.  The validity
of using the 1D free energy, Eq. (4), has not been shown
rigorously but the result of 2D numerical models seems to
agree with the 1D free energy.

N.C. Bartelt:  The authors use the free fermion distribution of
terrace widths to determine the smoothing of the cusp in the
free energy.  When g is large (as it is on Si(111), for example),

the distribution can be much smaller than this.  So the authors
are probably over-estimating the smoothing of the cusp.
However, in the sections Model and Kinetics it is argued that
the smoothed free-energy curve is not what one should use in
the calculation of the step dynamics.  What, then should one
use the smoothed free-energy curve for?  Is it physically
meaningful?
Authors:  The free energy one should use depends on the
time and spatial scale on which the system is to be described.
The long time behavior of the system can be described using
the true equilibrium free energy, which is the lower envelope
of the thick curves.  It predicts the phase separation and the
properties of each phase.  The smoothed curve in Figure 1b
represents a hypothetical (non-equilibrium) free energy of the
system at the moment the reconstruction is allowed (e.g., when
the system is quenched below the reconstruction temperature)
with instantaneous reconstruction occurring on sufficiently
wide terraces.  If the system is well described by a local slope,
coarse-grained over several terraces, which might be the case
in the spinodal decomcosition regime, the short time dynamics
might be more appropriately described by the smoothed free
energy curve.  However, for the motion of individual (linear)
steps on a scale smaller than lateral facet size as considered
here, the cusped free energy in Figure 1a is the one we should
use.

N.C. Bartelt:  One of the most interesting conclusions of this
work is the periodicity of the final faceted state in the case of
conserved dynamics.  From the authors results, is it possible
to give a qualitative discussion about how the final periodicity
depends on the parameters of the problem? For example, how
sensitive is the periodicity to the magnitude of the step step
interactions?
Authors:  The final periodicity dependence on the parameters
are given in Eq. (10) (and below) in the limit of the zeroth order
approximation.  In this limit, the periodicity mainly depends
on the ratio between the critical width and the average width
of the terrace (wc/wa).  We do not have a quantitative analysis
for the predicted periodicity when the zeroth approximation is
not valid.  In this more general case, we believe that the effects
of thermal fluctuations are so important that the numerical
predictions of our 1D model, which does not permit additional
thermal nucleation, are not very meaningful.  In fact, the
numerically predicted periodicity of the 1D model is quite
different from that of a 2D model where thermal nucleation can
take place.  The periodicity is much smaller and less sensitive
to step step interactions in the 2D model.  The results of the
2D model will be discussed elsewhere.


