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Abstract

Under a wide range of conditions, ion bombardment
of nominally flat substrates results in the formation of
macroscopic hummock features.  We present a theoretical
model of this process which details the evolution of hummocks
on rotating substrates.  The formation of facetted hummocks,
the interaction and coalescence of two hummocks, and global
properties such as the hummock size distribution are described.
These results are used to interpret experimentally observed
hummocks on Ar+ sputtered, rotating Si(100) substrates.
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Introduction

Ion beam modification of surfaces has received a great
deal of theoretical and experimental study for more than two
decades [2, 3, 5, 12, 13, 14].  Much of this interest has been
stimulated by applications, such as reactive ion beam etching,
secondary ion mass spectroscopy (SIMS), and ion beam
thinning for transmission electron microscopy (TEM) sample
preparation.  For such applications, maintaining a planar surface
during sputtering is of prime importance.  Any surface
roughness created during the sputtering process could
obscure morphological features of interest in TEM, or could
result in modified elemental depth profiles in SIMS or sputter/
Auger techniques.  However, under a wide range of conditions
during the sputtering process a nominally flat surface evolves
into a surface with hummock-like features.

While for most practical applications of sputtering
avoidance of hummock formation is sought, recently it has
been proposed that hummocks could be applied constructively
to provide a means of improving the quality of strained
heteroepitaxial layers [8].  For hetero-epitaxial overgrowth on
a rough or patterned surface, the strain associated with the
lattice mismatch of the film/substrate can be localized near the
interface and the remainder of the film grows strain free [9].
However, to obtain high quality overlayers for eg., the Ge/Si
system which has a 4% lattice mismatch, substrate patterning
on length-scales of 20 nm or less is needed.  This is an order of
magnitude below the limit of photolitho-graphic techniques
so at present alternate patterning techniques are necessary.
Hummock formation by ion beam bombardment is one possible
candidate as access to smaller length-scales can be achieved.
For such constructive applications, a detailed knowledge of
properties such as the hummock size distribution and hummock
areal densities as well as the local properties, such as the
shape of individual hummocks is required.

Previous descriptions of hummock formation and
evolution from a nominally flat starting surface include
continuum models of the surface [2] coupled with wavefront
propagation instabilities and models which concentrate on
sputtering of specific surface features [5, 12]. One common
parameter in all the models is the angular dependence of the
sputtering yield. A schematic plot of the sputtering yield, S,
versus the angle of the ion beam with respect to the surface
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normal, φ, is shown in Figure 1. This curve is obtained from
the experimental observations of Ar+ irradiated silicon [1, 7,
10, 11] and is a result of the (i) the energy loss of ions as they
penetrate the substrate, and (ii) direct reflections of the
impinging ions from the substrate [12, 14]. At small angles,
reflections are rare and the details of energy loss give the
increase in yield with angle, while at large angles reflections of
ions from the substrate dominate and the sputtering yield is
reduced. These two processes produce the curve shown
which is common to most materials.

Hummock formation is typically dependent on the yield
curve since microscopic features on the surface will tend to
etch at different rates compared to the flat surface and, through
differential etching, the initial features are enhanced and
macroscopic hummocks form. Indeed, the formation of
hummocks requires a microscopically rough surface since
otherwise hummock formation is suppressed [5]. More
specifically however, the evolution of a surface depends on
the angle of the ion beam, φ. For example, for φ= 75°-85° the
starting surface will in general smooth out and no hummocks
form. In angular ranges of 0°-75°, hummocks tend to form,
most prominently near the maximum S (φ≈65°). In addition to
the yield curve, hummock details depend on other parameters
such as the ion beam energy and the total ion dose [5]. General
trends include an increase in the spatial density of hummocks
with an increase in ion dose while the size of hummocks tends
to increase with ion beam energy.

While no theories exist for hummock size distributions
evolving during sputtering, the two main late stage cluster
growth processes on surfaces (i) the LSW theory of Ostwald
ripening [4] and (ii) the coalescence of larger clusters [6, 15]
will be considered. The distributions resulting from either
process exhibit self-similar behaviour, i.e., the distribution at
one time can be related to the distribution at later (or earlier)
time by a simple scaling factor. If one of these late stage
processes are an adequate description of hummock growth
then the statistical self-similarity will greatly simplify the
description of the process as a function of time. Coalescence
is the more natural comparison for the current experimental
conditions as it applies to non-mass conserved processes.

In this paper, we examine the properties of hummock
formation and evolution on rotating substrates. First, we
describe the evolution of a single hummock, followed by binary
systems i.e., the coalescence of two hummocks, and then the
evolution of a surface covered with hummocks. We then
compare these results to the  hummocks formed on Ar+

sputtered Si surfaces. In particular we focus on hummock
coalescence and the hummock size distribution and relate this
to theoretical models for cluster growth phenomena.

Theory
Evolution of a single hummock

In this section, we derive some results relating to the

rate of material loss for features on a rotating substrate. We
use a formalism similar to that of Cong-Xin et. al. [5], although
our method lends itself well to the description of the evolution
of hummock features by simple inspection of the yield curve.

For non-rotating substrates, the rate of material loss is
obtained from the S(φ) curve in Figure 1. For a rotating substrate,
the problem is more complex since the angle between the beam
and any features on the substrate is not constant, but changes
as the substrate rotates. For the rotating analysis, we use a
surface geometry as shown in Figure 2. A nominally flat
substrate defines the xy plane and is rotating about the z-axis
at an angular velocity ω. Any morphological feature on the
substrate is defined by its surface normal, n, which subtends

Figure 1. Plot of the sputtering yield, S, as a function of the
angle of incidence, φ, for Ar+ sputtered Si [1, 7, 10, 11]. During
rotation when, for example, a nominally flat substrate etches
at a rate given by S0, features which deviate several degrees
from the flat substrate will oscillate between the endpoints S1
and S2 during rotation. However, the features spend the
majority of the time at the endpoints. This results in the features
etching slower than the flat substrate and macroscopic
hummocks form. For a different beam geometry where the flat
substrate is etching at S0', then the features oscillate between
the endpoints S1' and S2'. For this case the features etch faster
than the substrate and no hummocks form (see text). This
type of analysis can be carried out for any incident beam
direction.
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an angle θ with respect to the substrate normal. We refer to θ
as the feature angle. The direction of the ion beam, B, is defined
by the angle φ with respect to the substrate normal. The unit
vectors describing B and n, are

z   + x   = B ˆcosˆsinˆ φφ

z   + y  t  + x  t  = n ˆcosˆsinsinˆcossinˆ θωθωθ

With these definitions, the beam direction is defined
in the xz plane and the feature normal is in the same plane as
the beam at time ωt=mπ, where m is an integer or zero. The
angle between the beam and the surface feature normal, α, is
obtained by taking the dot product of Equation 1 and Equation
2 which gives

φθ+ωφθ=α coscoscossinsincos t

So that the angle α is not a constant, but α=α(t). The
minimum value of α, αmin=θ -φ , occurs when ωt is an even
multiple of π and the maximum value of α, αmax=(θ+φ), occurs
when ωt is an odd multiple of π.

To calculate the total loss of material per unit area per
revolution of the substrate for a particular surface feature,
∆N, we must evaluate

)t() S(   2 = N α∆ααΣ∆ α
α cosmax

min

where ∆t(α) is the amount of time spent in the angular range
[α,α+∆α], cosα is proportional to the beam intensity and
S(α) is the rate of removal of material for a given α from Figure
1. To evaluate this expression we need the function ∆t(α).
Using uniform intervals ∆α we relate ∆α and ∆t by the Taylor
series expansion
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This formula is not sufficient, as calculating dα/dt from
Equation 3 results in ∆t(α) → ∞ at ωt=mπ, i.e. singularities
results at α=αmin when m is even and α=αmax when m is odd.
To eliminate the occurrence of the singularity in ∆t(α) at these
points, we must take Eq. 5 to second order. Going to second
order gives a quadratic equation which has no singularities
and can be solved at all points. In particular, at ωt=mπ,
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Figures 3a, b and c show plots of ∆t as a function of ωt
(going to second order in Eq. 5) for the case where φ=65° and
θ=20°, 40°, and 60°, respectively. From these plots it is
immediately apparent that ∆t is a sharply peaked function at
ωt=mπ so that effectively all the etching of a particular feature
occurs at these points (this type of behaviour is analogous to
an oscillating simple pendulum, i.e., the amount of time the
pendulum spends near the maximum amplitude is relatively
large as a result of the small angular velocity, while the pendulum
spends a relatively small fraction of the time in the vicinity of
the equilibrium position as a result of the large angular
velocity). The relative heights of the peaks for m odd versus
m even, for a given φ and θ, are given by the ratio of Equation
8 to Equation 7. Note that more time is spent at the points
where α=αmax. This effect is, however, outweighed by the
fact that the effective area as seen by the ion beam is very
large for large values of α, i.e., the beam intensity per unit area

(1)

(2)

(3)

(4)

(5)

(6)

Figure 2. Schematic diagram displaying the geometry during
the sputtering process. The ion beam is defined by the angle
φ and the surface features are defined by θ, with respect to the
surface normal. The angle between the ion beam and the feature
normal is α. The flat surface is defined by the xy plane and the
substrate rotates around the z-axis at an angular velocity ω.

(7)

(8)



34

G.R. Carlow

is greatly reduced. This is evident from Figs. 3d, 3e and 3f
which show the function ∆t⋅cos(α) versus ωt for the same
cases in Figures 3a, 3b and 3c, i.e., the time spent at each angle
corrected by the beam intensity at that time. Note that if
cos(α)<0 then no sputtering occurs since the surface feature
is shadowed from the ion beam. In general, ∆t⋅cos(α) is largest
at α=αmin and so most etching occurs at this angle.

With these comments we can now obtain an asymptotic
expression for the total loss of material per unit area per
revolution, ∆N: we approximate ∆t(α) by two delta functions
at the points ωt=0,π and so the angular dependent terms can
be regarded as constants and taken out of the summation.
Thus Equation 4 can be written in the form

)t(   )+ S()+(  +   
 

)t(   )- S()-(  N
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where wi is the “width” of the peak i.  We note that w is not the
same for both peaks. If we define 2wi as the full width at half
maximum of peak i, then we can calculate the width from
Equation 5.  It is easily shown that, using Equation 5 to second
order, the width of the peaks are proportional to the peak
height.  Specifically,  2w=ω∆t(ωt=mπ). Then the sums in
Equation 9 are proportional to the square of the respective

Figure 3. Plots (a), (b) and (c) show the amount of time a surface feature spends in a particular angular range during rotation for
θ=20°, 40°, and 60°, respectively. The ion beam angle φ=65°. The plots are sharply peaked at αmin and αmax (see text) indicating that
most of the time is spent in these angular ranges during rotation and, as a result, effectively all of the etching occurs for these
angles. Plots (d), (e) and (f) are the same as in (a), (b) and (c) except that the time spent in a given angular range is corrected for the
beam intensity cos(α).

(9)
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peak height. Therefore, the total loss of material per unit area
for an arbitrary θ and φ per revolution is approximated by

)+ S()+( )+( C +        
 

 )- S( -  )-( C  ),( N

φθφθφθ

φθφθφθ≈φθ∆

cotcotcos

cotcotcos

where C≈2∆α/ω.
The first term in Eq. 10 corresponds to ωt=0 and the

second term corresponds to ωt=π. These two points have
different etching rates which depends on the particular values
of θ and φ. Therefore, the total etching rate of the surface
feature can be approximated by the weighted average of the
sputtering at these two “endpoints” (given that the total
material loss is still the same, i.e. the area under the curve in
Fig. 3(a) is not changed, but merely redistributed within the
endpoints with the appropriate weighted average). As we
describe below, this allows for a simplified description of
hummock formation on rotating substrates by visual
inspection of Figure 1.

An interesting case occurs under the conditions (i)
θ=φ and (ii) θ+φ > 90° since both terms in Eq. 10 are then zero
(the second term is zero due to shadowing). Therefore, this
type of surface feature doesn’t etch at all, within the
approximations we have used. This result is independent of
the form of the yield curve (as long as the curve is sufficiently
broad so that it can be taken out of the summation as in
Equation 9). Therefore, in the long time limit, this is the feature
orientation that will survive and one will end up with facetted
hummocks. Once a facetted shape is reached as shown by the
solid line in Figure 4, it will be maintained as there are no
slower etching planes on the hummock. With further sputtering,
the base size of the hummock increases since the flat portion
of the substrate etches faster than the sides of the hummock.
The height, however, remains constant since the top of the
hummock and the substrate have the same orientation. The
rate of increase in the diameter of the base is constant and
does not depend on the initial size of the hummock, only on
the etching  rate of the flat substrate. The area of the hummock
base grows as t2. Since the height of the facetted hummock
remains constant, the shape of the hummock is not strictly
conserved during growth. The ratio of base diameter to the
top diameter decreases with etching time and approaches the
value of 1 in the long time limit.

A simplified method for the description of hummock
formation (or lack of hummock formation) can be employed
by using Equation 10 and the yield curve in Figure 1. Note
that our description does not include effects such as surface
diffusion and re-deposition during sputtering. First consider
a “perfectly flat” surface which is bombarded with ions.
Regardless of φ (as long as it is constant), hummocks will not

form since the entire substrate etches at the same rate. However,
if the substrate contains small deviations, e.g., areas with
angles of a few degrees off normal, these will, in general, etch
at different rates and the evolution of the surface can be
inferred graphically from the yield curve. Referring to Figure
1, we assume for example that the angle of the beam with
respect to the substrate normal corresponds to the point
marked S0 and the flat substrate etches at this rate. However,
a feature angle a few degrees different than the substrate will
oscillate along this yield curve, e.g., between the points S1
and S2 during rotation. The movement along the yield curve is
very fast near S0 and very slow near both S1 and S2, i.e., most
time is spent at these two endpoints. With the approximation
made in arriving at Eq. 10, the movement is infinitely fast
between S1 and S2 and all of the time is spent at S1 and S2. To
determine whether hummocks will form, one must determine if
the weighted average of the etching rates at S1 and S2 (from
Equation 10) is greater than or less than the etching rate of the
flat substrate. If this end-point etching is faster than the
substrate then the surface features etch faster and no
hummocks form. If instead the flat substrate etches faster,
then hummocks will tend to form.

Note that deviations from a flat surface are not
exclusively required - divergence of the ion beam resulting in
deviations in φ may also result in similar effects. In addition,
defects in the bulk of substrate, which reach the surface after
sufficient etching, may etch at different rates and enhance the
probability of the nucleation of new hummocks.

We now use this method to illustrate its simple
applicability to a few examples with different values of the
beam direction φ. We assume that the feature angle, θ, with
respect to the surface normal is initially no more than a few
degrees. The “endpoints” for each value of φ are indicated in
Fig. 1. In these examples, the time spent at an endpoint is
interpreted as ∆t⋅cos-(α), i.e. the actual time spent at the
endpoint corrected for the beam intensity factor.

Figure 4. During etching, the base diameter of a facetted
hummock increases linearly with time from d0 to d1. The height
of the hummock remains constant.

(10)
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(a) φ≈65° (S0, S1, S2 case); the average of the endpoints
is always less than the etching rate of the flat substrate so the
small angle features etch slower, and hummock formation
should occur. This is in agreement with the result that hummock
formation is most prominent at the maximum of the yield curve.

(b) φ≈45° (S0'’, S1'’, S2'’ case); the average of the etching
rates of the two endpoints is about equal to the etching rate of
the substrate since this position on the yield curve is
approximately an inflection point. However, since relatively
more time is spent at the smaller angle where the etching rate
is less than the flat substrate, the overall etching rate of the
feature is less than the flat substrate and again hummocks
form.

(c) φ≈80° (S0', S1', S2' case); this position is also
approximately an inflection point of the yield curve and
therefore the etching rates at the endpoints is nearly equal to
the etching rate of the flat substrate. However, more time is
spent in the vicinity of α=αmin where the etching rate is
significantly higher than the flat substrate. Therefore, the
deviations etch faster and the substrate smooths out. Indeed,
any value of θ with φ=80° gives a similar result. Large θ values
will cause shadowing at one endpoint (φ>90°), but the other,
when corrected for the beam intensity will more than make up
for any shadowing and the overall etch rate of the feature will
be larger than the flat substrate. Sputtering in this geometry is
used to avoid hummock formation in SIMS and TEM
preparation.

The type of graphical analysis may be carried out at
any starting point, S0, and may also be extended very simply
to any system which has an arbitrary yield curve (if one exists
that is significantly different than Fig. 1).
Evolution of Two Hummocks

We now turn our attention to the evolution of two
hummocks in close proximity on the same surface. As we
showed in the previous section, the areal size of a single
hummock will increase with time so that if two hummocks exist
on the same surface, they will eventually affect each others
growth. The interaction of two hummocks is a complicated
situation involving partial shadowing of one hummock by
regions of the other hummock during rotation. Therefore, we
only provide plausible arguments.

We assume that the two hummocks have reached a
facetted shape before interaction occurs and that the
hummocks are the same height. Also, to simplify the analysis,
we assume that interaction does not occur until the bases of
the two hummocks are in contact. The evolution of this binary
system is depicted in Figure 5, where the coalescence event
progresses with time from the top of the figure to the bottom.
As sputtering proceeds, the region between the hummocks is
shadowed at both its endpoints (Equation 10) so very little
etching occurs there and the depression begins to rise relative
to the tops of the hummocks. Eventually, the depression region
will reach the top of the hummocks an elongated, facetted

hummock exists. For simplicity we approximate this as an
elliptical shape. Since the growth rate of the base diameter of
the hummock, as described in the previous section, applied to
one of arbitrary size, both the long and the short sides of the
“elliptical” hummock will grow at the same rate. Thus, in the
long time limit, the difference between the major and minor
axes of the ellipse will remain constant, so the eccentricity of
this ellipse will tend to zero and the hummock will approach a
circular shape (from a plan view perspective). These arguments
suggest that the base shape of hummocks after coalescence
asymptotically approaches the shape of a single isolated
hummock. The overall shape, however, is not strictly
conserved since the height of the hummock remains constant
throughout the coalescence event.

If instead the individual hummocks do not have the
same base diameter, the description of the coalescence event
is similar except in this case the smaller hummock is merely a
perturbation on the shape of the larger hummock. The relative
size of this perturbation tends to zero as the event proceeds
and again a circular shape is asymptotically reached.

Although we have referred to these types of events
as “coalescence”, it is more appropriately the mutual
overtaking of one hummock by another as a result the growth
of each individual hummock. Cluster coalescence occurs over
a relatively short time scale and is driven by the minimization
of surface energies and the equilibrium shape is achieved.
This is not the case for hummock coalescence so the process
differs from cluster coalescence.
Evolution of a Surface filled with Hummocks

The time-evolution of the hummock size distribution
is the most fundamental quantity to describe the global
properties of hummock growth. Once the hummocks have
reached a facetted shape, the growth of the base of the
hummocks is quadratic in time. Superimposed on this quadratic
growth is the growth of individual hummocks by coalescence
events. Diffusion of material across the surface is typically
negligible during hummock formation and growth so it is
anticipated that a coalescence-type of size distribution could
result. However, deviations from these distributions could
occur due to the details of coalescence events (as described
above), the lack of shape conservation, and the nucleation
rate of new hummocks. If nucleation of hummocks ceases
(i.e., since all initial surface imperfections have either formed
hummocks or have smoothed-out) then in the long time limit,
one hummock will remain on the surface. However, if new
hummocks continually nucleate (by mechanisms such as ion
beam fluctuations or the etching procedure exposing bulk
defects) then the hummock size distribution may approach
self-similar behaviour (within the limits of the violation of shape
conservation during coalescence events) and comparison to
coalescence theories of cluster growth can test these
concepts. Note that with facetted hummocks, the appropriate
size parameter to plot in the hummock size distribution is the
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base area of the hummock since the height remains constant.
Also, even though the growth of the base of an individual
hummock is quadratic in time the global growth rate may not
have the same time dependence since coalescence events
and nucleation of new hummocks alter the global growth rate
from the local one. Testing the quadratic growth rate would
require the continual monitoring of the growth rate of isolated
hummocks.

Experiment

In this section experimental results of hummock growth
on surfaces are presented to test some of the concepts
discussed above. As the evolution of individual hummocks
has been experimentally well surveyed we concentrate on the
coalescence of hummocks and the hummock size distribution.
Since the number of parameters that can be varied in the
experiments are numerous, and the computing of a hummock
size distribution is a lengthy process, we concentrate here on
one set of experimental conditions.

Si(100) substrates were cut into 3 mm diameter discs
and were mechanically polished with 0.25 µm alumina powder
to create a microscopically non-flat surface. This step was
done to ensure that hummocks would form under ion
bombardment. Cross-sectional TEM analysis of the polished
surface reveals a relatively flat surface on a scale of 50 nm and

has a dislocation network which extends to about 25 nm below
the surface [8]. Ion bombardment on polished samples was
done with a commercial E.A. Fischione Ltd. ion milling system
at an angle of φ=65°. The samples were held at room
temperature at a pressure of 1x10-4 Torr during ion
bombardment. Samples were milled with 6 kV Ar+ ions with
beam currents on the order of 200 µA. The rotation of the
substrates was approximately 2 revolutions per minute.
Scanning Electron Microscope (SEM) images of the
bombarded surfaces were obtained with an Hitachi (Tokyo,
Japan) S-4500 field emission-SEM.

Figures 6a and 6b show high and low magnification
SEM micrographs, respectively, of a sample irradiated for 30
minutes. The individual hummock features are circular and
have sizes which range from about 10 µm down to about 1 µm
as measured by the diameter of the hummock base. Only
hummocks in the central region of a Si disc were analyzed.
(The plan view hummock shape near the edge of a Si disc is
elliptical rather than circular and is a result of the beam geometry
and beam intensity profile, i.e, the gradient in the beam intensity
across the surface is not radially symmetric, but is largest
perpendicular to the beam direction and smallest parallel to
the beam direction).  Of particular note in Figure 6 is the large
number of coalescence events that are occurring. Some events
are just beginning (marked S), others are well under way and
appear as figure eight shapes (marked M) and others are near
completion (marked E). Two hummocks that have just begun
to coalesce each have typically the same shape as an isolated
individual hummock and this supports the idea that the shapes
of the two individual hummocks evolve, to a reasonable degree,
independently until their perimeters begin to overlap. By visual
inspection of the events that are at different stages of
completion, it is the region between the hummocks that initially
“fills in” with material (i.e it etches slower), and eventually the
near elliptical shape evolves. As an event nears completion, a
circular shape is approached. There are a large number of
multiple coalescence events that are occurring, that is, where
three or more hummocks are all interconnected and together
coalescing (or perhaps more aptly, percolating). In particular
is the region P where upwards of ten hummocks are mutually
coalescing. A more complete description of the details of
coalescence is required, although inevitably this description
must also include multiple events since these occur regularly.
Also of note in Fig. 6(b) is the tendency for grouping of
hummocks in specific regions, while other regions are virtually
free of hummocks. This is indicative of non-random spatial
nucleation and would depend on the details of the mechanical
polishing prior to sputtering.

Figure 7 shows an edge-on view of hummocks. This
sample was prepared by milling for only 2 minutes as then the
number of coalescence events is reduced and this facilitates
the imaging of individual hummocks. The individual hummocks
in general have a spherically-capped shape and only a few

Figure 5. A time sequence showing the coalescence of two
hummocks from (a) a plan view perspective and (b) an edge-
on perspective. Time increases from top to bottom. For the
plan view, the solid lines represent the base diameter of the
hummock and the dashed line represents the flat top diameter
of the hummock. The final hummock after coalescence
approaches a circular shape and the base shape of the
hummock is, therefore, asymptotically conserved after
coalescence.
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hummocks have a facetted shape (labelled ‘F’ in the figure).
The contact angle of the hummocks to the substrate is about
25°.  The lack of facetted hummocks is due to the short milling
time since then selective etching of particular orientations
has not had sufficient time to create facetting. Increased milling
times tends to increase the number of facetted hummocks,
although coalescence events then begin to dominate the
hummock shape.

A hummock size distribution was generated from a
sample sputtered for 5 minutes. A typical SEM micrograph is
shown in Figure 8. The hummock size distribution (HSD) from
this sample was generated from many micrographs containing
a total of more than 1000 hummocks. We define the size of an
individual hummock as the area of its base, A. For cases when
two or more hummocks are coalescing, we treat these as one
individual hummock with a base area equal to the total base
area of the hummocks involved in the coalescence. Since
coalescence events were found to typically involve larger
hummocks, this approximation method tends not to affect
hummocks in the smaller size range. The HSD is shown in
Figure 9 where the axes have logarithmic scales. Higher
magnification micrographs did not indicate any hummocks at
sizes below those plotted. The data fit a power law
approximation, N α Aµ quite well over the size range of
hummocks observed, with µ=-1.6 ± 0.2. Also included in the
figure is the theoretical coalescence distribution from Family
and Meakin [6] in the asymptotic region of small hummock
sizes. This portion of the theoretical curve is (i) the least
affected by the assumptions we have made about the size and
shape of coalescing hummocks, and (ii) the form the
distribution curve initially develops prior to the onset of a
bimodal peak at large cluster sizes [6, 15].

The HSD agrees quite well with theoretical
distributions over the range of hummock sizes observed. There
is however, a discrepancy at small hummock sizes (note again
that the data is displayed logarithmically). These deviations
from the theory at small sizes can arise from either the details
of the coalescence of hummocks or, more likely, the nucleation
rate of hummocks during erosion. For the former, theoretical
distributions assume that coalescence events occur
instantaneously once the perimeters of two individual
hummocks touch. This is not the case in our experiments where
the time to complete a coalescence event is very long. This
allows for multiple coalescence events which may, in part,
contribute to the deviations, but this predominantly affects
only the larger size hummocks. For the latter, theoretical
distributions are based on continuous nucleation of new
hummocks and therefore, a reduced nucleation rate in our
experiments after sufficient etching would account for the
observed discrepancy. This is consistent with other
experiments [5] where nucleation is dominated by initial surface
imperfections and the rate then decreases once these
imperfections have either smoothed-out or nucleated
hummocks. In this sense, the time dependence of the deviations
in the small size region of the HSD could be used to infer the
details of nucleation rates.

Control over the hummock size distribution and the
spatial density of hummocks, therefore, requires control over
the nucleation rate as etching proceeds. For example, to
manufacture HSD’s which approach the theoretical
coalescence distributions, one needs continuous nucleation
of hummocks. Two potential methods for achieving this
include: (i) creation of bulk defects that, once they have reached
the surface after sufficient etching, act as effective nucleation

Figure 6. High magnification (a) and low magnification (b) SEM images of hummocks on Si(100). The beam angle is φ=65° and the
sputtering time is 30 minutes. The letters indicate different stages of coalescence events: S - start of an event, M - in the middle of
an event, E - end of an event, and P - multiple hummocks coalescing.
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centres. Such defects could be attainable by Si implantation
to generate appropriate defects, or eg., by low dose Co ion
implantation which forms small CoSi2 precipitates and this
chemical difference may induce hummock nucleation; (ii)
sufficient divergence of the ion beam during sputtering.
Technically, the second method is preferable if it provides the
nucleation rates required. If instead one wants to manufacture
hummocks which have a uniform size and uniform spatial
density for the potential application of creating patterned
surfaces for heteroepitaxial overgrowth, one needs a large
nucleation rate for a very short period of time followed by a
nearly complete suppression of hummock nucleation.
Therefore, uniform ion beams and samples with high initial
surface defect densities combined with low bulk defect
densities are required.

Further experimental studies of the evolution of the
hummock size distribution are required. These include the
dependence of the distribution on sputtering time, ion beam
energy, ion beam current, ion beam geometry, pre-sputtering
surface preparation, and treatment of the bulk of the sample to
either enhance or inhibit continual nucleation of hummocks.

Conclusions

A theoretical model of hummock formation on rotating
substrates has been developed that details (1) the evolution
of a single hummock in terms of oscillations along the sputter-
yield curve, (2) the coalescence of two hummocks, and (3) the
evolution of a hummock-filled surface in terms of a hummock
size distribution.

These theoretical concepts were tested for Ar+

sputtered Si(100). Hummock coalescence events are
consistent with the theoretical description where (i) the
interaction of hummocks is negligible until the bases of the
two hummocks come into contact, and (ii) the base shape of
the hummock is asymptotically conserved after a coalescence
event. The experimental hummock size distribution deviates
from the theoretical model which applies to cluster growth on
surfaces. The deviations are most pronounced for small
hummock sizes and indicates that the nucleation rate of
hummocks is not constant during ion beam etching.
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Discussion with Reviewers

E.A. Fitzgerald: It sounds like defects are needed to form the
hillocks, and they are purposefully introduced through the
polishing procedure. The defects are not desirable for the
heteroepitaxial growth process described, and therefore
another method to encourage hillock formation must be used.
Author: Since the defects created by the polishing extend
only about 25 nm below the surface, after sufficient ion beam
etching the defects would be removed. This appears to be the
case for the present experiments since the continual nucleation
of new hummocks is reduced as seen by the lack of small
hummocks in the size distribution.

As mentioned, the formation of hummocks without
the need for surface defects might be realized by a divergent
ion beam. This has not been tested.

E.A. Fitzgerald: The strain fields from defects must alter the
local sputter-yield curve (Fig. 1) drastically. Therefore, the
author needs to develop the theory to employ a spatially
variant sputter-yield curve to model this situation.
Author: A spatially variant sputter-yield curve would result in
a more complete description of hummock formation and
evolution. Particularly with regard to hummock nucleation.
However, such an extension of the theory would require, for
example, details of the effects of the strain field on the sputter
yield and the spatial distribution of the defects that give rise
to the strain field. Such a treatment, while needed, is beyond
the scope of this paper.

Figure 9. Hummock size distribution (solid circles) from the
micrograph in Figure 8 and others obtained from the same
surface. The plot is the logarithm of the number of hummocks,
N, versus the logarithm of the hummock area, A. The error
bars are not shown for small area data points as they are
smaller than the points. The solid line is a linear fit to the data
with a slope of -1.6 ± 0.2. The dashed line is the theoretical line
(slope = -2) for coalescence dominated cluster growth on
surfaces [6] in the limit of small cluster sizes.
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D.D. Perovic: The author mentions a possible technological
application of a surface containing hummocks of a uniform
size a spatial density for the potential application of creating
patterned surfaces for heteroepitaxial overgrowth. Can the
author elucidate the mechanism of heteroepitaxial growth on
a surface with hummocks.
Author: The mechanism described in the paper by Luryi and
Suhir (reference 9) is the geometrical confinement of strain.
Specifically, a patterned surface geometry results in the
confinement of the strain in the overlayer to the vicinity of the
substrate/overlayer interface. If the thickness over which the
strain field vanishes is less than the critical thickness for
dislocation formation, then the surface of the overlayer would
be strain, and defect-free.

D.D. Perovic: The author mentions that the hummocks possess
a contact angle of 25°. What is the origin of this specific
angle?
Author: Based on Equation 10, the predicted contact angle of
the hummock to the substrate for a beam geometry of φ=65° is
θ=65° since, for this hummock orientation, both terms in
Equation 10 are zero and no etching of this feature orientation
would occur. The observed value of θ=25° is likely due the
slow differential etching between features with θ=25° and
features with θ>25°. This can be seen from the yield curve
(Figure 1) for the case where φ=65° as follows: when θ=25°,
one endpoint is at 90° and the other is at 40°. For any larger
values of θ, there is no change in the etch rate near the 90°
endpoint (the yield is zero for θ>90°) and little change in the
etch rate at the other endpoint since the yield curve becomes
very flat.


