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BACKSCATTERING OF POSITRONS FROM SOLID TARGETS

Abstract

As recently shown by Vicariek and Urbassek, the
mean number ν of the large angle collisions suffered by a
charged particle before slowing down to rest in a solid is a
quantity that plays an important role in determining the
backscattering probability from solid targets. ν depends
both on the range and on the transport cross-section of
the particles penetrating the solid. In this paper, we describe
a computational method for calculating ν for low energy
positrons (particle kinetic energy, E0 < 5 keV). This method
is based on a numerical code for the calculation of the
differential elastic scattering cross section and on the
stopping power calculation of Ashley. Then, we compare
the backscattering coefficients, obtained by using the
calculated values of ν, to the results obtained with Monte
Carlo simulations and to the available experimental data.
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Introduction

Due to the increasing interest in material analysis
techniques, such as electron probe microanalysis, electron-
energy-loss-spectroscopy, Auger electron spectroscopy,
positron annihilation spectroscopy etc., the theoretical
study of the effects of the irradiation of solid targets by
charged particles has recently received great attention [1,
2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24,
25, 26, 27, 28, 30, 31, 33, 34, 35, 36].

In this paper, we study monoenergetic beams of
positrons striking solid targets: thus, it is worth to
summarize some general aspects of the problem of the
interaction of charged particles with solid targets.

When a particle beam impinges on a solid target,
some particles, after a number of elastic and inelastic
collisions with the atoms of the target, come back and
emerge from the surface, while other particles are transmitted
and emerge from the back of the sample. The remaining
particles are trapped into the target. The fractions of
trapped, backscattered and transmitted particles depend
on the thickness of the target. For bulk targets, the fraction
of backscattered particles reaches its saturation value,
generally called the backscattering coefficient. The
backscattering coefficient depends on the type of particles,
on their primary energy, on the target mean atomic number,
and on the incidence angle. In this paper, we consider low
energy positrons and we study the dependence of the
backscattering coefficient on the target mean atomic
number, positron incidence angle, and primary energy. We
compare our results to the available experimental data and
to the results of Monte Carlo simulations.

As recently shown by Vukanic et al. [36] and by
Vicanek and Urbassek [35], the backscattering coefficient
is strongly related to the mean number ν of large angle
collisions suffered by the particle before slowing down to
rest. ν depends on the type of particles, on their primary
energy, and on the target mean atomic number: it is, indeed,
a function of the elastic and inelastic processes suffered
by the particles travelling in the solid target. Thus, the
calculation of ν, requires a very accurate knowledge of the
elastic and inelastic scattering processes.
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In a collision event with an atomic electron or a
nucleus, the incident positron loses energy and changes
direction. Atomic electron excitations or ejections and
plasmon excitations affect the energy dissipation of the
incident positron and only slightly its direction in the solid,
while nuclear collisions are nearly elastic and deflect the
incident positron without relevant energy transfer, due to
the large mass difference between the incident particle and
the nucleus. Actually, a positron can lose a large fraction
of its energy in a single collision (or even be annihilated).
Nevertheless the so called continuous slowing down
approximation is generally accepted: in such an
approximation, the positron is assumed to continuously
dissipate its energy during its travel inside the solid. In
this approach, the relevant function to describe inelastic
events is the so called stopping power, namely the mean
energy loss per unit path length in the solid target. In the
present work, we used the Ashley [2] stopping power,
which is very accurate and allows us to study the behaviour
of low energy electrons and positrons (particle kinetic
energy, E < 10 keV).

The other important function needed to describe
the beam behaviour inside the solid is the differential elastic
scattering cross section. Unfortunately, for low energy
positrons, no analytical expressions exist to compute elastic
scattering processes and rather time consuming numerical
approaches are necessary. The numerical calculation of
differential, total and transport elastic scattering cross
sections were obtained, for the atomic numbers higher than
18, by using the very accurate atomic potential recently
given by Salvat et al. [32]. The light elements have been
described by the Cox and Bonham potential [7]. The results
are in very good agreement with the experimental ones [17]
due to the following possible reasons: (a) the use of the
Dirac equation instead of the Schrödinger one for the phase

shifts computation; (b) the very accurate atomic potential
used; and (c) the introduction of solid state effects in the
atomic potential.

Once the elastic and inelastic processes are known
with good accuracy, then ν can be calculated. The
backscattering coefficient η is proportional to ν, when ν < 1
[35, 36], being, in general a simple function of ν [35]. It is
also worth pointing out that, in the energy range examined,
we found that ν, is always smaller for positrons than for
electrons. It seems then reasonable to conclude that
electrons have a probability of backscattering larger than
positrons, in agreement with the experimental work of Baker
and Coleman [4] and Massoumi et al. [23, 24].

In order to simplify the computation of ν, in this
paper, we propose an analytical expression obtained
through the best fit of the computed numerical results. The
backscattering coefficient calculated by introducing the
proposed equation in the Vicanek and Urbassek theory
[35] is then compared to the Coleman et al. [6] experimental
data. Afterwards, based on the same elastic and inelastic
processes modelling, a Monte Carlo simulation is proposed
and results concerning backscattering processes are
compared to Monte Carlo data found in the recent literature.
The comparisons allow us to conclude that the agreement
between theory and experiment, for angles of incidence
relative to the surface normal lower than ~ 60°, is better by
using the Vicanek and Urbassek theory than the Monte
Carlo modelling. On the other hand, for angles of incidence
higher than 60°, Monte Carlo simulated data are in very
good agreement with the experiment.

Theoretical Framework

The mean number of large angle collisions
If σtr is the positron transport cross section and R

the positron range of penetration, defined by

∫=
0

0
/E dsdE

dER

where dE/ds is the energy lost per unit of length and E0 is
the primary energy, then the mean number of large angle
collisions is defined as

ν = NRσtr

where N is the number of atoms per unit of volume in the
solid target.

The computation of the range was performed by
Gaussian quadrature of the polynomial best fits of the
stopping power numerical results given by Ashley [2]. The

Symbol Table

E0 primary particle kinetic energy [eV]
E particle kinetic energy [eV]
α incidence angle relative to the surface normal [rad]
θ scattering angle [rad]
dσ/dΩ differential elastic scattering cross section [Å2/ster]
σtot total elastic scattering cross section [Å2]
σtr transport elastic scattering cross section [A2]
dE/ds stopping power [ev/Å]
R range [Å]
η backscattering coefficient
N number of atoms per unit of volume in the target

[Å-3]
ν mean number of the large angle collisions suffered

by the particle before slowing down to rest

(1)

(2)
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integration was performed from the primary energy E0 to
100 eV instead of 0 eV. For the elastic scattering cross
sections computation, we have followed the scheme of Lin
et al. [21] and Bunyan and Schonfelder [5]. The Dirac
equation was reduced to the following first order differential
equation:
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k
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where the function φ1
±(r) is related to the phase shifts, W is

the total energy, r the distance between the colliding particle
and the nucleus and V(r) is the atomic potential energy
that we will briefly discuss below. Energies are expressed
in units of mc2 and the lengths r are expressed in h/2πmc (m
= electron mass, c = speed of light, h = Planck’s constant).
± symbols denote the spin up and the spin down cases: in
particular k+ = -l-1 (and j = l + 1/2) while k- = l (and j = l-1/2).

For each quantum number l, the two phase shifts
δl

± can be obtained by using the following equation:
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where K2 = W2-1, jl and nl are respectively the regular and
the irregular spherical Bessel functions and φ1

± is the limit
of φ1

±(r) for r → ∞.
The atomic potential was that of Hartree-Fock for

atomic numbers lower than 19 and that of Dirac-Hartree-
Fock-Slater for atomic numbers higher than 18. We used
the best fit functions proposed by Cox and Bonham [7] for
the Hartree-Fock potential and by Salvat et al. [32] for the
Dirac-Hartree-Fock-Slater potential.

Solid state effects should be introduced when the
target atom is bound in a solid. Indeed, when the target
atom is bound in a solid, the outer orbitals of the atom are
modified. In order to consider such alterations solid state
effects have been introduced by using the muffin-tin model
in which the potential of each atom of the solid is altered
by the nearest neighbour. Let us introduce the radius of
the Wigner-Seitz sphere:

rWS = 0.7346(A / ρ)1/3 Å

where A is the atomic weight and ρ the mass density (g/
cm3).

Assuming that the nearest neighbour is located
at a distance of 2rWS, the resulting potential is given by:

Vsolid(r) = V(r) + V(2rWS - r) - 2V(rWS), r < rWS;
Vsolid(r) = 0, r ≥ rWS.

The term 2V(rWS), introduced in order to shift the
energy scale so that Vsolid(r ≥ rWS) = 0, has been also
subtracted from the kinetic energy of the incident particle.
This approach in describing elastic scattering in solids has
been adopted, for example, by Czyzewski et al. [81 and by
Salvat and Mayol [33].

The values of φ1
± have been computed by

numerical integration of the Dirac equation (3) by using a
fourth order Runge-Kutta method. Afterwards they have
been used for calculating the phase shifts by the equation
(4).

Once the values of the phase shifts are known,
the differential elastic scattering cross section can be
calculated as [29]
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In these equations P1 represent the Legendre polynomials
and
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The computation of the total and transport elastic scattering
cross sections defined, respectively, as
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has been performed by applying the Bode’s rule to the
numerically calculated differential cross sections.

Once the transport cross section and the range
are known, one can calculate the mean number of large
angle collisions.

Our numerical results, which are very accurate for
positrons of energy in the range 500 eV < E < 5000 eV [14,
15, 16, 17], may be accommodated in the analytical function:

ν = exp(ξ0 + ξ1lnE + ξ2ln
2E)

Here ξi = ξi(Z), i = 0, 1, 2 and Z is the atomic number of the
target. Table 1 gives the values of ξ i for Al, Cu, Ag and Au
(E in eV). The values ξ i for the whole range of Z will be
given in a later publication.

In order to give an idea of the accuracy of the best
fit we have presented, in Figure 1, a comparison between
eq. (13) and the numerically computed values of ν for
positrons in Cu.

The value of the backscattering coefficient can
thus be obtained by introducing this expression in the
Vicanek and Urbassek formula given by [35]:
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where µ0 is the cosine of the angle of incidence, a1 = 6/√π,
a2 = 27/π, a3 = 27(4/π -1) /√π and a4 = (3/2 -  √2)-2.

The Monte Carlo simulation
The backscattering coefficient can be computed,

of course, also by using a Monte Carlo simulation [1, 4, 6,
11, 13, 19, 23, 24, 31]. Here we describe the Monte Carlo
simulation we used for the backscattering coefficient
computation for positrons of primary energies in the range
500 eV < E0 < 5000 eV. The Monte Carlo scheme is essentially
the same as in Reference [11], but the inelastic and the
elastic processes were described by the equations
presented in the previous subsection.

The stopping power used in the present work was
that reported by Ashley [2].

The path length distribution is assumed to follow
a Poisson type law. As a consequence, the step length ∆s
is given by

∆s = λtotln(r1)

where

λtot = (1/Nσtot)

and r1 is a random number uniformly distributed in the range
0-1.

The energy loss ∆E along the trajectory ∆s is
approximated by

∆E = (dE/ds) ∆s

Concerning the interpolation methods used to
sample the scattering angle, we fitted the differential elastic
scattering cross section by using the following function:

(dσ/dΩ) = {a / (1-cosθ)b}

The values of a and b were obtained by looking for the
best fit of the numerically calculated values of the differential
elastic scattering cross section.

The polar scattering angle θ after an elastic
collision, is calculated by assuming that the probability

(13)

(14)

(15)

(16)

Figure 1.  Positrons in Cu: comparison between Equation
13 (solid) and the numerically computed values of ν
(squares). Energies are in eV.

Table 1. The values of ξi (Eq. 13) relative to Al, Cu, Ag and
Au (E in eV).

Z     ξ0     ξ1     ξ2

13 -4.4277 1.0119 -0.0526
29 -3.374 0.6825 -0.021
47 -6.3427 1.3846 -0.0628
79 -5.6038 1.146 -0.0413

(17)

(18)
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of elastic scattering into an angular range between θmin.
and θ is a random number r2 uniformly distributed in the
range 0-1. In order to avoid divergence, the integration
was performed from θ = θmin > 0. By assuming θmin = 5°, the
error in evaluating σtr for copper was 2 % while for gold it
was less than 1 %. Errors of ~ 10 % were obtained in the
evaluation of σtot.

Equations (18) and (19) allow us to obtain the
values of cosθ for any random number P(θ) = r2 by the
following closed formula:

cosθ = 1 - [(21-b - h)P(θ) + h]1/(1-b)

where

h = (1 - cosθmin)
1-b

The azimuthal angle ψ can take on any value in the range 0-
2π selected by a random number r3 uniformly distributed in
that range.

Both the θ and the ψ angles are calculated relative
to the last direction in which the particle was moving before
the impact. The direction θz

’ in which the particle is moving
after the last deflection, as related to the z direction, is
given by

cos θz
’ = cos θz cos θ + sin θz sin θ cos ψ

where θz is the angle relative to the z direction before the
impact.

The step motion ∆z along the z direction is then
calculated by

∆z = ∆s cos θZ
’

The new angle θZ
’ then becomes the incident angle θZ for

the next path length.
The adopted absorption energy, i.e., the energy

at which positrons are assumed to effectively stop in the
medium, was 100 eV.

Results and Discussion

In Table 2, the backscattering coefficient for normal
incidence of 3 keV positrons is reported, for various pure
elements, as calculated by introducing eq. (13) in the
Vicanek and Urbassek theory [35] and also by using the
present Monte Carlo simulation. For a comparison, the
experimental data of Coleman et al. [6] and the Monte Carlo
data of various authors [1, 6, 19] have been reported.

The comparisons allow us to conclude that the
agreement between theory and experiment is slightly better
by using the Vicanek and Urbassek expression than the
Monte Carlo modelling. Monte Carlo simulations seem to
give results systematically higher than the experiment
(withjust an exception). We believe that the reason of this
slight discrepancy between Monte Carlo data and
experimental data is in the approximations involved in the
interpolation of the differential elastic scattering cross
section necessary for the computation of the scattering
angle at every step of each trajectory. Another possibility
is that the surface contaminations of the targets have an
influence in lowering the experimental backscattering
coefficient: since, however, cleaning by ion sputtering in
situ were performed, it seems that the influence of

Table 2. Backscattering coefficients of 3 keV positrons for normal incidence: present analytical and Monte Carlo
calculations are compared to experimental data and to other authors Monte Carlo calculations. Aers’ data: Best fit of
Aers’ Monte Carlo data.

(19)

(20)

(21)

(22)

(23)
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contamination on the experimental data, if any, should be
negligible.

In order to study the influence of the angle of
incidence relative to the surface normal, α, we reported, in
Figure 2, the angular dependence of the backscattering
coefficient concerning 5 keV positrons impinging on gold
as computed by using the Vicanek and Urbassek theory
[35] and the present Monte Carlo simulation. The Monte
Carlo data of Coleman et al. [6] and the experimental data of
Coleman et al. [6] were also reported for a comparison.

This comparison confirms the good agreement
between the analytical model and the experimental data for
angles of incidence, relative to the surface normal, lower
than ~ 60°. For very high angle of incidence, on the other
hand, the Monte Carlo approaches give better results.

We can then conclude that, at least for low angles
of incidence and energies < 5 keV, the formula proposed by
Vicanek and Urbassek gives results in good agreement both
with experimental data and Monte Carlo theoretical results.
A comparison with experimental data obtained in other
laboratories is necessary to better understand the reasons
of the slight discrepancy between Vicanek and Urbassek’s
theory and Monte Carlo simulations.

Conclusion

We have proposed an analytical expression for the mean
number ν of the positrons large angle collisions in solid

targets obtained through a best fit of our computed
numerical results. The backscattering coefficient calculated
by introducing the proposed equation in the Vicanek and
Urbassek theory was then compared to the Coleman et al.
[6] experimental data. Afterwards, based on the same elastic
and inelastic modelling, a Monte Carlo simulation was
proposed and its results concerning backscattering were
also compared to experimental and to Monte Carlo data
that can be found in the recent literature. The comparisons
allow us to conclude that, for positron energies less than 5
keV, the agreement between theory and experiment is very
good using both the Vicanek and Urbassek theory and the
Monte Carlo simulation.
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Discussion with Reviewers

K. Ohya: Solid surfaces exhibit a pronounced macroscopic
roughness, mostly due to the production process, with a
microscopic (atomic scale) roughness superimposed. Our
Monte Carlo simulation, which calculates electron
backscattering from aluminium with ripple-structured
surface bombarded by 1-keV electrons [31], showed a
decrease in the backscattering coefficients for normal
incidence and a change in their incident angle dependence
due to surface roughness. Can you comment on the effect
of surface roughness on your results for positron
bombardments?
Authors: Surface roughness should influence the
backscattering yield, and its dependence on the incident-
angle, both for electrons and positrons. In the present work,
on the other hand, we did not consider surface roughness:
indeed, we are persuaded that surface roughness should
substantially influence backscattering if the positron
energy is very low. We mean that, at least for the energies
we were interested in this paper, it should he reasonable,
as a first approximation, to ignore the effects of the surface
roughness on the backscattering probability.

K. Ohya: The penetration depth of positrons will be deeper
than that of electrons due to smaller cross section for elastic
collision of positrons in solids. Therefore, the low-energy
component in the energy distribution of backscattered
positrons, which is substantially influenced by the surface
potential, is expected to be more pronounced than for



138

M. Dapor and A. Miotello

electron backscattering. How do you treat the surface
potential in your analytical and Monte Carlo calculations?
Authors: The answer is similar to the previous one. We did
not take into account the surface potential because, in our
opinion, it should become effective only if the positron
primary energy is lower than those we have considered.

F. Salvat: As the information feed into the Vicanek and
Urbassek analytical formula and into the Monte Carlo
calculation is the same, one would expect that both methods
yield similar backscattering coefficient, The results in Table
2 and Figure 2 show that this is not the case. Are the
differences attributable to any specific approximation
introduced in Vicanek and Urbassek’s theory?
Authors: Both the Vicanek and Urbassek’s theory and the
Monte Carlo simulations introduce approximations. Indeed
the Vicanek and Urbassek’s formula (14) is an empirical
expression obtained by interpolating the single collision
model (ν, < < 1) and the age theory (ν > > 1). Best fits of the
elastic scattering and of the stopping power were used, on
the other hand, in our Monte Carlo simulation. Thus, we
believe that the observed slight differences are attributable
to these approximations. Any way, both approaches are in
satisfactory agreement with other theoretical calculations
and also with the Coleman et al. [6] experimental data. The
advantage of the analytical approach is, of course, in the
simple closed formulas involved: we mean that it is accurate
enough for any practical purpose but less computer time
consuming than the simulations.

F. Salvat: Energy straggling effects are disregarded in the
analytical theory and in your Monte Carlo simulation. Can
you comment on how important these effects are for the
calculation of the backscattering coefficients?
Authors: The simple approach we adopted, known as the
continuous slowing down approximation (CSDA), ignores
the statistical fluctuations in both the number of inelastic
collisions along a track and the energy loss in each collision.
The CSDA is widely used in Monte Carlo simulations and
it should be accurate enough for the backscattering
coefficient evaluation, at least for practical purposes.
Anyway, the introduction of the energy straggling
parameter in the description of the inelastic processes
should improve the accuracy in the calculation of the
backscattering coefficient.

H. Niedrig: How much is the mean number of large angle
collisions and hence the backscattering coefficient
influenced by the use of the muffin-tin potential for a target
atom bound in a solid instead of using the potential for a
free atom?
Authors: The mean number of large angle collisions
depends on the transport cross section that is not influenced

very much by the solid state effects. Let us consider, for
example, the case of aluminium. For positrons of 1000 eV,
our calculations without solid state effects give a transport
cross section of 0.0617 Å2 [14]. If the muffin-tin potential is
introduced in the calculation, on the other hand, the
transport cross section for the same energy becomes 0.0612
Å2 [17]. Thus, for practical purposes, the calculation of the
transport cross section may be performed neglecting the
solid state effects and using the analytical formula given in
Reference [15].


