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Abstract

As recently shown by Vicariek and Urbassek, the
mean number v of the large angle collisions suffered by a
charged particle before slowing downtorest inasolidisa
quantity that plays an important role in determining the
backscattering probability from solid targets. v depends
both on the range and on the transport cross-section of
the particles penetrating the solid. In this paper, we describe
a computational method for calculating v for low energy
positrons (particlekinetic energy, E, < 5keV). Thismethod
is based on a numerical code for the calculation of the
differential elastic scattering cross section and on the
stopping power calculation of Ashley. Then, we compare
the backscattering coefficients, obtained by using the
calculated values of v, to the results obtained with Monte
Carlo simulations and to the available experimental data.
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Introduction

Due to the increasing interest in material analysis
techniques, such as electron probe microanalysis, electron-
energy-loss-spectroscopy, Auger electron spectroscopy,
positron annihilation spectroscopy etc., the theoretical
study of the effects of the irradiation of solid targets by
charged particles has recently received great attention [1,
2,3,4,6,8,9,10,11,12, 13,14, 15,16, 17,18, 19, 20, 22, 23, 24,
25, 26,27, 28,30, 31, 33, 34, 35, 36].

In this paper, we study monoenergetic beams of
positrons striking solid targets: thus, it is worth to
summarize some general aspects of the problem of the
interaction of charged particles with solid targets.

When a particle beam impinges on asolid target,
some particles, after a number of elastic and inelastic
collisions with the atoms of the target, come back and
emergefrom the surface, while other particlesaretransmitted
and emerge from the back of the sample. The remaining
particles are trapped into the target. The fractions of
trapped, backscattered and transmitted particles depend
onthethickness of thetarget. For bulk targets, thefraction
of backscattered particles reaches its saturation value,
generally called the backscattering coefficient. The
backscattering coefficient depends on thetype of particles,
ontheir primary energy, on the target mean atomic number,
and on theincidence angle. In this paper, we consider low
energy positrons and we study the dependence of the
backscattering coefficient on the target mean atomic
number, positron incidence angle, and primary energy. We
compare our resultsto the available experimental dataand
to the results of Monte Carlo simulations.

Asrecently shown by Vukanic et al. [36] and by
Vicanek and Urbassek [35], the backscattering coefficient
is strongly related to the mean number v of large angle
collisions suffered by the particle before slowing down to
rest. v depends on the type of particles, on their primary
energy, and on the target mean atomic number: itis, indeed,
a function of the elastic and inelastic processes suffered
by the particles travelling in the solid target. Thus, the
calculation of v, requiresavery accurate knowledge of the
elastic and inelastic scattering processes.



M. Dapor and A. Miotello

Symbol Table

primary particlekinetic energy [eV]

particlekinetic energy [eV]

incidence anglerelativeto the surface normal [rad]
scattering angle [rad]

0/dQ differential elastic scattering cross section [AZster]
total elastic scattering cross section [A7]
transport elastic scattering cross section [A?]
dE/ds stopping power [ev/A]

o ©Q mJm

Q

ot

e

R range [A]

n backscattering coefficient

N number of atoms per unit of volumein the target
[A~]

Y mean number of the large angle collisions suffered

by the particle before slowing down to rest

In acollision event with an atomic electron or a
nucleus, the incident positron loses energy and changes
direction. Atomic electron excitations or ejections and
plasmon excitations affect the energy dissipation of the
incident positron and only slightly itsdirectionin the solid,
while nuclear collisions are nearly elastic and deflect the
incident positron without relevant energy transfer, due to
thelarge mass difference between theincident particleand
the nucleus. Actually, a positron can lose alarge fraction
of itsenergy in asingle collision (or even be annihilated).
Nevertheless the so called continuous slowing down
approximation is generally accepted: in such an
approximation, the positron is assumed to continuously
dissipate its energy during its travel inside the solid. In
this approach, the relevant function to describe inelastic
events is the so called stopping power, namely the mean
energy loss per unit path length in the solid target. In the
present work, we used the Ashley [2] stopping power,
whichisvery accurate and allows usto study the behaviour
of low energy electrons and positrons (particle kinetic
energy, E<10keV).

The other important function needed to describe
the beam behaviour insidethe solid isthe differential elastic
scattering cross section. Unfortunately, for low energy
positrons, no analytical expressionsexist to computeelastic
scattering processes and rather time consuming numerical
approaches are necessary. The numerical calculation of
differential, total and transport elastic scattering cross
sectionswere obtained, for the atomic numbers higher than
18, by using the very accurate atomic potential recently
given by Salvat et al. [32]. The light elements have been
described by the Cox and Bonham potential [7]. Theresults
areinvery good agreement with the experimental ones[17]
due to the following possible reasons: (a) the use of the
Dirac equation instead of the Schrédinger onefor the phase
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shifts computation; (b) the very accurate atomic potential
used; and (c) the introduction of solid state effectsin the
atomic potential.

Oncetheéastic and inelastic processes are known
with good accuracy, then v can be calculated. The
backscattering coefficient n isproportional tov, whenv <1
[35, 36], being, in general asimple function of v [35]. Itis
also worth pointing out that, in the energy range examined,
we found that v, is always smaller for positrons than for
electrons. It seems then reasonable to conclude that
electrons have a probability of backscattering larger than
positrons, in agreement with the experimental work of Baker
and Coleman [4] and Massoumi et al. [23, 24].

In order to simplify the computation of v, in this
paper, we propose an analytical expression obtained
through the best fit of the computed numerical results. The
backscattering coefficient calculated by introducing the
proposed equation in the Vicanek and Urbassek theory
[35] isthen compared to the Coleman et al. [6] experimental
data. Afterwards, based on the same elastic and inelastic
processes modelling, aMonte Carlo simulationis proposed
and results concerning backscattering processes are
compared to Monte Carlo datafound in therecent literature.
The comparisons allow usto conclude that the agreement
between theory and experiment, for angles of incidence
relativeto the surface normal lower than ~ 60°, isbetter by
using the Vicanek and Urbassek theory than the Monte
Carlo modelling. Onthe other hand, for angles of incidence
higher than 60°, Monte Carlo simulated data are in very
good agreement with the experiment.

Theor etical Framework

Themean number of largeanglecollisions

If o, isthe positron transport cross section and R
the positron range of penetration, defined by

0

o |

Ey

dE
dE/ds

@

where dE/ds is the energy lost per unit of length and E is
the primary energy, then the mean number of large angle
collisionsisdefined as
v=NRg, %)
where N is the number of atoms per unit of volumein the
solid target.
The computation of the range was performed by

Gaussian quadrature of the polynomial best fits of the
stopping power numerical resultsgiven by Ashley [2]. The
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integration was performed from the primary energy E; to
100 eV instead of 0 eV. For the elastic scattering cross
sections computation, we havefollowed the schemeof Lin
et al. [21] and Bunyan and Schonfelder [5]. The Dirac
equation wasreduced to thefollowing first order differential
equation:
+ + (3)
S =X nfag 1) -cos2gt (0] +W -V (1)
r r

wherethefunction ¢*(r) isrelated to the phase shifts, Wis
thetotal energy, r the distance between the colliding particle
and the nucleus and V(r) is the atomic potential energy
that we will briefly discuss below. Energies are expressed
inunitsof mc? and thelengthsr are expressed in h/2rmc (m
= electron mass, ¢ = speed of light, h = Planck’s constant).
+ symbols denote the spin up and the spin down cases. in
particular k* =-I-1 (andj =1+ 1/2) whilek =1 (andj =1-1/2).

For each quantum number |, the two phase shifts
" can be obtained by using the following equation:

tang* =

Kiia(Kr) = ji (KDIW +Dtan g +(@+1 +K*)/1]
Ky, (K1) =1y (KOIW +2) tangg® + L+ +k*) /1]

@

where K2 =W?2-1, j, and n, are respectively the regular and
theirregular spherical Bessel functionsand ¢* isthe limit
of g*(r)forr - _.

The atomic potential wasthat of Hartree-Fock for
atomic numbers lower than 19 and that of Dirac-Hartree-
Fock-Slater for atomic numbers higher than 18. We used
the best fit functions proposed by Cox and Bonham [7] for
the Hartree-Fock potential and by Salvat et al. [32] for the
Dirac-Hartree-Fock-Slater potential.

Solid state effects should beintroduced when the
target atom is bound in a solid. Indeed, when the target
atomisbound in asolid, the outer orbitals of the atom are
modified. In order to consider such alterations solid state
effectshave been introduced by using the muffin-tin model
in which the potential of each atom of the solid is altered
by the nearest neighbour. Let us introduce the radius of
the Wigner-Seitz sphere:

rWS=0.7346(A / p)¥* A ©
where A is the atomic weight and p the mass density (g/
ce).

Assuming that the nearest neighbour is located

at adistance of 2r, ., the resulting potential is given by:
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V(N =V(r) +V(2r,-1)-2V(r,d,
Vsolid(r) = O’

r< s
rr,. ©®

The term 2V(r,,.), introduced in order to shift the
energy scale so that V_, (r = r,.) = 0, has been also
subtracted from the kinetic energy of theincident particle.
Thisapproach in describing elastic scattering in solids has
been adopted, for example, by Czyzewski et al. [81 and by
Salvat and Mayol [33].

The values of ¢* have been computed by
numerical integration of the Dirac equation (3) by using a
fourth order Runge-Kutta method. Afterwards they have
been used for cal culating the phase shifts by the equation
®@.

Once the values of the phase shifts are known,
the differential elastic scattering cross section can be
calculated as[29]

do 2 2
— = f +
St gl

where the scattering amplitudes f and g are given by

f(6)=

%Z{ (I +Dlexp(2ig7) —1 +1[exp(2ig") ~1}R (cosb)
1=0
©

00

9(6) = ﬁé[-@(lﬂ(2i J) +exp(2i9)]R*(cos6)

©)

In these equations P, represent the Legendre polynomials
and

P|1(X) = (- X2)1/2 dR () (10
X

d
The computation of thetotal and transport el astic scattering

cross sections defined, respectively, as

m
do _
Oy = 271| —sin&dé (11)
e

mw
o, =2nf Q- cosH)g—gsinajH (12)
0
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has been performed by applying the Bode's rule to the
numerically calculated differential cross sections.

Once the transport cross section and the range
are known, one can calculate the mean number of large
anglecollisions.

Our numerical results, which arevery accurate for
positrons of energy intherange500 eV < E<5000eV [14,
15, 16, 17], may be accommodated in theanalytical function:

v =exp(,+ &, INE+EI’E) (13
Here& =¢,(2),i=0, 1, 2and Z isthe atomic number of the
target. Table 1 givesthe values of €, for Al, Cu, AgandAu
(EineV). The values &, for the whole range of Z will be
giveninalater publication.

In order to givean ideaof the accuracy of the best
fit we have presented, in Figure 1, a comparison between
eg. (13) and the numerically computed values of v for
positronsin Cu.

The value of the backscattering coefficient can
thus be obtained by introducing this expression in the
Vicanek and Urbassek formulagiven by [35]:

2 3 3
n=@1+ al%"'azﬁ*'as%*'%%)_llz (14)

where | isthe cosine of the angle of incidence, a = 61V,
a,=27/m, a,= 27(4/n-1) Nmand a, = (3/2- V2)2.

TheMonteCarlosmulation

The backscattering coefficient can be computed,
of course, also by using aMonte Carlo simulation [1, 4, 6,
11, 13, 19, 23, 24, 31]. Here we describe the Monte Carlo
simulation we used for the backscattering coefficient
computation for positrons of primary energiesintherange
500eV < E;<5000€eV. TheMonte Carlo schemeisessentialy
the same as in Reference [11], but the inelastic and the
elastic processes were described by the equations
presented in the previous subsection.

The stopping power used in the present work was
that reported by Ashley [2].

The path length distribution isassumed to follow
a Poisson type law. As a consequence, the step length As
isgiven by

As=A_In(r) (15)

where

)\tot = (1/N o;ot) (16)
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Figure 1. Positronsin Cu: comparison between Equation
13 (solid) and the numerically computed values of v
(squares). EnergiesareineV.

Table 1. Thevaluesof & (Eq. 13) relativetoAl, Cu, Agand
Au(EineV).

Z o) &l &2
13 44277 10119 00526
2 3374 06825 0021
a7 63427 1.3846 00628
7 56038 1.146 00413

andr_ isarandom number uniformly distributed intherange
o1
The energy loss AE along the trajectory As is
approximated by
AE = (dE/ds) As 17
Concerning the interpolation methods used to
samplethe scattering angle, wefitted the differential elastic
scattering cross section by using the following function:
(do/dQ) ={a/ (1-cosB)?} (18)
The values of a and b were obtained by looking for the
best fit of the numerically cal culated val ues of the differential
elastic scattering cross section.

The polar scattering angle 6 after an elastic
collision, is calculated by assuming that the probability
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Table 2. Backscattering coefficients of 3 keV positronsfor normal incidence: present analytical and Monte Carlo
calculations are compared to experimental data and to other authors Monte Carlo calculations. Aers' data: Best fit of

Aers’ Monte Carlo data.

Z Colemanectal |Aers Ghosh and Aers | Present Present Coleman et al

Monte Carlo  |Monte Carlo data| Monte Carlo | Monte egs. (13) Experimental data

data (1992) (1994) data (1995) Carlo data |and (14) (1992)
13 0.115 0.115 0.123 0.114 0.107 0.086
29 0.194 0.188 0.138 0.191 0.159 0.177
47 0.182 0.175 0.227 0.192 0.156 0.168
79 0.242 0.232 0.239 0.245 0.186 0.186

0 The step motion Az along the z direction is then
Zﬂzdggnﬂdﬂ calculated by
emin dQ (19)
P(&) = > Az =Ascos 6, es)
tot

of elastic scattering into an angular range between 6 . .
and @is arandom number r, uniformly distributed in the
range 0-1. In order to avoid divergence, the integration
wasperformedfrom 6= 6> 0. By assuming § . =5°, the
error in evaluating o, for copper was 2 % whilefor gold it
was less than 1 %. Errors of ~ 10 % were obtained in the
evaluationof g, .

Equations (18) and (19) alow us to obtain the
values of cos6 for any random number P(6) = r, by the
following closed formula:

cosf=1-[(2+2- h)P(@) + h]¥eD (20

where

h=(1- cosg,, )+ @D
Theazimuthal angle  cantake on any valueintherange O-
2msel ected by arandom number r, uniformly distributedin
that range.

Both the 8and the y angles are calculated rel ative
tothelast direction in which the particle was moving before
theimpact. Thedirection 8, inwhichthe particleismoving
after the last deflection, as related to the z direction, is
given by

cos 6, =cos 6, cos 6+ sin 6,sin 6cos Y (22

where 6, is the angle relative to the z direction before the
impact.
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The new angle 6, then becomes the incident angle 6, for
the next path length.

The adopted absorption energy, i.e., the energy
at which positrons are assumed to effectively stop in the
medium, was100 V.

Resultsand Discussion

InTable 2, the backscattering coefficient for normal
incidence of 3 keV positrons is reported, for various pure
elements, as calculated by introducing eq. (13) in the
Vicanek and Urbassek theory [35] and aso by using the
present Monte Carlo simulation. For a comparison, the
experimental dataof Coleman et al. [6] and the Monte Carlo
data of various authors[1, 6, 19] have been reported.

The comparisons allow us to conclude that the
agreement between theory and experiment isslightly better
by using the Vicanek and Urbassek expression than the
Monte Carlo modelling. Monte Carlo simulations seem to
give results systematically higher than the experiment
(withjust an exception). We believe that the reason of this
slight discrepancy between Monte Carlo data and
experimental dataisinthe approximationsinvolvedinthe
interpolation of the differential elastic scattering cross
section necessary for the computation of the scattering
angle at every step of each trajectory. Another possibility
is that the surface contaminations of the targets have an
influence in lowering the experimental backscattering
coefficient: since, however, cleaning by ion sputtering in
situ were performed, it seems that the influence of
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Figure 2. Angular dependence of the backscattering
coefficient for 5keV positronsimpinging on Au as computed
by using the Equation 13 and the Vicartek and Urbassek
theory (solid line) compared to the present Monte Carlo
simulation (diamonds), the Monte Carlo data of Coleman
et al. [6] (empty squares) and the experimental data of
Colemanet al. [6] (filled squares).

contamination on the experimental data, if any, should be
negligible.

In order to study the influence of the angle of
incidencerelativeto the surface normal, o, wereported, in
Figure 2, the angular dependence of the backscattering
coefficient concerning 5 keV positronsimpinging on gold
as computed by using the Vicanek and Urbassek theory
[35] and the present Monte Carlo simulation. The Monte
Carlodataof Coleman et a. [6] and the experimental dataof
Coleman et a. [6] were a so reported for acomparison.

This comparison confirms the good agreement
between the analytical model and the experimental datafor
angles of incidence, relative to the surface normal, lower
than ~ 60°. For very high angle of incidence, on the other
hand, the Monte Carlo approaches give better results.

We can then concludethat, at least for low angles
of incidence and energies < 5 keV, the formula proposed by
Vicanek and Urbassek givesresultsin good agreement both
with experimental dataand Monte Carlo theoretical results.
A comparison with experimental data obtained in other
laboratories is necessary to better understand the reasons
of the slight discrepancy between Vicanek and Urbassek’s
theory and Monte Carlo simulations.

Conclusion

We have proposed an analytical expression for the mean
number v of the positrons large angle collisions in solid
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targets obtained through a best fit of our computed
numerical results. The backscattering coefficient cal cul ated
by introducing the proposed equation in the Vicanek and
Urbassek theory was then compared to the Coleman et al.
[6] experimental data. Afterwards, based on the sameelastic
and inelastic modelling, a Monte Carlo simulation was
proposed and its results concerning backscattering were
also compared to experimental and to Monte Carlo data
that can befound in therecent literature. The comparisons
allow usto concludethat, for positron energieslessthan 5
keV, the agreement between theory and experiment isvery
good using both the Vicanek and Urbassek theory and the
Monte Carlo simulation.
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Discussion with Reviewers

K. Ohya: Solid surfacesexhibit apronounced macroscopic
roughness, mostly due to the production process, with a
microscopic (atomic scal€) roughness superimposed. Our
Monte Carlo simulation, which calculates electron
backscattering from aluminium with ripple-structured
surface bombarded by 1-keV electrons [31], showed a
decrease in the backscattering coefficients for normal
incidence and achangein their incident angle dependence
due to surface roughness. Can you comment on the effect
of surface roughness on your results for positron
bombardments?

Authors: Surface roughness should influence the
backscattering yield, and its dependence on the incident-
angle, both for electronsand positrons. In the present work,
on the other hand, we did not consider surface roughness:
indeed, we are persuaded that surface roughness should
substantially influence backscattering if the positron
energy isvery low. We mean that, at |east for the energies
we were interested in this paper, it should he reasonable,
asafirst approximation, to ignorethe effects of the surface
roughness on the backscattering probability.

K. Ohya: The penetration depth of positronswill be deeper
than that of electrons dueto smaller crosssection for elastic
collision of positronsin solids. Therefore, the low-energy
component in the energy distribution of backscattered
positrons, which is substantially influenced by the surface
potential, is expected to be more pronounced than for
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electron backscattering. How do you treat the surface
potential inyour analytical and Monte Carlo calculations?
Authors: Theanswer issimilar to the previousone. Wedid
not take into account the surface potential because, in our
opinion, it should become effective only if the positron
primary energy islower than those we have considered.

F. Salvat: As the information feed into the Vicanek and
Urbassek analytical formula and into the Monte Carlo
calculationisthe same, onewould expect that both methods
yield similar backscattering coefficient, Theresultsin Table
2 and Figure 2 show that this is not the case. Are the
differences attributable to any specific approximation
introduced in Vicanek and Urbassek’s theory?

Authors: Both the Vicanek and Urbassek’stheory and the
Monte Carlo simulationsintroduce approximations. Indeed
the Vicanek and Urbassek’s formula (14) is an empirical
expression obtained by interpolating the single collision
model (v, << 1) andtheagetheory (v >>1). Best fitsof the
elastic scattering and of the stopping power were used, on
the other hand, in our Monte Carlo simulation. Thus, we
believethat the observed slight differences are attributable
to these approximations. Any way, both approachesarein
satisfactory agreement with other theoretical calculations
and alsowith the Coleman et al. [6] experimental data. The
advantage of the analytical approach is, of course, in the
simple closed formulasinvolved: wemeanthat it isaccurate
enough for any practical purpose but less computer time
consuming than the simulations.

F. Salvat: Energy straggling effects are disregarded in the
analytical theory and in your Monte Carlo simulation. Can
you comment on how important these effects are for the
calculation of the backscattering coefficients?

Authors: The simple approach we adopted, known as the
continuous slowing down approximation (CSDA), ignores
the statistical fluctuations in both the number of inelastic
collisonsalong atrack and the energy lossin each collision.
The CSDA iswidely used in Monte Carlo simulations and
it should be accurate enough for the backscattering
coefficient evaluation, at least for practical purposes.
Anyway, the introduction of the energy straggling
parameter in the description of the inelastic processes
should improve the accuracy in the calculation of the
backscattering coefficient.

H. Niedrig: How much isthe mean number of large angle
collisions and hence the backscattering coefficient
influenced by the use of the muffin-tin potential for atarget
atom bound in a solid instead of using the potential for a
freeatom?

Authors: The mean number of large angle collisions
dependson thetransport cross section that is not influenced
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very much by the solid state effects. Let us consider, for
example, the case of aluminium. For positronsof 1000 eV,
our calculationswithout solid state effects give atransport
crosssection of 0.0617 A2[14]. If themuffin-tin potential is
introduced in the calculation, on the other hand, the
transport cross section for the same energy becomes 0.0612
A2[17]. Thus, for practical purposes, the cal culation of the
transport cross section may be performed neglecting the
solid state effectsand using the analytical formulagivenin
Reference[15].



