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Abstract

In the framework of the dielectric theory, we present
the electron energy loss probability distribution calculated
for afast probe near cylindrical surfaces using a non-local
dielectric function. The small size of the drilled holes in
experiments and electron trajectories close to the interface
make necessary the introduction of dispersion effects when
describing the energy loss spectra. We compare the results
to those given by thelocal Drude model. The k-dependence
of the dielectric function allows us to discuss energy losses
in inhomogeneous media when using an effective medium
dielectricfunction.
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Introduction

Inthelast decade, many microstructural systemshave
been studied with scanning transmission el ectron microscopy
(STEM), which can provide high resolution transmission
images and energy loss spectra (EELS). A well focused 100
keV dectron beam- 0.5 nmwide- isused to obtain lossspectra
withresolutionassmall as0.1eV (Ouyanget al., 1992). Some
quantal theories have been developed to study this kind of
spectrain simple cases (Kohl, 1983; Echenique et al., 1987,
Ritchieand Howie, 1988), but aclassicd treatment has proven
to beauseful tool in studying the energy loss spectra(Marks,
1982; Howieand Milne, 1985). Ritchie(1981) and Ritchieand
Howie (1988) provided thelink between both theories. These
authors showed that quantal effectsin STEM can be studied
by convoluting the loss spectra of classica electrons over
thelateral profile of the beam.

Many different geometries have been studied in the
framework of the dielectric theory, where the electron is
assumedto beaclassical point particle, and excitationsinthe
medium are described through alocal dielectric function g(w).
Theseincludeplanar interfaces(Ritchie, 1957; Echeniqueand
Pendry, 1975), spheres(Ferrell and Echenique, 1985), spheroids
(lman et al., 1988), edges (GarciaMolina et al., 1985),
hemispheres(Aizpuruaet al., 1996), coupled spheres (Schmeits
and Dambly, 1991) and one sphere coupled to aplanar interface
(Rivacobaet al., 1992; Zabalaand Rivacoba, 1993). Because
of thehigh velocity and small scattering anglesof electronsin
STEM most of these studies, which neglect the transferred
momentum, appear to be a good approximation and have
successfully described many features of the observed
experimentd data(Batson, 1982).

Chu et al. (1984) performed thefirst theoretical study
of theenergy lossof charged particlesin cylindrical channels
and obtained non-retarded expressions. Ashley and Emerson
(1974) gave the dispersion relation for surface plasmons on
cylindrica surfaces, and DeZutter and DeVleeschauwer (1986)
studied the retarded expression in the axial trgjectory of the
electron. Excitation of surfaceplasmonsin cylindershasbeen
studied by other authors (Pfeiffer et al., 1974; Martinos and
Economou, 1981; Warmack et al., 1984; Zabala et al., 1989;
Rivacoba et al., 1995) and aso the coupling between two
cylinders (Schmeits, 1989). The interest on this particular
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geometry arises from the ability of the electron beam to drill
holes in some inorganic materials (Mochel et al., 1983;
Scheinfeinet al., 1985; Macaulay et al., 1989; Walsh, 1989).

Astheinterest in interface effects and del ocalization
of EELS increases, larger scattering angles of the energetic
incident beam have been also used in electron microscopy.
Thisrequireshigher values of thetransferred momentum and
forcesoneto consider adispersivedidectric function g(k; ~,w)
to describethe medium. Non-local effectshave been largely
studiedintheplanar case. Johnson and Rimbey (1976) showed
different features of spatial dispersion of aninterfaceinterms
of the additional boundary conditions (ABCs). Echenique et
al. (1981) defined asurfacedidectricfunction of asemi-infinite,
plane-bounded metal in order to compute theimage potential
at points outside the surface. Fuchs and Barrera (1981)
described the response of adipole near the surface of ametal
accounting for non-locality of itsresponse, and Batson (1983)
studied non-local effects in STEM, introducing dispersion
effectsby substituting thebulk k-dependent dielectric function
inthe classically derived expressions. Echenique (1985) and
Zabalaand Echenique (1990) computed dispersion effectsin
the excitation of interfaces by fast electron beams and
concluded that they are important when the beam travels
closer than 0.5 nm to the interface. Garcia de Abgjo and
Echenique (1992a,b) analysed thewake potentia inathinfoil
andinthevicinity of asurface of adispersive medium.

In these latter works, the medium (usually ameta) is
described with the specular scattering or semiclassicd infinite-
barrier (SCIB) model (Ritchieand Marusak, 1966; Fuchsand
Kliewer, 1969). Although this model does not describe the
diffusenatureof themetal surface, itincludesthemainfeatures
of non-locality. This model was applied by Dasgupta and
Fuchs (1981) to study the response of anon-local sphereand
was completed (Fuchs and Claro, 1987) with a multipolar
expression. Rojaset al. (1988) introduced nonlocality to study
the response of asmall coated sphere.

Some recent experiments by Walsh (1989) make an
interesting study of energy losses in small cylindrical holes
created by the beamitself after spending sometimein afixed
position onthesample. Theseexperimentswereperformedin
AIF,, which can suffer chemica change in its composition
with the formation of colloidal aluminium particles when
irradiating the samplewith thebeam. Howieand Walsh (1991)
showed that these results could be explained by
phenomenological extension of the Maxwell Garnett (1904)
effective medium theory based on an average over electron
trajectories. Expressionsfor the energy lossin holeswith a
metallic coating have been reported by Zabala et al. (1989),
but the colloidal nature of the metallic inclusions seemsto be
better described through an effective medium theory as
proposed by Howie and Walsh (1991). Barrera and Fuchs
(1995) put this theory on more rigorous footing with a
caculation of theinverseof thelongitudina dielectricfunction
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el(k,w) or a randomly arranged assembly of interacting
spheres. This function is written in terms of a spectral
representation and the k-dependence is crucia to describe
accurately the bulk-spectrain the system.

Asthe study of energy loss spectrain such amaterial
should include a description of dispersion effects in media
with cylindrical cavities, we present herethetheoretical energy
loss probability per unit length of afast electron in a cavity
surrounded by astandard homogeneous medium characterized
by anon-locd g(k,w). Wewill follow ascheme ana ogousto
the one used by Dasgupta and Fuchs (1981) in the spherical
case, assuming the SCIB to be valid to describe the medium
response.

Once the expressions for cylindrical cavities are
obtained, we discuss the possibility of their application to
more complicated inhomogeneous media, such as those
characterized by an effective k-dependent response function,
or to microstructures such as tubular fullerenes.

Non-local Expressionsfor thePotential in a Cavity

We first define the Fourier transformations in space
and time that we use

f(rt)=
+00 — [+ - 1
14j dSkj da)f(Ich))ékfe'i“’t @
21" -« —

and itsinverse:

f (k)=
+ o0 '+ 00 . (2)
[ d3rf dt f (F,t)elk" g @t

—00 —00

We use atomic units throughout this paper.

Let usassumethat an el ectronismovinginacylindrical
hole of radius a, pardlel to the Z-axis, with velocity v a a
distance p, from the centre of the holesasshownin Figure 1.
The material is characterized by adielectric function (k,w),
and retardation effects are neglected asthe cavity is assumed
to be smaller than the wavelength of light. The Laplace
equation can be separated in cylindrical coordinates in a
standard way, and Poisson’s equation can be solved through
an expansion of Green functionsin cylindrical coordinates
(Jackson, 1962). The potential V(r;~) inside the cylinder
(as-sumed to be the vacuum) is then given by:
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Figure 1. Electron movinginahole parald to the cylinder
axis with velocity v at a distance p, from the centre of the
cylinder of radiusa. Thesurrounding mediumischaracterized
by anon-local dielectric function g(k,w).
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wherethefirst termisthedirect Coulomb term, and the second
oneistheinduced term which hasto be obtained by imposing
the standard boundary conditions, i.e., the continuity of the
potential and the normal component of the displacement at p
=a | _(x)andK_(x)arethemodified Bessdl functionsof order
m (Gradshteyn and Ryzkik, 1963) and &(x) isthe Heaviside
function. Therefore, the problem reduces to finding the A
coefficientsin theinduced term of the potential.
Outside the cavity (p > &) we can write

(4a)
(4b)

Following Ritchieand Marusak (1966), wewill assume
an infinite fictitious medium in order to solve for the fields
outside the cylinder. This medium satisfies the following
conditions: (i) Maxwell’sequationsare continued tothe p>a
region of the infinite medium; (ii) the fields outside the real
cylinder are the same asthe ones of theinfinite medium with
the sameresponsefunction; (iii) thenormal component of the
displacement D is discontinuous in p = ain this infinite
system, but the tangential components are continuous.

Therefore, weintroduce auniform dielectric medium
with afictitious cylinder of charge at p = a, which actsasa
source for D;~. Because of this, (which normally holds

throughout an infinite, continuousmedium) VID =0 doesnot
hold on the surface of the cylinder.

We introduce now the potential function V (r;~)
defined by

D(F)==VVp(F) ®

Wenotethat insdethecylinder of thefictitiousmedium
V(r;~)andV (r;~) must beof theform:

1 &
V(F)ZZJ' dq ezqz Z eml(/) Vm (,0) (6)

© m=-—w

- 1 +o0 - +o0 . -
®=1 g S T

o m=—o
Equations (4) and (5) reduce to
vV Vp=0 G
Multiplying by exp(-ik; ~=r;~) and integrating we get:
KV (]; )+

+0o0 1 +o0 2z i
a2, Cull dzl dpe™ ©
m=-w - 0
+00 ) .
[ dge' "] ,2=0
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with
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Figure?2. Energy lossprobability per unit length P(w) for an el ectron passing through a10A radiusholein Al at different distances
from the centre of the hole. Dashed lines show the spectraof losseswhen using alocal dielectric function, and the solid lines show
the spectraof losseswhen using anon-local dielectric function given by the hydrodynamical model. w =151eV andy= 0.1w,

dﬁDm ]

av,
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We expand exp(-ik;~r;~) in cylindrical coordinates
by using therelation (Jackson, 1962):
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+o0

e-i/;f‘ _ e-iq: Z (-l) Pelp(g-(ﬂ) Jp (Q,D)
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1)

wherek?=Q?+ ¢?and 6and ¢ aretheazimuthal anglesof k; -
and r;~ respectively and Jp(Qp) is the Bessdl function of
order p.
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After integrating eg. (9) over zand ¢ we get:

+00

VD(];,C()): Z 277aCm( l)m im6 JQmiQ“) (12)
m=—n
whence
V(k,o)=
S 0 Ju(Qa) (13)
iy im0 Im\Y4)
Z 27aC (1) e (O+)e(ko)

m=-un

We come back to the space coordinate using eg. (1)
and obtain:

Vp(r.o)=

14
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1=—o0
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Now we will take these potentials as the ones of our
real system outsidethe cylinder (o> a) and matchthemat p=
awiththosegivenby eg. (3), whichwasvdidinsdethecylinder
(p<a.D (r }) is obtained in both cases through D(t) = -
\ynY o(0) and has to be also continuous at p = a. We solve
equations of continuity for V(a") = V(a) and Dp(a*) Dp(a)
and get for A

Am = 4”5((0 - qv)lm (q pO)Km (qa)
Em(flvﬁ’)an(‘]a)lm(qa) - 1
&, (¢0)15 (qa)K, (ga)-1,,(qa)

(16)

with
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that can beintroduced in the expression of the potential inside
the cylinder to account for dispersion effects.

Electron Energy L ossesin the Cavity

We study now the Electron Energy Losses (EELS) of
andectroninthecavity surrounded by amaterial characterized
by a g(k,w) response function.

The probability of losing energy h;/wis given by the
inducedfield evaluated at theparticlepoint (o=p,, =@, 2=
vi):

04, (7, 0
Oz

(18)

[ fda)wp(w)

where @(r.t) isgiven by the Fourier transformation of eq. (3).
After some algebra, we get for the energy loss probability
distribution:

2 m=+ow CU,D . wa
P(o)=— Z Im ( O)Km(_)
TV = v (19
Em(O)K p(SE) L n(41) -1
M o, K )T
with
1 - 2(Qa
— — 2.]/71 Z(Q { QdQ (Z))
[0} o
gm( ) 0 (Q + (v )g(k,a))

and Im[x] theimaginary part of X.
If wetake g(k,c) = &), werecover thewellknownlocal
limit,

2 "EE, wp oa oa
P(a)): ) Z Im( m _)Km(_)
v _ 14 1%
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In order to study the effects of dispersion, we consider the
simple non-local response function of the hydrodynamic
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Figure3. Energy loss probability per unit length P(c) for an el ectron passing through or near a50A radiusholein Al whenusing
anon-loca didectric functionto characterizethemedium. Different trgjectoriesinsdeand outsidethe holeare shown. Noticethat
theresult at the interface itself becomes the samein anon-loca treatment. w =151eV andy=0.1 0. The spectrahave been

displaced vertically.
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where 3=3/5v2, v, isthe Fermi velocity, w, isthe plasmon
frequency, and y is the damping. We consider a hole in
auminium (oup =15.1eVandy= O.lwp).

In Figure 2, theloss spectrum for acylindrical cavity
of radiusa= 10 A surrounded by a medium characterized by
the non-local response function (solid line) is compared to
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that using alocal response (dashed line). There appear two
pesksinthelocal caseat 10.6 eV and 15 €V associated to the
m =1 and m = 0 modes, respectively, whilein the non-local
casethelow energy peak (m=1) shifts0.7 eV up and appears
at11.2eV. Them=0mode(15€eV), whichisasurfacemodefor
very small radius and not a bulk one, is not affected by
dispersion effects, asit isassociated to the monopolar charge
digtribution. Thisisthedominant excitationfor axid trgjectories
and isnot affected by dispersion, asit isfar from thecylinder
walls. At points closer to the interface, dispersion effects
change the weight and position of the low energy surface
losses associated to the m = 1 mode and make it almost
disappear. Thischangeismore noticeable when the electron
is travelling along the interface itself. Inalocal treatment,
different results are obtained when the beam approachesthe
interfacefromtheinner or outer side of the cylinder, but when
thisproblemissolvedinanon-local trestment, the sameresult
isfound. Astheradius of the cavity becomeslarger, thelow
energy surface plasmon excitations are more important in
weight compared tothem = O excitation. Thiscanbeobserved
inFigure 3, wheretheloss spectrumfor acylindrical cavity of
radiusa=50A isshown. Although dispersion effectsdepress
theintensity and shift the position of thelow energy plasmon
(11.2 €V), thismode becomes comparablein magnitudeto the
high energy one (13.9 €V) when the electron travels close
enoughtotheinterface. Thislatter excitation hasalso shifted
down in value because of the bigger radius and tends to the
low energy plasmon valueastheradiusbecomeslarger. It will
join the low energy plasmon as a planar surface plasmon in
thelimit of very largeradius.

There is no appreciable difference in the theoretical
spectra caculated using the Mermin, k-dependent, response
function because momentum transfers are small, so it is
sufficient to use the hydrodynamic response function here.

PossibleApplications

As pointed out in the Introduction, the origin of this
study was interest in the formation of cylindrical holes in
someinorganic materials by the STEM electrons. The beam
occupies the whole cavity as it increases in size, and it is
useful to accurately model the losses experienced by non-
axia eectrons, which areinfluenced gppreciably by nonlocaity
of the medium as shown.

We have performed this study in a homogeneous
metallic system characterized by a standard hydrodynamic
responsefunction, but we should recall that some experimental
dataof lossesin cylindrical cavities are obtained in complex
inhomogeneous media (Walsh, 1989).

The k-dependent spectral representation of the
effective bulk response function in AlF, with embedded
colloidal Aluminium spheres (Barrera and Fuchs, 1995),
provides the most satisfactory way of interpreting such
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experimental data, so we are now facing up to the possibility
of deducing an effective surface response function from the
bulk response function. We can consider two approachesto
thisproblem. We could try to obtainin astraightforward way
an effective surface response function by taking theinterface
as another inhomogeneous feature to be taken into account.
Alternatively, we could usethe k-dependent effective medium
bulk-response into the expressions found from the SCIB.
When calculating in thisway, energy losses at bulk plasmon
valuesappear evenfor externd trgjectoriesof theelectronsin
very hig holes and near planar surfaces. The legitimacy of
this latter proposal is not clear and may even be quite
inconsistent, as the k-dependence of the effective medium
response arisesfrom the geometrical features of the colloidal
inclusions and not from the behaviour of the electron gas, as
isin the case of an homogeneous medium characterized by a
non-local response function which can be introduced in the
SCIB.

However, when we use this spectral representationin
theexpressionsfor non-local cylinders, the agreement between
experiment and theory is quite satisfactory, and this could
lead us to trust the use of this model when treating
inhomogeneous systems. At any rate, the limits of the SCIB
for such an effective response have to be more deeply studied
and corresponding results for planar surfaces better
understood.
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Discussion with Reviewers

P.E. Batson: InFigure 3, the Q = 0 bulk modeis depressed
withinabout 10A of thecylinder walls. Canyoubriefly discuss
the lateral extent of the bulk plasmon charge density
disturbance when the probe el ectron travel scloseto the small
cylinder? Doesthe proximity of aconvex object to oneside of
the probe confine the plasmon fluctuation to asmall volume
surrounding the probe?

Authors: Asinthecaseof aplanar interface, two effectstake
place when the beam travel s close enough to aboundary: the
cregtion of surface plasmon losses and on the other hand, a
decreasein the probability of losing energy at thebulk plasmon
energy (what is known as “Begrenzung”). The cylindrica
case is analogous to the planar one in the sense that, as the
beam getscloser to theinterface, the bulk plasmon fluctuation
is confined and disappears when the beam travels along the
interface. Thiseffectisnot only associated with convex objects
which can confine the fluctuation, but also with any other
kind of boundaries, asin the case of the planar one. Aspointed
out by the reviewer, this confinement can be noticeable from
about 10A for Al.

R.H. Ritchie: The caculations presented have been made
using specular reflection condition (or SCIB) and finally, the
simple hydrodynamical dielectric function was employed in
computing the* surfacedielectric function” from SCI B theory.
If the pure hydrodynamical model, together with appropriate
ABCs, had been used, would appreciably different results
been found?

Authors: Thefact that both treatments are equivalent in the
plane-bounded medium (GarciadeAbgjo and Echenique, 1992)
leads us to think that it could also be equivalent in the
cylindrical case. Inany case, it would be good to study the
purehydrodynamica mode in cylindrical coordinatesin order
to be absolutely sure of the equivalence.

R.H. Ritchie: Why are no losses at energies corresponding
to m = 2 and greater observable in the local dielectric
calculations shownin Figure 2?
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Authors They arenot observablebecause, inaloca trestment,
al themodes(m=1,m=2,m=3,...) appear almost at thesame
position (Rivacobaet al., 1995). Inthisway, theintensity of
the peak at 10.6 eV, when using alocal dielectric function, is
dueto the contribution of many modes (mainly m=1, m=2
and m = 3). High modes are not correctly treated by aloca
response function in the sense that it neglects correlation in
the surface charge fluctuations. Thiscorrelation seemsto be
moreimportantinlarger m modeswhichinvolvegrester charge
fluctuations. Therefore, when dispersion effects are
introduced, these modesare shifted up and spread into smaller
peaks in different positions. It is possible then to identify
each mode asam mode.

R.H. Ritchie. The authors state that their loss spectrum
computed using a local dielectric function, for a trgjectory
coincident with the interface, differs depending whether the
trgjectory approachestheinterfacefrom larger or from smaller
vaues. Why isthis? Inthe caseof the plane-bounded medium,
such discrepanciesmay beeliminated by proper choice of the
cutoff wave number.

Authors: Yes, you areright. Instead of saying that different
vaues are found in alocal trestment, we could say that in a
local treatment, aproper cutoff must be chosenin order to get
the sameresult when the beam approachestheinterfacefrom
theinner or fromtheouter side of the cylinder, whilethe same
result is found in a straightforward way in a non-local
treatment.



