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Abstract

In the framework of the dielectric theory, we present
the electron energy loss probability distribution calculated
for a fast probe near cylindrical surfaces using a non-local
dielectric function.  The small size of the drilled holes in
experiments and electron trajectories close to the interface
make necessary the introduction of dispersion effects when
describing the energy loss spectra.  We compare the results
to those given by the local Drude model.  The k-dependence
of the dielectric function allows us to discuss energy losses
in inhomogeneous media when using an effective medium
dielectric function.
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Introduction

In the last decade, many microstructural systems have
been studied with scanning transmission electron microscopy
(STEM), which can provide high resolution transmission
images and energy loss spectra (EELS).  A well focused 100
keV electron beam - 0.5 nm wide - is used to obtain loss spectra
with resolution as small as 0.1 eV (Ouyang et al., 1992).  Some
quantal theories have been developed to study this kind of
spectra in simple cases (Kohl, 1983; Echenique et al., 1987;
Ritchie and Howie, 1988), but a classical treatment has proven
to be a useful tool in studying the energy loss spectra (Marks,
1982; Howie and Milne, 1985).  Ritchie (1981) and Ritchie and
Howie (1988) provided the link between both theories.  These
authors showed that quantal effects in STEM can be studied
by convoluting the loss spectra of classical electrons over
the lateral profile of the beam.

Many different geometries have been studied in the
framework of the dielectric theory, where the electron is
assumed to be a classical point particle, and excitations in the
medium are described through a local dielectric function ε(ω).
These include planar interfaces (Ritchie, 1957; Echenique and
Pendry, 1975), spheres (Ferrell and Echenique, 1985), spheroids
(Illman et al., 1988), edges (García-Molina et al., 1985),
hemispheres (Aizpurua et al., 1996), coupled spheres (Schmeits
and Dambly, 1991) and one sphere coupled to a planar interface
(Rivacoba et al., 1992; Zabala and Rivacoba, 1993).  Because
of the high velocity and small scattering angles of electrons in
STEM most of these studies, which neglect the transferred
momentum, appear to be a good approximation and have
successfully described many features of the observed
experimental data (Batson, 1982).

Chu et al. (1984) performed the first theoretical study
of the energy loss of charged particles in cylindrical channels
and obtained non-retarded expressions.  Ashley and Emerson
(1974) gave the dispersion relation for surface plasmons on
cylindrical surfaces, and De Zutter and De Vleeschauwer (1986)
studied the retarded expression in the axial trajectory of the
electron.  Excitation of surface plasmons in cylinders has been
studied by other authors (Pfeiffer et al., 1974; Martinos and
Economou, 1981; Warmack et al., 1984; Zabala et al., 1989;
Rivacoba et al., 1995) and also the coupling between two
cylinders (Schmeits, 1989).  The interest on this particular
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geometry arises from the ability of the electron beam to drill
holes in some inorganic materials (Mochel et al., 1983;
Scheinfein et al., 1985; Macaulay et al., 1989; Walsh, 1989).

As the interest in interface effects and delocalization
of EELS increases, larger scattering angles of the energetic
incident beam have been also used in electron microscopy.
This requires higher values of the transferred momentum and
forces one to consider a dispersive dielectric function ε(k;→,ω)
to describe the medium.  Non-local effects have been largely
studied in the planar case.  Johnson and Rimbey (1976) showed
different features of spatial dispersion of an interface in terms
of the additional boundary conditions (ABCs).  Echenique et
al. (1981) defined a surface dielectric function of a semi-infinite,
plane-bounded metal in order to compute the image potential
at points outside the surface.  Fuchs and Barrera (1981)
described the response of a dipole near the surface of a metal
accounting for non-locality of its response, and Batson (1983)
studied non-local effects in STEM, introducing dispersion
effects by substituting the bulk k-dependent dielectric function
in the classically derived expressions.  Echenique (1985) and
Zabala and Echenique (1990) computed dispersion effects in
the excitation of interfaces by fast electron beams and
concluded that they are important when the beam travels
closer than 0.5 nm to the interface.  García de Abajo and
Echenique (1992a,b) analysed the wake potential in a thin foil
and in the vicinity of a surface of a dispersive medium.

In these latter works, the medium (usually a metal) is
described with the specular scattering or semiclassical infinite-
barrier (SCIB) model (Ritchie and Marusak, 1966; Fuchs and
Kliewer, 1969).  Although this model does not describe the
diffuse nature of the metal surface, it includes the main features
of non-locality.  This model was applied by Dasgupta and
Fuchs (1981) to study the response of a non-local sphere and
was completed (Fuchs and Claro, 1987) with a multipolar
expression.  Rojas et al. (1988) introduced nonlocality to study
the response of a small coated sphere.

Some recent experiments by Walsh (1989) make an
interesting study of energy losses in small cylindrical holes
created by the beam itself after spending some time in a fixed
position on the sample.  These experiments were performed in
AlF

3
, which can suffer chemical change in its composition

with the formation of colloidal aluminium particles when
irradiating the sample with the beam.  Howie and Walsh (1991)
showed that these results could be explained by
phenomenological extension of the Maxwell Garnett (1904)
effective medium theory based on an average over electron
trajectories.  Expressions for the energy loss in holes with a
metallic coating have been reported by Zabala et al. (1989),
but the colloidal nature of the metallic inclusions seems to be
better described through an effective medium theory as
proposed by Howie and Walsh (1991).  Barrera and Fuchs
(1995) put this theory on more rigorous footing with a
calculation of the inverse of the longitudinal dielectric function

ε-1(k,ω) or a randomly arranged assembly of interacting
spheres.  This function is written in terms of a spectral
representation and the k-dependence is crucial to describe
accurately the bulk-spectra in the system.

As the study of energy loss spectra in such a material
should include a description of dispersion effects in media
with cylindrical cavities, we present here the theoretical energy
loss probability per unit length of a fast electron in a cavity
surrounded by a standard homogeneous medium characterized
by a non-local ε(k,ω).  We will follow a scheme analogous to
the one used by Dasgupta and Fuchs (1981) in the spherical
case, assuming the SCIB to be valid to describe the medium
response.

Once the expressions for cylindrical cavities are
obtained, we discuss the possibility of their application to
more complicated inhomogeneous media, such as those
characterized by an effective k-dependent response function,
or to microstructures such as tubular fullerenes.

Non-local Expressions for the Potential in a Cavity

We first define the Fourier transformations in space
and time that we use
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We use atomic units throughout this paper.
Let us assume that an electron is moving in a cylindrical

hole of radius a, parallel to the Z-axis, with velocity v at a
distance ρ

o
 from the centre of the holes as shown in Figure 1.

The material is characterized by a dielectric function ε(k,ω),
and retardation effects are neglected as the cavity is assumed
to be smaller than the wavelength of light.  The Laplace
equation can be separated in cylindrical coordinates in a
standard way, and Poisson’s equation can be solved through
an expansion of Green functions in  cylindrical  coordinates
(Jackson, 1962).  The potential V(r;→) inside the cylinder
(as-sumed to be the vacuum) is then given by:

(1)

(2)
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where the first term is the direct Coulomb term, and the second
one is the induced term which has to be obtained by imposing
the standard boundary conditions, i.e., the continuity of the
potential and the normal component of the displacement at ρ
= a.  I

m
(x) and K

m
(x) are the modified Bessel functions of order

m (Gradshteyn and Ryzkik, 1963) and θ(x) is the Heaviside
function.  Therefore, the problem reduces to finding the A

m

coefficients in the induced term of the potential.
Outside the cavity (ρ > a) we can write

Following Ritchie and Marusak (1966), we will assume
an infinite fictitious medium in order to solve for the fields
outside the cylinder.  This medium satisfies the following
conditions: (i) Maxwell’s equations are continued to the ρ > a
region of the infinite medium; (ii) the fields outside the real
cylinder are the same as the ones of the infinite medium with
the same response function; (iii) the normal component of the
displacement Dρ is discontinuous in ρ = a in this infinite
system, but the tangential components are continuous.

Therefore, we introduce a uniform dielectric medium
with a fictitious cylinder of charge at ρ = a, which acts as a
source for D;→. Because of this, (which normally holds

throughout an infinite, continuous medium) ⋅   = 0 does not
hold on the surface of the cylinder.

We introduce now the potential function V
D
(r;→)

defined by

We note that inside the cylinder of the fictitious medium
V(r;→) and V

D
(r;→) must be of the form:

Equations (4) and (5) reduce to

Multiplying by exp(-ik;→•r;→) and integrating we get:

with

Figure 1.  Electron moving in a hole parallel to the cylinder
axis with velocity v at a distance ρ

o
 from the centre of the

cylinder of radius a.  The surrounding medium is characterized
by a non-local dielectric function ε(k,ω).

(3)

(4a)

(4b)

(5)

(6)

(7)

(8)

(9)
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We expand exp(-ik;→•r;→) in cylindrical coordinates
by using the relation (Jackson, 1962):

where k2 = Q2 + q2 and θ and ϕ are the azimuthal angles of k;→

and r;→  respectively and J
p
(Qρ) is the Bessel function of

order p.

Figure 2.  Energy loss probability per unit length P(ω) for an electron passing through a 10 A radius hole in Al at different distances
from the centre of the hole.  Dashed lines show the spectra of losses when using a local dielectric function, and the solid lines show
the spectra of losses when using a non-local dielectric function given by the hydrodynamical model.  ω

p
 = 15.1 eV and γ = 0.1ω

p
.

The spectra have been displaced vertically.

(10)
(11)
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After integrating eq. (9) over z and ϕ we get:

whence

We come back to the space coordinate using eq. (1)
and obtain:

and

Now we will take these potentials as the ones of our
real system outside the cylinder (ρ > a) and match them at ρ =
a with those given by eq. (3), which was valid inside the cylinder
(ρ < a). Dρ(r

→;) is obtained in both cases through ( ) = -
∇ V

D
( ) and has to be also continuous at ρ = a.  We solve

equations of continuity for V(a+) = V(a-) and Dρ(a
+) = Dρ(a

-)
and get for A

m
:

with

                           where k2 = Q2 + q2

that can be introduced in the expression of the potential inside
the cylinder to account for dispersion effects.

Electron Energy Losses in the Cavity

We study now the Electron Energy Losses (EELS) of
an electron in the cavity surrounded by a material characterized
by a ε(k,ω) response function.

The probability of losing energy h;/ω is given by the
induced field evaluated at the particle point (ρ = ρ

o
, ϕ = ϕ

o
, z =

vt):

where φ
o
( ,t) is given by the Fourier transformation of eq. (3).

After some algebra, we get for the energy loss probability
distribution:

with

and Im[x] the imaginary part of x.
If we take ε(k,ω) = ε(ω), we recover the wellknown local

limit,

In order to study the effects of dispersion, we consider the
simple non-local response function of the hydrodynamic

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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model: where β = 3/5v
F

2, v
F
 is the Fermi velocity, ω

p
 is the plasmon

frequency, and γ is the damping.  We consider a hole in
aluminium (ω

p
 = 15.1 eV and γ = 0.1ω

p
).

In Figure 2, the loss spectrum for a cylindrical cavity
of radius a = 10 A surrounded by a medium characterized by
the non-local response function (solid line) is compared to

Figure 3.  Energy loss probability per unit length P (ω) for an electron passing through or near a 50 A radius hole in Al when using
a non-local dielectric function to characterize the medium.  Different trajectories inside and outside the hole are shown.  Notice that
the result at the interface itself becomes the same in a non-local treatment.  ω

p
 = 15.1 eV and γ = 0.1 ω

p
.  The spectra have been

displaced vertically.

(22)
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that using a local response (dashed line).  There appear two
peaks in the local case at 10.6 eV and 15 eV associated to the
m = 1 and m = 0 modes, respectively, while in the non-local
case the low energy peak (m = 1) shifts 0.7 eV up and appears
at 11.2 eV.  The m = 0 mode (15 eV), which is a surface mode for
very small radius and not a bulk one, is not affected by
dispersion effects, as it is associated to the monopolar charge
distribution.  This is the dominant excitation for axial trajectories
and is not affected by dispersion, as it is far from the cylinder
walls.  At points closer to the interface, dispersion effects
change the weight and position of the low energy surface
losses associated to the m = 1 mode and make it almost
disappear.  This change is more noticeable when the electron
is travelling along the interface itself.  In a local treatment,
different results are obtained when the beam approaches the
interface from the inner or outer side of the cylinder, but when
this problem is solved in a non-local treatment, the same result
is found.  As the radius of the cavity becomes larger, the low
energy surface plasmon excitations are more important in
weight compared to the m = 0 excitation.  This can be observed
in Figure 3, where the loss spectrum for a cylindrical cavity of
radius a = 50 A is shown.  Although dispersion effects depress
the intensity and shift the position of the low energy plasmon
(11.2 eV), this mode becomes comparable in magnitude to the
high energy one (13.9 eV) when the electron travels close
enough to the interface.  This latter excitation has also shifted
down in value because of the bigger radius and tends to the
low energy plasmon value as the radius becomes larger.  It will
join the low energy plasmon as a planar surface plasmon in
the limit of very large radius.

There is no appreciable difference in the theoretical
spectra calculated using the Mermin, k-dependent, response
function because momentum transfers are small, so it is
sufficient to use the hydrodynamic response function here.

Possible Applications

As pointed out in the Introduction, the origin of this
study was interest in the formation of cylindrical holes in
some inorganic materials by the STEM electrons.  The beam
occupies the whole cavity as it increases in size, and it is
useful to accurately model the losses experienced by non-
axial electrons, which are influenced appreciably by nonlocality
of the medium as shown.

We have performed this study in a homogeneous
metallic system characterized by a standard hydrodynamic
response function, but we should recall that some experimental
data of losses in cylindrical cavities are obtained in complex
inhomogeneous media (Walsh, 1989).

The k-dependent spectral representation of the
effective bulk response function in AlF

3
 with embedded

colloidal Aluminium spheres (Barrera and Fuchs, 1995),
provides the most satisfactory way of interpreting such

experimental data, so we are now facing up to the possibility
of deducing an effective surface response function from the
bulk response function.  We can consider two approaches to
this problem.  We could try to obtain in a straightforward way
an effective surface response function by taking the interface
as another inhomogeneous feature to be taken into account.
Alternatively, we could use the k-dependent effective medium
bulk-response into the expressions found from the SCIB.
When calculating in this way, energy losses at bulk plasmon
values appear even for external trajectories of the electrons in
very big holes and near planar surfaces.  The legitimacy of
this latter proposal is not clear and may even be quite
inconsistent, as the k-dependence of the effective medium
response arises from the geometrical features of the colloidal
inclusions and not from the behaviour of the electron gas, as
is in the case of an homogeneous medium characterized by a
non-local response function which can be introduced in the
SCIB.

However, when we use this spectral representation in
the expressions for non-local cylinders, the agreement between
experiment and theory is quite satisfactory, and this could
lead us to trust the use of this model when treating
inhomogeneous systems.  At any rate, the limits of the SCIB
for such an effective response have to be more deeply studied
and corresponding results for planar surfaces better
understood.
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Discussion with Reviewers

P.E. Batson:  In Figure 3, the Q = 0 bulk mode is depressed
within about 10 A of the cylinder walls.  Can you briefly discuss
the lateral extent of the bulk plasmon charge density
disturbance when the probe electron travels close to the small
cylinder?  Does the proximity of a convex object to one side of
the probe confine the plasmon fluctuation to a small volume
surrounding the probe?
Authors:  As in the case of a planar interface, two effects take
place when the beam travels close enough to a boundary: the
creation of surface plasmon losses and on the other hand, a
decrease in the probability of losing energy at the bulk plasmon
energy (what is known as “Begrenzung”).  The cylindrical
case is analogous to the planar one in the sense that, as the
beam gets closer to the interface, the bulk plasmon fluctuation
is confined and disappears when the beam travels along the
interface.  This effect is not only associated with convex objects
which can confine the fluctuation, but also with any other
kind of boundaries, as in the case of the planar one.  As pointed
out by the reviewer, this confinement can be noticeable from
about 10 A for Al.

R.H. Ritchie:  The calculations presented have been made
using specular reflection condition (or SCIB) and finally, the
simple hydrodynamical dielectric function was employed in
computing the “surface dielectric function” from SCIB theory.
If the pure hydrodynamical model, together with appropriate
ABCs, had been used, would appreciably different results
been found?
Authors:  The fact that both treatments are equivalent in the
plane-bounded medium (Garcia de Abajo and Echenique, 1992)
leads us to think that it could also be equivalent in the
cylindrical case.  In any case, it would be good to study the
pure hydrodynamical model in cylindrical coordinates in order
to be absolutely sure of the equivalence.

R.H. Ritchie:  Why are no losses at energies corresponding
to m = 2 and greater observable in the local dielectric
calculations shown in Figure 2?

Authors:  They are not observable because, in a local treatment,
all the modes (m = 1, m = 2, m = 3,...) appear almost at the same
position (Rivacoba et al., 1995).  In this way, the intensity of
the peak at 10.6 eV, when using a local dielectric function, is
due to the contribution of many modes (mainly m = 1, m = 2
and m = 3).  High modes are not correctly treated by a local
response function in the sense that it neglects correlation in
the surface charge fluctuations.  This correlation seems to be
more important in larger m modes which involve greater charge
fluctuations.  Therefore, when dispersion effects are
introduced, these modes are shifted up and spread into smaller
peaks in different positions.  It is possible then to identify
each mode as a m mode.

R.H. Ritchie:  The authors state that their loss spectrum
computed using a local dielectric function, for a trajectory
coincident with the interface, differs depending whether the
trajectory approaches the interface from larger or from smaller
values.  Why is this?  In the case of the plane-bounded medium,
such discrepancies may be eliminated by proper choice of the
cutoff wave number.
Authors:  Yes, you are right.  Instead of saying that different
values are found in a local treatment, we could say that in a
local treatment, a proper cutoff must be chosen in order to get
the same result when the beam approaches the interface from
the inner or from the outer side of the cylinder, while the same
result is found in a straightforward way in a non-local
treatment.


