
Scanning floerescent X-ray microscopy

301

Scanning Microscopy Vol. 12, No. 2, 1998 (Pages 301-308)                                                                            0891-7035/98$5.00+.25
Scanning Microscopy International, Chicago (AMF O’Hare), IL 60666 USA

SIGNAL FORMATION, SIMULATION AND INVERSE PROBLEM IN SCANNING
FLUORESCENT X-RAY MICROSCOPY USING FOCUSED BEAMS FOR

ANALYSIS OF THE SURFACE RELIEF

Abstract

The problem of quantitative determination of the
surface microrelief from an X-ray fluorescent signal is
investigated in this paper.  The integro-differential equation,
which connects the relief of the surface with the registered
signal, is obtained.  The inverse problem (the reconstruction
of the surface form by using the X-ray fluorescent signal) is
solved.  The results of the relief reconstruction for both the
pure signal and for the signal with the noise are obtained.  The
introduced concept of spatial resolution allows one to
conceive of a minimal size of the region, where the method is
sensitive to the relief changes in nanometer scale.  It is shown
that if the angle, at which the detector is positioned tends to
0°, direct measurements of the derivative of the function
describing the relief become possible.

The method proposed does not require standard
samples and belongs to the nondestructive control method.
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Introduction

X-ray fluorescent scanning microscopy [2] based on
employing focused X-ray beams is a comparatively new
direction in microdiagnostics.  Its appearance is due to the
creation of powerful radiation sources of nanometer scale, on
one hand, and successful development of methods for
fabrication X-ray optic elements, on the other hand [3, 8].  The
range of diagnostic problems solved by X-ray fluorescent
scanning microscopy expands constantly, owing to a
continuous perfection of equipment and development of
mathematical models and techniques for signal processing
which allows covering a wider range of objects and fit different
configurations of microscopes (the reciprocal location of the
source, object and detector, in particular).  For example, a model
of fluorescent signal formation from a planar layered specimen
has been developed [1].  The scanning procedure can be
realized either by moving a sample (a stage) [5] or the beam
[6].  X-ray microprobes with a submicron beam diameter have
been used to obtain high spatial resolution maps of the element
composition [3, 8].  Progress in the creation of X-ray optics
elements results in the size of the focal spot in the micron and
submicron (up to 55 nm [4]) [3, 5, 8] range.  In the micron and
submicron range, where the beam spot becomes comparable
or less than the fundamental absorption lengths, the presence
of a surface relief influences the X-ray fluorescent signal like
the presence of the balk non-homogeneity does.  Therefore,
one of the classical microscopy problems is the observation
and quantitative description (at the microlevel) of the surface
of an object under investigation.  Optical, electron and ion
microscopes are employed to solve this problem.  However,
none of the existing techniques gives a comprehensive
solution.  Therefore, a search for new approaches to this
problem seems urgent.

The problem of quantitative determination of the
surface micro-relief from an X-ray fluorescent signal is
investigated in this work.  A mathematical model (signal
equation) is developed and the direct problem (the signal
simulation from the known signal) and inverse problem (the
reconstruction of the surface form) are solved.
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Signal Equation

Figures 1 and 2 demonstrate the scheme of fluorescent
signal formation in an X-ray microscope.  The reciprocal
locations of the source (1), investigated object (2), and detector
(3) are shown in the Figure 1.  The X ray absorption region is
much smaller than the distance from the source to the object
and from the object to the detector.  Therefore, we can assume
that the angle of the direction “object-source” with the direction
“object-detector” α is equal for all points of the absorption
region.  Because the signal is formed in one plane, a three-
dimensional (3D)-problem is reduced to a two-dimensional
(2D)-problem (Fig. 1).  We may introduce the Cartesian
coordinate system for the plane 123, so that the direction of
OY axis coincide with the direction 21.  The origin of the
coordinates is of no significance.  Let f(x) be the function
describing the surface relief in the plane 123.  In what follows,
we will assume that f(x) is differentiable and satisfies the
condition:

sup(ƒ′(x)) ≤ ctgα

(this condition ensures that the registered part of fluorescent
radiation intersects the object surface only once).  Let x0 denote
the coordinate of the initial ray intersection with the surface
(Fig. 2).  The magnitude of the fluorescent radiation generated
on the intercept (y+dy,y) is proportional to the absorbed X-
ray radiation

vexp(-v(ƒ(x0) - y))dy

where nf is the yield of the fluorescence and ν is the attenuation
coefficient of the initial X-ray radiation for an object material.

Here, we consider the part of fluorescent radiation

generated on the intercept (y+dy,y) which falls onto the
detector and consequently, contributes to the signal (because
the generated radiation is isotropic, the magnitude of the
produced part is proportional to the quantity in relation (2)
above).

Let x denote the coordinate of the intersection point
of a fluorescent ray with the surface.  Then, the distance, the
fluorescent ray passes in the sample material, is equal to

(ƒ(x) - y)/cos α

where x satisfies the equation

x - x0 = (ƒ(x) - y)tgα

Thus, the contribution of fluorescent radiation generated on
the intercept (y+dy,y) to the signal is equal to

dy y  - xf -  y - x (f -   n f 




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where µ is the attenuation coefficient of the fluorescent
radiation.  Integrating with respect to y from infinity to ƒ(x),
we obtain
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Figure 1.  The scheme of the fluorescent signal. Figure 2.  The plan of the signal.
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where S(x0) is the signal magnitude.  Changing the terms in
eq. (6) according to

y = ƒ(x) - {(x - x0)/(tgα)}

we obtain the following equation for the signal at normal
incidence of the X-ray beam (the surface is set perpendicularly
to the beam)

dx x -x+ - xf - xf- 

xf-ctg  n = xS
x

f
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For the case of oblique incidence of the beam, the
value of the signal can be calculated by the formula
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and β is the angle of the direction “source-object” with the
normal.  Since the derivation of eq. (9) is similar to the
derivation of eq. (8), eq. (9) is written without derivation.

Equation (8) solves a direct problem, and gives the
value of a signal as the function of the surface relief (ƒ(x),
geometry (the angle α), and material constants (absorption
lengths µ-1 and ν-1).  It can be used for the signal simulation in
diagnosis.

The Inverse Problem

Another problem of diagnosis is reconstruction, using
the measured signal.  The problem is known as an inverse
problem.  From our point of view, the most interesting aim of
the inverse problem is the reconstruction of the surface relief.
This can be done only numerically, but in our case, the
reconstruction problem can be solved analytically.

To solve the inverse problem, we differentiate signal
eq. (8) with respect to x0.
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Modulation techniques allow one to measure the signal
derivative by, for example, oscillating a sample along the X-
axis, so the direct solution of the reconstruction problem can
be given in terms of the measured functions (signal and its
derivative)
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After the integration of eq. (10), we obtain another
presentation of the inverse problem solution, eq. (11), which
can be used if the signal derivative is not available.  This
expression allows one to reconstruct the value of the profile
function in each scan point, using the measured signal S.
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Figure 3.  The smooth surface with the single step.
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Spatial Resolution

The signal equation allows the investigation of the
image properties obtained in the microscope such as visibility
(contrast) and resolution, depending on the conditions of the
experiment.  The most important of these properties is the
value of the angle.  Suppose that we record a signal from a
smooth surface with the single step (Fig. 3).  For the inlet point
x0 positioned far from the step, the equation of the signal can
be rewritten to give

dxctg x - x+-  n = xS
x

f α
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The same expression is valid when x0 is on the right
form the step.  Equation (12) implies that signal S “feels” the
step when the distance between x0 and the step is of the order
of magnitude of the exponent parameter

µαν
α

 + 
 = r

cos
sin

Therefore, r is the natural characteristic of the spatial
resolution.  The spatial resolution is influenced by: (1) the
angle between the normal direction and the detector; (20 the
attenuation coefficient of incident X-ray radiation; and (3) the
absorption coefficient of the fluorescent quanta.  We can obtain
the spatial resolution by decreasing the angle between the
normal direction (Fig. 4) and the detector.

A Limiting Case

Consider the case where the angle between the
direction of the incident beam and the direction towards the
detector tends to 0°.  Then, x tends to x0, and the following
expression holds

f(x0)  -  f(x)  ≈  f’(x0)  (x0-x)

Factoring
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with respect to sinα and retaining the first order, we obtain

These expressions show that if α = 0°, the fluorescent
signal is non-informative (does not dependent on ƒ(x)), and,
the reconstruction of relief is impossible.

However, direct measurements of ƒ’(x) become
possible at small (although differing from 0) values of the
angle.

A Special Method of Measurement

Differentiating eq. (16) with respect to sinα, we obtain

at small α.
From this expression, the derivative ƒ’(x) is found

directly.  The differentiation with respect to sinα can be
implemented as the oscillation of the detector in the horizontal
direction.  Equation (17) can be considered as one more
representation of the inverse problem solution for the limiting
case of a small angle with the difference that for eq. (10), the
derivative in eq. (10) is a derivative on the beam position x0
(and the sample should oscillate to measure the derivative)
where the detector should be moved to measure the derivative
for eq. (17).

Figure 4.  Signal diagrams at the various values of the angle
(5°, 10°, 30°) for the profile with the single step.
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Estimation of the Sensitivity

We express the estimate of the intensity of the X ray
fluorescent radiation hitting the detector as

where P is the flux of the radiation incident on the sample, Ω
is the solid angle magnitude determined by the input window
size of the detector and its position.  The formula proposed
implies that the attenuation of the intensity due to the
absorption in the sample is of the order of unity.  This value is
negligible in comparison with the main reduction 3-4 orders,
which results from a small value of solid angle Ω.  Therefore,
for the measurement error to be of the order of 3 percent, not
less than 103 photons should be detected; this gives 106-107

as the total number of photons in the beam per pixel.  High
intensity synchrotron radiation is now available with a flux of
108-109 photons/s in the spot [7] and this makes it possible to
realize the described analysis, promising low noise level in the
range 0.1%.

Simulation of the Signal and
Reconstruction of the Relief

The results of X-ray fluorescent signal simulation and
the results of surface relief reconstruction are presented in
Figures 3 to 12.  We will concentrate on Figure 5 because the
results illustrated in the Figures 3 and 4 were discussed
previously.  Three signals, obtained at three values of the
angle α (5°, 15°, 30°, respectively), are shown in Figure 5.  It
can be readily seen that the spatial resolution increases with a
decrease of the angle α, the diffusion of individual elements
disappears, whereas the visibility (the inhomogeneity-induced
signal change) decreases.

Therefore, a decrease in the angle is efficient when a
detector with a low noise level is used.  The signal contrast
increases with an increase of the angle α (Fig. 5), and at small
values of the angle, the curve of the signal tends to the
derivative of the function describing the surface relief.  Tending
the signal contrast to zero at small angles and tending the
signal shape to the profile derivative is in accordance with the
predictions of the model for the limiting case of small angles
{eq. (16)} where an alternating part of the signal is proportional
to

An example of profile reconstruction is shown in Figure

Figure 5.  Signal diagrams at various values of the angle (5°,
15°, 30°).

Figure 6.  Signal with added Gaussian noise.

Figure 7.  The initial (1) and reconstructed (2) profiles.

(18)

(19)
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7.  The X-ray fluorescent signal was calculated by eq. (8) for
the test profile (Fig. 7, curve 1).  Gaussian noise was added to
the value of the signal obtained (Fig. 6).  In order to reconstruct
the surface profile (Fig. 7, curve 2), eq. (11) was used.  It is
easily seen that the solution of the inverse problem is stable
with respect to the noise.

Three-dimensional-images of the surface relief, the
reconstructed profile and the noise signals for different angles
are presented in Figures 8 to 12.  The fundamental constants
(absorption lengths µ-1 and ν-1) have been calculated for silicon
and the wavelength of the incident X ray beam corresponds
to CuKα1 radiation (1.54 Å).  The obtained 3D-images
correspond to the scan in two directions (along X and Z axes).
For each point on the Z axis, the 2D-problems (direct and

inverse) have been solved.  The signal has been calculated at
three values of the angle α: 5° (Fig. 10), 10° (Fig. 11), and 30°
(Fig. 12).  Although the absorption lengths are about 10 µm,
the profile features 0.1-1 mk high can be reconstructed
successfully.  Thus, the fluorescent signal can be used for a
quantitative relief characterization in the nanometer scale.

Summarizing, the results of the simulation allow one
to evaluate the value of a signal and to choose an optimal
position for the detector, depending on the relief magnitude
and sample material.
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Discussion with Reviewers

M.L. Rivers:  A major weakness is the lack of discussion of
the effect of finite angular acceptance of a real detector.  The
authors claim {just after eq. (18)} that the fractional acceptance
is about 3° to 5° in each direction.  Many of their simulations
are at detector angles of 5°.  However, they assumed EXACTLY
5°, whereas in the real case it will be 5° plus or minus 2-3°.
What is the effect of this finite solid angle on the resolution
function for determining the surface relief?
Authors:  We restricted the consideration by asymptotic case
of infinitely small detector to concentrate on physics and
derivation of the signal equation.  The signal equation for
finite angular acceptance can be easily obtained from the basic
formulae by integration over a solid angle of the detector.
Particularly, it is seen that in the first approximation, the finite
acceptance ∆α will contribute a linear term ∝∆α /α.  As to
simulation at 5°, the quantitative conclusion (spatial resolution

increases with a decrease of the angle α, whereas the signal
contrast increases with an increase of α) arrived at with this
simulation is valid for the detector of finite size.

M.L. Rivers:  There is no discussion of the assumption behind
the proposed technique.  One obvious unstated assumption
is that there is a uniform concentration of the element whose
fluorescence is being measured.  If that concentration is
heterogeneous, then it will appear as a false topography signal.
R. Gauvin:  Real materials are non-homogeneous.  So, what do
you propose to do with your method when C(x) = ƒ(x,y,z)?
Authors:  Of course, there are specimens containing both
spatial inhomogeneities and surface relief.  One of the main
motivations of the paper is to estimate a contribution of the
relief in the fluorescent signal with hope to find ways to
eliminate or minimize the contribution.  The first step on this
way is deriving the signal equation for spatially uniform
specimen with surface relief.  On the other hand, the formation
of the signal from uniform specimen with the relief is a
significant scientific problem by itself, solution of which could
be a theoretical base for diagnostic and metrological
applications of the focused X-ray beams.  Signal equations
for different situations with spatial non-homogeneities (e.g., a
thin film of variable thickness on a substrate, or planar impurity
distribution covered by a film) will be published elsewhere.

M.L. Rivers:  There is no discussion of the potential
advantages, if any, of this technique (which requires a
synchrotron source, sophisticated microfocusing optics, and
slow mechanical scanning) over the existing techniques (such
as, secondary electron imaging) for determining surface relief.
Authors:  A synchrotron source, sophisticated micro-focusing
optics and slow scanning are obvious draw-backs of the
techniques in application to relief investigation which could
be improved or overcame in the future.  But, there is an
unbeatable advantage.  Physics of the signal formation is
uniquely simple and transparent as it is based on exponential
attenuation along straight trajectories.  The advantage
becomes obvious after a comparison of derivation and
investigation of the signal equation for specimen with relief
that we have developed for scanning electron microscopy [9].
Here, the basic physical phenomenon is a random walk (of
electron) with elastic scattering depending on currently
decreasing electron energy.  So, investigators need to use
either phenomenological model for generation zone or Monte-
Carlo simulation with well known inherent drawbacks of the
both approaches.

R. Gauvin:  Since you need a synchrotron radiation to get a
photon flux greater than 106 photons/second, I think that few
people will be able to use your method.  Can you comment on
this?
Authors:  It is difficult to comment on how many people will
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use the approach to investigate surface profile by itself but
we hope that solutions of direct and inverse problems
presented in the paper will be useful at least to estimate an
influence of the surface relief and roughness on fluorescent
signal in X-ray micro-analysis.  Consideration of such idealized
situation is necessary to analyze more complicated cases as
the film on the substrate or planar impurity distribution covered
by the film (as mentioned above in answer to second comment
of Dr. Rivers).

R. Gauvin:  Real surfaces generally have dƒ(x)/dx = infinity,
and this condition is not allowed in your method.  What can
you do to improve that in order to study fracture surfaces of
technological materials for example?  Have you considered
the use of the concepts of fractal geometry in this context?
Also, will you improve your model to consider the case when
a photon crosses the surfaces several times (very irregular
surfaces)?
Authors:  We considered an important class of surfaces with
one intersection only as the first step, we plan to develop a
signal equation for surfaces with more intersections (this
includes the case dƒ(x)/dx = infinity).  As to fractal geometry
and characterization of roughness by fractal dimension, we
used such a concept while investigating backscattered
electron signals [9] and we will use these ideas of statistical
approach in fluorescent X-ray microscopy as well.

R. Gauvin:  What is the time needed to get an analysis?
Authors:  We estimate the time per pixel as 0.1-1.0 seconds at
flux 108 photons/second in beam and at statistical scattering
in the signal about 1%.

R. Gauvin:  It is not surprising that your model works because
you deconvoluted a simulated spectrum which is computed
with the same theory as your inverse reconstruction technique.
You should validate your method with experimental spectrum
of known shape to prove it in the correct way.
Authors:  Really, we applied reconstruction procedure to
signals generated according to the signal model developed.
By this, we did not validate model of signal formation (of
course, it should be compared with experimental data), but, by
this, we check stability of reconstruction method to small noise
in the signal.  An important feature was illustrated (and this
was really surprising): the problem of surface restoration
considered in the paper is stable to experimental noise, and
thus, it essentially differs from inverse problems arising, for
example, in absorption X-ray tomography.

An estimate can be deduced from the formula for spatial
resolution {eq. (13)}, it can be read as following to resolve
profile details with length l one needs angular precision ∆α
about

∆α = l(cosα + µ)2 / (ν + cosα)

The estimate is a good qualitative supplement to the answer
to the first comment of Dr. Rivers above.
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