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Abstract

A survey is presented of the theoretical status of
quadratic response theories for the understanding of
non-linear aspectsin theinteraction of charged particleswith
matter. Intheframeof the many-body perturbation theory, we
study the interaction of charged particles with an electron
gas, within the random-phase approximation (RPA). In
particular, nonlinear corrections to the stopping power of an
electron gas for ions are analyzed, and specia emphasis is
made on the contribution to the stopping power coming from
theexcitation of singleand doubleplasmons. Doubleplasmon
mean free paths of swift electrons passing through an electron
gas are also discussed.
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Introduction

A quantitative description of theinteraction of charged
particleswith matter isof basicimportancein many different
theoretical and applied areas [25]. When an ion penetrates
condensed matter, it causes changesin the charge state of the
ion. Electronsmay be stripped from theion or captured from
electronic states of the solid; dynamic screening by valence
electrons originates a wake of electron density fluctuations,
and theion may |ose energy to the medium through different
types of elastic and inelastic collision processes. When a
swift electrontravelsinasolid, it may also lose energy to the
medium. Whileat rdativistic velocities, radiativel ossesmay
become important, for incident charged particlesin the non-
relativistic regime, the significant energy losses appear as a
consequence of electron-electron interac-tions, giving riseto
the generation of eectron-hole pairs, collective oscillations,
and inner-shell excitations and ionizations.

Since the pioneering works of Bohm and Pines [17,
37], theresponse of conduction electronsin metalsto exter-nal
charged particles has been represented within the elec-tron
gas model, by replacing the ionic lattice by a homogeneous
background which servesto provide neutrality to the system.
The screening properties of a system of interacting el ectrons
are determined, within linear response theory, by the
wavevector and frequency dependent longitudinal dielectric
functiong . Inthe self-consistent field, or random-phase,
approximation, the dielectric function of an electron gaswas
first derived by Lindhard [32], and, subsequently, anumber of
workers gave alternative expressions for €__, incorporating
various many-body higher order local-field corrections [31,
47,48, 49] and band effects[1, 21, 54]. Theeffect of disspative
processesoccurring inareal metal and conversion of plasmons
into multiple electron-hole pairs may be alowed for in an
approximate way by including a damping coefficient in the
didectricfunction[35].

Nevertheless, thevalidity of thelinear responsetheory,
which treats the perturbing potential to lowest order, is not
obviousa priori. Although lowest order perturbation theory
leads to energy losses that are proportiona to the square of
theprojectilecharge([16], Z, e, from measurementson positive
and negative pions [10, 11] and, also, on protons and
antiprotons[2, 33, 34], itisknownthat the energy lossexhibits
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adependence onthesign of thecharge[5, 6, 7, 26, 29, 36, 39,
40, 51]. Ontheother hand, experimentaly observed nonlinear
double plasmon excitations[46, 50] cannot bedescribed within
linear response theory [4, 38], and nonlinearities may also
play an important role on the electronic wake generated by
movingionsinanelectrongas[3, 12, 22, 41]. Finally, lowest
order perturbation theory bresks down when the projectileis
capableof carrying bound electronswith it [25].

The firgt full nonlinear calculation of the electronic
stopping power of an e ectron gaswas performed by Echenique
etal.[9,23,24],inthelow-veocity limit. They used ascatering
theory approach to the stopping power, and the scattering
cross sections were calculated for a statically screened
potential which was determined self-consistently by using
density-functional theory. These static screening calculations
have recently been extended to velocities approaching the
Fermi velocity [55]. Alternatively, inthecaseof incidentions
a theoretical effective charge can be associated [18], and
non-linearities can be investigated, within a quadratic
responsetheory, extending, therefore, therange of validity of
linear response theory and providing results for arbitrary
velocities. A quadratic response theory of the energy 1oss of
charged particlesin an electron gas has recently been carried
out [42] by following adiagrammatic analysis of many-body
interactions between a moving charge and the electron gas.

In this paper, we present a survey of the theoretical
status of investigations carried out within a quadratic
re-gponse theory for the understanding of nonlinear aspects
in the interaction of charged particles with an electron gas.
We present generd proceduresto cal cul ate, within many-body
perturbation theory, double plasmon excitation probabilities,
Z3 & contributions to the stopping power of an electron gas
for ions and the non-linear wake potential generated by
movingionsin an electron gas. Wefocus on the contribution
to the stopping power coming from the excitation of single
and double plasmons.

Unless otherwise stated, atomic units are used

throughout (7 =m =e*=1).
Theory

We consider a probe of charge Z, interacting with a
many-particle system. The excitation of eéigenmodes of the
target together with the reaction of the probe to these
excitations can be described by the self-energy of the probe.
For anincoming particlein astate ¢, of energy p° onewrites

[23]:
=[P [ @* (NZ(r,r P @) @

where 2(r,r’,p° represents the non-local self-energy.
Thered part of Z givesusthereal energy shift dueto

the interaction with the medium, and the imaginary part is
well-known to be directly related to the damping rate
experienced by the particleasaconsequenceof theinteraction
withreal excitations of thetarget:

y=-2Imz, ¥

We take the target to be described by an isotropic
homogeneous assembly of electronsimmersed in a uniform
background of positive charge and volume Q, and we use,
therefore, planewavesto describe theincident particle states.
Consequently,

y=-2Imz, ©)

where Z, represents the Fourier transform of Z(r,r’,p%, p =
(p,p%), and p isthe momentum of the probe.

The self-energy, > , can be calculated in the so-called
GW gpproximation [43,45):

. dq
5, =iz? jwep_qwq @

where G, and W, represent Fourier transforms of the Green
function for the probe and the time-ordered screened
interaction, respectively. Inapplyingthisformula, wereplace
G, by thezero order goproximation; for eectrons(Z, = 1) [27]:

0 1-n,

_ N,
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wherew, =k?/2, n isapositiveinfinitesmal, and n, represents
the occupation number, which at atemperatureof T=0K is

n= 6(-K) ©

wherek_ isthe Fermi momentum, and 6(X) isthe Heavi-side
function.

The dynamically screened interaction, W,, can be
represented as follows:

Wq= €4 Vg ™

wherevq representsthe Fourier transform of the bare Coulomb
interaction:

Vo= )
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and g, isthedieectric function, whichisrelated to the density-
density response function, Xq by:

&4~ 1+ VgXq ©
Now, introduction of egs. (5) and (7) into eg. (4), and

€g. (4) into eg. (3) givesthe following result for the damping

rate of incident electronswith energy above the Fermi level:

F:o

°td
y= J o (10)

where P, represents the probability of transferring four-
momentum g = (g,q°) to the electron gas:

Pq=
11)
41T (
" ZEIMWGB (- P+ g )8 (whEr )

Theddtafunctionin thisexpress on gppearsasaconsequence
of energy conservation, and the step function, e(u)p_q -E),
ensures that no electrons lose enough energy to fall below
theFermi leve.

When the probe is not an electron, the occupation
number of eg. (6) iszero, i.e., weneed not take account of the
fact that the incident electron cannot make transitions to
occupied statesin the Fermi sea:

41T
Pq= - 23 1MWed(a’- P°+ wpeq) (12)

andif the probehasmassM >> 1, then recoil can be neglected
in the argument of the deltafunction to give:

41t

Pq= -321 ImW,3(q°-q) (13)

wherev representsthe vel ocity of theincoming particle.
The inverse mean free path of the probe is easily
obtained asfollows:

14

Y —%Z?@E

and the stopping power of thetarget for the probeis obtained
asthe energy loss per unit path length of the projectile, after
multiplying the probability P, by the energy transfer ¢f:
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dE 1o o
sz%',;qf)pq (15)

In the so-called time-dependent Hartree, or random-
phase, approximation, the exact linear responsefunctionto a
screened chargeis replaced by the response function of the
non-interacting electron gas.

d *k

-2i] @n)

Xo= e (16)

replacing the linear response function to an externa charge,
X Y-

RPA

_Xq+ Xq qu (17)

Xa

Within this approximation, the self-energy of eq. (4)
can berepresented diagrammatically asin Figure 1, and cutting
the diagrams of this figure through the two-electron linesin
all the bubbles would lead to the open diagrammatic
representation of scattering amplitudes shown in [42]. In
particular, if M >> 1, theincident particle can be treated asa
prescribed source of energy and momentum, and one finds

[42:

(18)

ori
Emzifd“qa“(ws- PWEA3(q°-q)

Sti=
wheres=(s), p= (p,p°), and W ™ representsthe random-
phase approximation (RPA) to the screened interaction of eg.

.

Then, the probability of transferring four-momentum
q to afree-electron gas by moving aparticle from inside the
Fermi sea (sl < q.) to outside (L[> q,), thus creating an
electron-hole pair, is derived from the square of the matrix
element§;:

‘22” 2(1 o) 156282 5.6 (19

where 64q, . is the symmetric Kronecker & symbol, and
introduction of eg. (18) into eg. (19) givesexactly theresult of
eg. (13) found by the self-energy method.

It is obvious at this point that double plasmon
excitations cannot be described within the GW-RPA
gpproximationtothe salf-energy, represented diagrammatically
in Figure 1; double excitations can only be described, within
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Figurel. GW-RPA approximation to the self-energy.

the GW approximation, with inclusion in the screened
interaction of dynamic local-field corrections. On the other
hand, the study of Z ? effects in the stopping power of an
electron gasfor ions, and, aso, the study of nonlinearitiesin
thewake generated by moving ionsin an electron gasrequire
going beyond the so-called GW approximation. The main
ingredient in the investigation of both double plasmon
excitations and Z 2 effects is the symmetrized quadratic
response function of the non-interacting electron gas:

— 4K
Mag, =1/ 5 7OROR (Gl * CRrqq,) (D)

which gives account of the quadratic response of the system
to agiven charge. Thered part of this three-point function
was first evaluated by Cenni and Saracco [20], explicit
expressionsfor theimaginary partintermsof asum over hole
and particle states have been presented recently [39, 40, 42],
and an extensiontoimaginary frequencieshasalso been given
[44].

Doubleexcitation probabilities

Treating the probe as an external source of energy
and momentum, the matrix element corresponding to the
process of carryingthesystemfromaninitial statea*,.a*,[@
[to afind state a*,a",[@ , [is

S _<®lar,ar,Saa,[®>
fqf,iiz <%|S|%>

()

where @ isthe vacuum state, a and " are annihilation and
creation operators for fermions, respectively, and Siis the
scattering matrix. Sisobtained asatime-ordered exponential
in terms of the perturbing Hamiltonian and field operators
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Y(x) and W*(X) destroying and creating, repectively, aparticle
athepointr attimet.

Now, one can apply Wick's theorem. We note that
only norma ordered products with four uncontracted field
operators contribute, and we find, up to second order in the
probecharge, aresult that can be represented diagrammaticaly
asin Figure 2. Within the random-phase approximation, the
screened interaction, W, is obtained from egs. (7), (9) and
(17), and, accordingly, al sdlf-energy and vertex insertions
have been neglected. On the other hand, exchange processes
and, also, ladder contributions have not been introduced into
€. (21), sincethey dl lead to scattering probabilitiesthat are
of ahigher order in the screened interaction.

Finally, the probability for transferring four-
mo-men-tum g to afree-el ectron gas by moving two particles
frominsidethe Fermi sea (s [J< g_and [s,[J< g,) tooutside
(Bp,0< g, and [p,J< q,.) isderived from the square of the
matrix eement Sz

Pq: 422”81 Zn52 Z(l' npl)
G s 2 Py

2 <4 4
Z(l' npz) I Sf1f2,i1i2| 6q1,p1-q1 6q2,p2-q2 (22)

)

If theprobewerenot aheavy particle, thenrecoil should
beintroduced into the argument of thedetafunctionto ensure
energy conservation, and, in particular, if the probe were an
electron, a step function should a so be introduced to ensure
that the probe does not |ose enough energy to fall below the
Fermi level. Thenthecontribution of eg. (22) tothe probability
that is proportional to Z ?, obtained after introduction of the
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Figure2. Diagrammeatic representation, up to second order intheioncharge, of theRPA S, ., scattering amplitude. Solidinternal
linesinthefirst and second diagrams are zero-order propagators, and thetriplein-ter-nal vertex in the second diagram represents
the quad-ratic density response function of the non-interacting electron gas. All vertex and self-energy insertions have been
neglected, aswell asladder contributions.
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Figure3. Diagrammatic representation of thematrix element of eg. (26), asobtained withinthe RPA.

matrix element S, .., (represented diagrammatically in Figure

2) into eg. (22), would coincide with contributions derived Ve 1.0164 x/_
fromaGW approximationto the self-energy withinclusion, in »
thescreenedinteraction, of corresponding dynamiclocal-field

corrections. Numerical study [19] showsthat introduction of thefull RPA

Inparticular, theonly Z 2 contribution to the probability response functions gives a resuilt for y, * which has, in the

of eq. (22) which might represent therel excitation of adouble high-velocity limit, the same dependence on v as the

plasmon comes from the square of the scattering amplitude approximation of eq. (24), thoughitis, for r_=2.07, larger than

represented by the second diagram of Figure 2. Itisgiven by this approximation by afactor of 2.16.

thefollowing expression: Z *correction tothestopping power for ions

The stopping power of an electron gas for a probe of

charge Z,, mass M >> 1 and velocity v is obtained after

36TV 9

_ @leqzzj J;L ImW, ImW i introduction of the probability P, into eq. (15). Up to third
a-q order inthe projectilecharge:
||V|q,ql| 8(0”- p°+ 03p-q)8 (wpq- Er) @) dE 1
ZJ Eaerrre (@)
Introduction of this probability into eq. (14) gives, after
approximating thelinear and quadratic responsefunctionsby _ o _
their low g limits, thefollowing high-velocity limit for the Z,2 where P s and P ¢, probabilities of transferring four-
contribution to the inverse mean free path coming from the momentum q to theelectron gasby creating singleand double
excitation of adoubleplasmon[38]: excitations, respectively, are obtained from egs. (19) and (22),

respectively. There,
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St ——zljd “g8*(q+s- p)3(a° ~q¥)x
{W, +21Z,[{W, W,_ Goyq ~

0
IWW,, Wy, M g0, 130k

q" %" 9T (26)

-0, )}

whichisrepresented diagrammaticaly in Figure 3, and

271
St _W21Jd4q164(q1+ s1- Py)

Sitin

Jd*as*@-a,+ s2- p,)8(q°- ) x
{[WqWa-q,(G3eq+ G.geq,) - " WaWg,Wg-q,M qq,]

+ 27 Z;Wq,We.q, (0} - 0y 3)} @

represented diagrammatically in Figure 2. Processesinvolving
higherorder excitations have not been included.

Now, after introduction of egs. (26) and (27) into egs.
(19) and (22), respectively, wefind, up tothird order intheion
charge:

-‘;—E_ (-dE/dx )S"9 +

(-dE/dX )sngle2+ (-dE/dX )doublez (28)

where (-dE/dx)*"*" represents the Z? contribution to the
stopping power coming from singleexcitations:

(-dE/dx )S"der=

222 d3q3fwdq°q° Imwo3(q°-q)
Vo @mT o

(29)

and (-dE/dx)3* and ( dE/dx)*"' represent Z,* contributions
to the stopping power coming from single and double
excitations, respectively:

: 4 3q %
(-dE/ax 9= - 2 73] 49 jdq°q°6(q°- q0)
v 2m)

jd G
@’

[Imwq Re(Wq Wq.q,M gg,)*
Re(WaWOhWQ'ql) H q,ql]

jd A3 8( 0 - oy ) %

(30
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and

8 51 d3d (® ,0.0x,.0
=73 [ dg®q®8(q°-qv
V2 e A (a°-q)

(-dE/dX )doublezz -

q3 q
f( n‘;‘éf dg38(qs -y )
0

(1MW, IMWy_q IM(WqM qq, )+
IM(WqW g IMWe.q,(Hgq+ Ha @) )] (3D)
with
d3s_ d%p 3
Hqq =8P [Z=n, 1-n,)3°(q- p+s)x (32
P n3( p)3°(q-p+s)
3(p° + 0 —w,) 3(q° -, +w,)
=P+ e +(op - q-dy)

0 0 0
Op +0s — Wssqr  ~ (9" - O )+ Ws = Wgiq-q

whichisrelated totheimaginary part of thethree-point function
of eg. (20) by [39, 40, 42]:

ImM )

a6~ Hae,t Haat Haa,q

The contribution to the Z ? stopping power coming
from double excitations, which is of higher order in the
screened interaction than the contribution of eq. (29), hasnot
beenincludedineg. (28). However, contributionsof egs. (30)
and (31), which are proportional to Z ?, are al of the same
order in the screened interaction; they &l need, therefore, to
be taken into account, and they all can be derived from the
knowledge of the Z * contribution to the self-energy by going
beyond the GW approximation.

Itisinteresting to notice that Z * contributions to the
stopping power that are proportional to the product of two
imaginary parts of the screened interaction, appearing as a
consequence of both single and double excitations, can be
combined, and we aso find that contributions to the Z *
stopping power that are proportiona to the product of three
imaginary partsof thescreened interaction, coming fromsingle
and double excitations, cancel out.

Consequently, one finds the following result for the
contribution to the stopping power that isproportional to Z *:
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(-dE/dx )(2) = (-dE/dx )Si ngle, 4 (-dE/dx )doublez

4 3
=253 q3
(2m

[ do’q’8(c’-q)
v 0

d®a (7 05, 0
Iﬁj dq15(q1'Q1|3V)x

[f,(@a)+ fo(aa)+ fa(aa,)] (34
where
f1(q.0,)= ImW,ReW, ReW,_, ReM_, (39
f,(a,0;)= ReW;ReW, ReW;,_ Hqgq, (36)
and
f3(a,0y)=-2ImMW,ImW, ReW_q Hgq (37

Contributions to the Z * stopping power of eq. (34)
coming from f, and f, of egs. (35) and (36) both appear asa
consequence of single excitations:. the first one comes from
the cross product between the first and third diagrams of
Figure3, and gives, therefore, the contribution from lossesto
one-step single excitations generated by the quadratically
screened ion potential, whilethe second term comesfromthe
crossproduct between thefirst and second diagramsof Figure
3 and gives the contribution from losses to two-step single
excitations generated by the linearly screened ion potential.
Thethird term comesfrom both cross products, and also from
lossesto doubleexcitations. Contributionscoming fromsingle
plasmons are included in both f, and f,, and contributions
coming from the excitation of double plasmons are only
includedinf,.

Alternatively, the stopping power of an electron gas
can be obtained from the knowledge of the wake potential
induced inthevicinity of theprojectile, astheinduced retarding
force that the polarization charge distribution exerts on the
projectileitsalf, and a second-order many-body perturbation
anaysisof thewakepotential [12, 41] at r, defined asthemean
value of theinteraction between atest unit positive charge at
that point and the electron gas, leads to eq. (34) for the Z 3
stopping power, as demonstrated in [42].

For high velocities of the prabe, the el ectron gas can
be considered asif it were at rest, one can use, therefore, the
so-called static e ectron gas approximation for both linear and
quadratic responsefunctions, andthisresultsinf, andf, giving
no contribution to the integral of eq. (34), i.e., in the high-
velocity limit, only the contribution to the Z, ® stopping power
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that isproportional to only-oneimaginary part of thelinearly
screenedinteraction, W , isdifferent from zero. Furthermore,
it has been shown [42] that this contribution to the Z ? effect
can be approximated, in the high-vel ocity limit, by:

2
(-dE/dx )?= zi% Ly )

where copz representsthe plasma frequency w=4m. nisthe
electron density of themedium, and L, isthe Z * correctionto
the so-called stopping number:

T[ 2
|_1=1.42—(§"|nL
\

2.13, )

At high velocities, both the wake potential and the
stopping power can also be derived within a quantum
hydro-dynamical model of theelectrongas. Inthismodel, we
expand the nonlinear hydrodynamical equationsandfind, after
quantization, aresult for the Hamiltonian of thed ectron plasma:
heavy ion system, in terms of the triple vertex interaction
between three excitations, that exactly agrees with the result
obtained by Ashley and Ritchie [4] by following a different
procedure. Then, we find second and third order wake
potentials and electronic stopping powers, and aso double
plasmon excitation probabilitiesthat coincide with plasmon-
polelike approximationsto thefull RPA results[13].

Results

Contributions to electron indlastic mean free paths
coming from single excitations of the electron plasma have
been caculated in the high velocity limit [17, 37], and in the
full RPA[8, 52, 53]. Figure4 shows, asasolidline, our full RPA
results for the double plasmon inverse mean free path of
electrons passing through an electron gas of a density equal
to that of aluminum, as a function of the velocity, together
with the doubl e plasmon inverse mean free path of positrons
(dashed line) and the high-vel ocity limit of eq. (24) multiplied
by afactor of 2.16 (dotted line):

(40

V2

Yap=3.13X10

At high velocities of the projectile, the electron gas
canbeconsderedtobeat ret, theeffect of the Pauli restriction
is, therefore, removed, and the behaviour of the double
plasmon inverse mean free path, asafunction of thevel ocity,
isindependent of the particle statistics. On the other hand, it
is interesting to note that the high-velocity limit of eq. (40)
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Figure4. Full RPA doubleplasmon inverse mean free path of
electrons passing through an electron gas of a density equal
to that of aluminum (r_ = 2.07), as afunction of the velocity
(solid line). The dashed line represents the double plasmon
inverse mean free path of posi-trons, and the dotted line, the
high-velocity limit of eqg. (24).
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Figure5. Full RPA Z * and Z ? contributionsto the stop-ping
power calculated fromegs. (29) and (34), re-spectively, for Z,
andr_=2.07, asafunction of the ve-locity of the projectile.
Dashed and dashed-dotted lines represent Z,* contributions
fromf, and f, of egs. (35) and (36), respectively. The dotted
linerepresentsthe high-vel ocity limit of eg. (38).

gives agood account of the full RPA result for both incident
electronsand positronsin awiderange of projectilevelocities.
In particular, for d uminum and an incident electron energy of
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40keV, from eqg. (40), wefind aratiofor thedoublereativeto
the single plasmon of 1.93 x 103, in agreement with the
experiment[46].

Contributions to the stopping power that are
proportional to Z,? and Z 3, as obtained from egs. (29) and
(34), areplotted in Figure 5 by solid lines, asafunction of the
velocity, again for r_=2.07. It is interesting to notice that
both Z 2 and Z,® contributions to the stopping power exhibit
a linear dependence on the velocity up to velocities
approaching the stopping maximum; thislinear dependence
has also been observed for the low-velocity stopping power
when it is calculated to al ordersin the probe charge, on the
basis of the density functional theory [55]. The linear
dependence of the Z® correction to the stopping power is,
however, a con-sequence of two competing effects. First,
thereisthe effect of one-step single excitations generated by
the quadratically screened ion potential, represented by a
dashed lineinthe samefigure, and then the effect of two-step
single excitations generated by the linearly screened ion
potential, represented by a dashed-dotted line. The
contribution from losses to two-step single excitations,
represented by f, of eq. (36), is very small at high velocities
when the velocity distribution of target electrons can be
neglected. Inthiscase, the static €l ec-tron gasapproximation
can be made, the only non-vanishing contribution to the Z.®
effect comes, inthisapproximation, fromf, of eq. (35),i.e., from
losses to one-step single excitations generated by the
quadratically screened ion potentia, and one finds that the
result obtained in this approximation is well reproduced by
eg. (38), represented in Figure 5 by a dotted line. This
approximation gives a good account of the full RPA result,
even at intermediate velocities where the velocity of target
electronsisnot negligible, and thisis again aconsequence of
two competing effects. First, thenon-negligiblemotion of the
electron gasgivesrisetoasmaller contribution fromlossesto
one-step single excitations, and this is almost compensated
by the non-vanishing contribution from losses to two-step
single excitations. Contributions from losses to double
excitations are small in awide range of projectile velocities,
and they are exact-ly equal to zero asfar asthe electron gas
can be considered to be at rest.

In order to analyze the contribution to the nonlinear
stopping power coming from lossesto collective excitations,
we first show in Figure 6 the separate contributions to the
linear term from plasmon excitation and electron-hole pair
excitation by theincident particle. For amomentum transfer
that is smaller than g, (the critical wave vector where the
plasmon dispersion enters the electron-hole pair excitation
spectrum), both the plasmon and the electron-hole pair
excitation contribute to the energy |oss, though contributions
fromlossesfrom electron-holepair excitationsarevery small.
For g> g, however, only the excitation of electron-holepairs
con-tributes. Total contributions to the Z,? stopping power
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Figure 6. Full RPA Z 2 contribution to the stopping power
(solidline), versusvelocity. Dashed and dotted linesrepresent
contributions from plasmon and single electron-hole pair
excitations, respectively.
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Figure 7. Full RPA Z 2 contribution to the stopping power
(solidline), versusvelocity. Dashed and dotted linesrepresent
total contributions for q < g, and q > q_, respectively, q
representing the momentum transfer, and g, the critical
momentum for the plasmon being awell-defined excitation.

coming from g < q_ and q > q_ are shown in Figure 7, and
contributionscoming fromq < v, and q>v2w areplottedin
Figure8; \/pr isthelow-dengty limit of .. Contributionsto
the stopping power coming from losses to plasmons is,
therefore, smaller than contributionsfrom lossesto electron-
hole pairs, especially at high electron-densities, though there
is, a high velocities, exact equipartition of the energy loss
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Figure 8. Asin Figure 7, with g, approximated by its low-
density limit: q=v2w_
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Figure 9. Full RPA Z 2 contribution to the stopping pow-er
(solidline), asafunction of thevelocity of theprojectile. The
total contributionfromf, of eq. (35) (solidline) has been split
into contributions coming from losses to single plasmons
(dashedline) and singledectron-hole pairs (dottedline). The
dashed-dotted line representsthetotal contribution fromf, of
€g. (36), which appearsasaconsequence of lossesto e ectron-
holepair excitations.

corresponding to momentum transferslarger and smaller than
w/2wp. Thisequipartition rule appears straight-forward in the
electron gasat rest approximation, and it hasbeen formul ated,
for an electron gasnot at rest, by Lindhard and Winther [32].
Thisequipartitionisa sofoundto beexact, inthehigh velocity
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limit, by using Coulomb scattering of independent el ectrons
with g, = /v or by assuming that independent electrons
are scattered by avelocity dependent Yukawa potentia with
screening length proportiona to cop/v.

As far as the Z;* stopping power is concerned, we
havesplit the contributionstof, fromlossesto single plasmons
and single electron-hole pairs, and we have found the result
shown in Figure 9 by dashed and dotted lines, respectively.
On the other hand, al contributionsto f,, represented in this
figure by adashed-dotted line, come from lossesto electron-
holepairs. Thus, itisobviousfromthisfigurethat contributions
to the Z 2 effect coming from losses to plasmons is small,
showing that nonlinear corrections to losses from single
plasmons are not important, and that collective excitations
appear to bewell described by linearly screened ion potentials.
The equipartition rule, vaid within first order perturbation
theory and/or a linear response theory of the electron gas,
cannot be extended, therefore, to higher ordersin theexternal
perturbation.

Finally, in order to account approximately for the Z.®
effect coming from both the conduction band and the inner-
shells, a local plasma approximation has been used, by
assuming that alocal Fermi energy can be attributed to each
element of the solid, and experimental differences between
the stopping power of silicon for protons and antiprotons
have been successfully explained in thisway [40].

Conclusions

In conclusion, we have devel oped aquadratic response
theory for the understanding of nonlinear aspects in the
interaction of charged particles with matter. In the frame of
many-body perturbation theory, we have studied the
interaction of charged particleswith the elec-tron gas, within
the random phase-approximation, and, in particular, the
nonlinear wake potentia generated by movingionsin matter,
the Z 3 correction to the stopping power, and processes
involved in multiple excitations of electron-hole pairs and
plasmons.

Double plasmon mean free pathsfor incident el ectrons
and positrons, and also second order contributions to the
stopping power coming from theexcitation of singleand double
plasmons have been evaluated, for the first time, in the full
RPA, asafunction of thevelocity of the projectile.

Our resuiltsfor the Z * correction to the stopping power
show that for velocities smaller than the Fermi velocity, the
stopping power is, up to third order intheion charge, alinear
function of the projectilevelocity. We have presented, for the
high-velocity limit, a for-mulathat gives a good account of
thefull RPA resultin awiderange of projectilevelocities, and
our theory agrees well with the experiment. We have also
sepa-rated the contributions to the stopping power coming
from losses to plasmon generation, and we have found that
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collective excitationsarewell described by linearly screened
ion potentials.

A nonlinear quantum hydrodynamical model of the
electron gas has also been developed [13]. It has been
demongtrated that double plasmon excitation probabilitiesand
the second order wake potentia and stopping power coincide,
withinthismodel, with aplasmon-polelike approximation to
our full RPA scheme. An extension of thismodel to study the
bounded el ectron gasis now in progress[14].

Full calculations of second order contributionsto the
wake potential and the induced electron density, within the
RPA, for different values of the vel ocity of the projectile and
theelectron density of themediumwill be published € sewhere
[15].

An analysis of the differences between a self-energy
approach to the Z 2 correction to the stopping power and the
open diagrammatical approach presented here, and, aso,
investigations of the Z ® stopping power for incident electrons
and positrons are now in progress.
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