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QUADRATIC RESPONSE THEORY FOR THE INTERACTION OF
CHARGED PARTICLES WITH AN ELECTRON GAS

Abstract

A survey is presented of the theoretical status of
quadratic response theories for the understanding of
non-linear aspects in the interaction of charged particles with
matter.  In the frame of the many-body perturbation theory, we
study the interaction of charged particles with an electron
gas, within the random-phase approximation (RPA).  In
particular, nonlinear corrections to the stopping power of an
electron gas for ions are analyzed, and special emphasis is
made on the contribution to the stopping power coming from
the excitation of single and double plasmons.  Double plasmon
mean free paths of swift electrons passing through an electron
gas are also discussed.

Key Words:  Double plasmons, electron gas, mean free paths,
quadratic response, random-phase approximation, stopping
power.

*Address for correspondence:
J.M. Pitarke, address as above.

Telephone number: 34-4-464 77 00
FAX number: 34-4-464 85 00
E-mail: wmppitoj@lg.ehu.es

J.M. Pitarke and I. Campillo

Materia Kondentsatuaren Fisika Saila, Zientzi Fakultatea, Euskal Herriko Unibertsitatea,
644 Posta kutxatila, 48080 Bilbo, Basque Country, Spain

(Received for publication May 14, 1996 and in revised form December 4, 1996)

Introduction

A quantitative description of the interaction of charged
particles with matter is of basic importance in many different
theoretical and applied areas [25].  When an ion penetrates
condensed matter, it causes changes in the charge state of the
ion.  Electrons may be stripped from the ion or captured from
electronic states of the solid; dynamic screening by valence
electrons originates a wake of electron density fluctuations,
and the ion may lose energy to the medium through different
types of elastic and inelastic collision processes.  When a
swift electron travels in a solid, it may also lose energy to the
medium.  While at relativistic velocities, radiative losses may
become important, for incident charged particles in the non-
relativistic regime, the significant energy losses appear as a
consequence of electron-electron interac-tions, giving rise to
the generation of electron-hole pairs, collective oscillations,
and inner-shell excitations and ionizations.

Since the pioneering works of Bohm and Pines [17,
37], the response of conduction electrons in metals to exter-nal
charged particles has been represented within the elec-tron
gas model, by replacing the ionic lattice by a homogeneous
background which serves to provide neutrality to the system.
The screening properties of a system of interacting electrons
are determined, within linear response theory, by the
wavevector and frequency dependent longitudinal dielectric
function ε

q,ω.  In the self-consistent field, or random-phase,
approximation, the dielectric function of an electron gas was
first derived by Lindhard [32], and, subsequently, a number of
workers gave alternative expressions for ε

q,ω, incorporating
various many-body higher order local-field corrections [31,
47, 48, 49] and band effects [1, 21, 54].  The effect of dissipative
processes occurring in a real metal and conversion of plasmons
into multiple electron-hole pairs may be allowed for in an
approximate way by including a damping coefficient in the
dielectric function [35].

Nevertheless, the validity of the linear response theory,
which treats the perturbing potential to lowest order, is not
obvious a priori.  Although lowest order perturbation theory
leads to energy losses that are proportional to the square of
the projectile charge [16], Z

1
e, from measurements on positive

and negative pions [10, 11] and, also, on protons and
antiprotons [2, 33, 34], it is known that the energy loss exhibits
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a dependence on the sign of the charge [5, 6, 7, 26, 29, 36, 39,
40, 51].  On the other hand, experimentally observed nonlinear
double plasmon excitations [46, 50] cannot be described within
linear response theory [4, 38], and nonlinearities may also
play an important role on the electronic wake generated by
moving ions in an electron gas [3, 12, 22, 41].  Finally, lowest
order perturbation theory breaks down when the projectile is
capable of carrying bound electrons with it [25].

The first full nonlinear calculation of the electronic
stopping power of an electron gas was performed by Echenique
et al. [9, 23, 24], in the low-velocity limit.  They used a scattering
theory approach to the stopping power, and the scattering
cross sections were calculated for a statically screened
potential which was determined self-consistently by using
density-functional theory.  These static screening calculations
have recently been extended to velocities approaching the
Fermi velocity [55].  Alternatively, in the case of incident ions
a theoretical effective charge can be associated [18], and
non-linearities can be investigated, within a quadratic
response theory, extending, therefore, the range of validity of
linear response theory and providing results for arbitrary
velocities.  A quadratic response theory of the energy loss of
charged particles in an electron gas has recently been carried
out [42] by following a diagrammatic analysis of many-body
interactions between a moving charge and the electron gas.

In this paper, we present a survey of the theoretical
status of investigations carried out within a quadratic
re-sponse theory for the understanding of nonlinear aspects
in the interaction of charged particles with an electron gas.
We present general procedures to calculate, within many-body
perturbation theory, double plasmon excitation probabilities,
Z3

1
e3 contributions to the stopping power of an electron gas

for ions and the non-linear wake potential generated by
moving ions in an electron gas.  We focus on the contribution
to the stopping power coming from the excitation of single
and double plasmons.

Unless otherwise stated, atomic units are used
throughout (  = m

e
 = e2 = 1).

Theory

We consider a probe of charge Z
1
 interacting with a

many-particle system.  The excitation of eigenmodes of the
target together with the reaction of the probe to these
excitations can be described by the self-energy of the probe.
For an incoming particle in a state φ

0
 of energy p0 one writes

[28]:

Σ
0
 = ∫ d3r ∫ d3r’φ

0
*(r)Σ(r,r’,p0)φ

0
(r’)

where Σ(r,r’,p0) represents the non-local self-energy.
The real part of Σ

0
 gives us the real energy shift due to

the interaction with the medium, and the imaginary part is
well-known to be directly related to the damping rate
experienced by the particle as a consequence of the interaction
with real excitations of the target:

γ = -2ImΣ
0

We take the target to be described by an isotropic
homogeneous assembly of electrons immersed in a uniform
background of positive charge and volume Ω, and we use,
therefore, plane waves to describe the incident particle states.
Consequently,

γ = -2ImΣ
p

where Σ
p
 represents the Fourier transform of Σ(r,r’,p0), p  =

(p,p0), and p is the momentum of the probe.
The self-energy, Σ

p
, can be calculated in the so-called

GW approximation [43, 45]:

qqpp WG
qd

iZ −∫ π
=Σ

4

4
2
1

)2(

where G
k
 and W

q
 represent Fourier transforms of the Green

function for the probe and the time-ordered screened
interaction, respectively.  In applying this formula, we replace
G

k
 by the zero order approxima-tion; for electrons (Z

1
 =  1) [27]:

ηωηω
−

i -  - k

n
 + 

i +  - k

n
 = G

k
0 

k

k
0 

k
k

0 1

where ω
k
 = k2/2, η is a positive infinitesimal, and n

k
 represents

the occupation number, which at a temperature of T = 0 K is

n
k 
= θ (k

F
-|k|)

where k
F
 is the Fermi momentum, and θ(x) is the Heavi-side

function.
The dynamically screened interaction, W

q
, can be

represented as follows:

νε q  = W -1
qq

where ν
q
 represents the Fourier transform of the bare Coulomb

interaction:

q

4
 = 

2q
e2π

ν

(1)

(2)

(3)

(4)

(5)

(6)

(8)

(7)
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and ε
q
 is the dielectric function, which is related to the density-

density response function, χ
q
, by:

χνε q
-1
q  + 1 = q

Now, introduction of eqs. (5) and (7) into eq. (4), and
eq. (4) into eq. (3) gives the following result for the damping
rate of incident electrons with energy above the Fermi level:

P
2
dq

 = q

0

π
γ ∫∑

∞

0

 

q

where P
q
 represents the probability of transferring four-

momentum q = (q,q0) to the electron gas:

)E+p-q( ImWZ
4

-

= P

F
00

q
2
1

q

-( ) q-pq-p ωθωδ
Ω
π

The delta function in this expression appears as a consequence
of energy conservation, and the step function, θ(ω

p-q
 - E

F
),

ensures that no electrons lose enough energy to fall below
the Fermi level.

When the probe is not an electron, the occupation
number of eq. (6) is zero, i.e., we need not take account of the
fact that the incident electron cannot make transitions to
occupied states in the Fermi sea:

) q-pωδ
Ω
π

+p-q( ImW Z 
4

 - = P
00

q
2
1q

and if the probe has mass M >> 1, then recoil can be neglected
in the argument of the delta function to give:

)vq-q( ImWZ
4

-= P
0

q
2
1q ⋅δ

Ω
π

where v represents the velocity of the incoming particle.
The inverse mean free path of the probe is easily

obtained as follows:

P2
dq1-

q

0

v

1
 = π

∞

∫∑γ
0

 

q

and the stopping power of the target for the probe is obtained
as the energy loss per unit path length of the projectile, after
multiplying the probability P

q
 by the energy transfer q0:

Pq
v

1
 = 

dx

dE
- q

0
2
dq   0

π

∞

∫∑
0

 

q

In the so-called time-dependent Hartree, or random-
phase, approximation, the exact linear response function to a
screened charge is replaced by the response function of the
non-interacting electron gas:

GG
)(2

k d0
q

0
q+k

0
k4

4

2i- = 
π

∫χ

replacing the linear response function to an external charge,
χ

q
, by:

χνχχχ RPA
q

0
q

0
q

RPA
q   +  =  q

Within this approximation, the self-energy of eq. (4)
can be represented diagrammatically as in Figure 1, and cutting
the diagrams of this figure through the two-electron lines in
all the bubbles would lead to the open diagrammatic
representation of scattering amplitudes shown in [42].  In
particular, if M >> 1, the incident particle can be treated as a
prescribed source of energy and momentum, and one finds
[42]:

)vq- q(  W p)s(qqdZ
i2

 = S
0RPA

q
44

ii f, ⋅δ−+δ∫
Ω
π

where s = (s,s0), p = (p,p0), and W
q
RPA represents the random-

phase approximation (RPA) to the screened interaction of eq.
(7).

Then, the probability of transferring four-momentum
q to a free-electron gas by moving a particle from inside the
Fermi sea ( s  < q

F
) to outside ( p  > q

F
), thus creating an

electron-hole pair, is derived from the square of the matrix
element S

f,i
:

δ∑∑ 4
s-pq,

2
i f,sq  |Snn2 = P |) - (1 p

 

p

 

s

where δ4
q,q’

 is the symmetric Kronecker δ symbol, and
introduction of eq. (18)  into  eq. (19) gives exactly the result of
eq. (13) found by the self-energy method.

It is obvious at this point that double plasmon
excitations cannot be described within the GW-RPA
approximation to the self-energy, represented diagrammatically
in Figure 1; double excitations can only be described, within

(9)

(10)

(11)

(12)

(14)

(15)

(16)

(17)

(18)

(19)

(13)
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the GW approximation, with inclusion in the screened
interaction of dynamic local-field corrections.  On the other
hand, the study of Z

1
3 effects in the stopping power of an

electron gas for ions, and, also, the study of nonlinearities in
the wake generated by moving ions in an electron gas require
going beyond the so-called GW approximation.  The main
ingredient in the investigation of both double plasmon
excitations and Z

1
3 effects is the symmetrized quadratic

response function of the non-interacting electron gas:

) G G(GGi = M 0
q-q + k

0
q+k

0
q+k

0
k)(2

kd
qq,

11
4

4 

1
+∫

π

which gives account of the quadratic response of the system
to a given charge.  The real part of this three-point function
was first evaluated by Cenni and Saracco [20], explicit
expressions for the imaginary part in terms of a sum over hole
and particle states have been presented recently [39, 40, 42],
and an extension to imaginary frequencies has also been given
[44].

Double excitation probabilities

Treating the probe as an external source of energy
and momentum, the matrix element corresponding to the
process of carrying the system from an initial state a

i
+

1
a

i
+

2
Φ

0

〉 to a final state a
f
+

1
a

f
+

2
Φ

0
 〉 is

> |S|<

> |a a Saa|<
 = S

00

0
+
i

+
iff0

i i ,f f
2121

2121 φφ

φφ

where Φ
0
 is the vacuum state, a

i
 and a

i
+ are annihilation and

creation operators for fermions, respectively, and S is the
scattering matrix.  S is obtained as a time-ordered exponential
in terms of the perturbing Hamiltonian and field operators

Ψ(x) and Ψ+(x) destroying and creating, respectively, a particle
at the point r at time t.

Now, one can apply Wick’s theorem.  We note that
only normal ordered products with four uncontracted field
operators contribute, and we find, up to second order in the
probe charge, a result that can be represented diagrammatically
as in Figure 2.  Within the random-phase approximation, the
screened interaction, W

q
, is obtained from eqs. (7), (9) and

(17), and, accordingly, all self-energy and vertex insertions
have been neglected.  On the other hand, exchange processes
and, also, ladder contributions have not been introduced into
eq. (21), since they all lead to scattering probabilities that are
of a higher order in the screened interaction.

Finally, the probability for transferring four-
mo-men-tum q to a free-electron gas by moving two particles
from inside the Fermi sea ( s

1
  < q

F
 and  s

2
  < q

F
) to outside

( p
1
  < q

F
 and  p

2
  < q

F
) is derived from the square of the

matrix element S
f1f2,i1i2

:

δδ∑

∑∑∑∑

4
q-p ,q

4
q-p,q

2
i i ,f f

q

2221112121
  |Sn

nnn4 = P

| )  - (1

)  - (1

p

 

p

p

 

p
s

 

s

s

 

s

 

q

2

2

1

1

2

2

1

11

  

If the probe were not a heavy particle, then recoil should
be introduced into the argument of the delta function to ensure
energy conservation, and, in particular, if the probe were an
electron, a step function should also be introduced to ensure
that the probe does not lose enough energy to fall below the
Fermi level.  Then the contribution of eq. (22) to the probability
that is proportional to Z

1
2, obtained after introduction of the

Figure 1.  GW-RPA approximation to the self-energy.

(20)

(21)

(22)
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matrix element S
f1f2,i1i2

 (represented diagrammatically in Figure
2) into eq. (22), would coincide with contributions derived
from a GW approximation to the self-energy with inclusion, in
the screened interaction, of corresponding dynamic local-field
corrections.

In particular, the only Z
1
2 contribution to the probability

of eq. (22) which might represent the real excitation of a double
plasmon comes from the square of the scattering amplitude
represented by the second diagram of Figure 2.  It is given by
the following expression:

)E + p - q(  |M

qqWqWWZ = P

F 
002

qq,

2
qd

q
2-

q
2
1q

1

0
1

0

|  - ( )

1Im
1

Im
16

q-p q-p

0

 

q
2  

1

ωθωδ

−∫
Ω

π
π∑

Introduction of this probability into eq. (14) gives, after
approximating the linear and quadratic response functions by
their low q limits, the following high-velocity limit for the Z

1
2

contribution to the inverse mean free path coming from the
excitation of a double plasmon [38]:

2πν
≈γ

36

r
0.164  s1-

2p

Numerical study [19] shows that introduction of the full RPA
response functions gives a result for γ

2p
-1 which has, in the

high-velocity limit, the same dependence on v as the
approximation of eq. (24), though it is, for r

s
 = 2.07, larger than

this approximation by a factor of 2.16.
Z

1
3 correction to the stopping power for ions

The stopping power of an electron gas for a probe of
charge Z

1
, mass M >> 1 and velocity v is obtained after

introduction of the probability P
q
 into eq. (15).  Up to third

order in the projectile charge:

)P+P(q
2
dq double

q
single
q

0
0

v

1
 = 

dx

dE
- π

∞
∫∑  

0

 

q

where P
q
single and P

q
double, probabilities of transferring four-

momentum q to the electron gas by creating single and double
excitations, respectively, are obtained from eqs. (19) and (22),
respectively.  There,

Figure 2.  Diagrammatic representation, up to second order in the ion charge, of the RPA S
f1f2,i1i2

 scattering amplitude.  Solid internal
lines in the first and second diagrams are zero-order propagators, and the triple in-ter-nal vertex in the second diagram represents
the quad-ratic density response function of the non-interacting electron gas.  All vertex and self-energy insertions have been
neglected, as well as ladder contributions.

Figure 3.  Diagrammatic representation of the matrix element of eq. (26), as obtained within the RPA.

(23)

(24)

(25)



198

J.M. Pitarke and I. Campillo

)}(]

[2{

)()(
2

1
0
1,

0
1

044
1,

111

11

vqqMWWiW

GWiWZW

vqqpsqqdZS

qqqqqq

qsqqqq

if

⋅−δ

−π+

×⋅−δ−+δ
Ω
π=

−

+−

∫

which is represented diagrammatically in Figure 3, and

} )

]W{[

 x)

1 vq - q( WWZi2 +

MWWW - )G+G(W

vq - q( )p - s + q - (qqd

)p - s + q(qdZ
i2

 = S

0
1q-qq1

qq,q-qqq
1-0

q+q-s
0

qs+q-qq

0
221

44

111
4

1
4

122i i ,f ,f

11

11111

2121

⋅δπ

⋅δδ∫

δ∫
Ω
π

�

�

represented diagrammatically in Figure 2.  Processes involving
higherorder excitations have not been included.

Now, after introduction of eqs. (26) and (27) into eqs.
(19) and (22), respectively, we find, up to third order in the ion
charge:

)(-dE/dx + )(-dE/dx 

 + )dE/dx(- = 
dx

dE
-

doublesingle

single

22

1

where (-dE/dx)single1 represents the Z
1
2 contribution to the

stopping power coming from single excitations:

)
)(2

q
 
0

3
vq-q( WImqdqd

Z
v

2
-

= )(-dE/dx

0
q

00
3

2
1

single1

⋅δ∫
π

∫
∞

and (-dE/dx)single2 and ( dE/dx)double2 represent Z
1
3 contributions

to the stopping power coming from single and double
excitations, respectively:

]

W[Im

 )
)(2

)
)(2

q

1

-
3
1

0
3

H)WWWRe(

+ )MWWRe( 

vq - q( qd
qd

vq-q(  qdqd
Z

v

4
- = )(-dE/dx

qq,q-qq
* 
q

qq,q-qqq

0
1

0
1

3

000
3

3
1
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111

111

2

×⋅δ
π

∫

⋅δ
π

∫

∫

∫
∞

∞

∞
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]

WIm [

 )
)(2

)
)(2

q

1

1
0

3
1

0
3

 

 

 ) H + H(W)ImWWIm(

+ )MWIm(ImW

vq - q( qd
qd

vq-q( qdqd
Z

v

8
- = )(-dE/dx

)q-,-(qqq,qq-q
* 
qq

qq,qqqq

0
1

0
1

q3 

000
3

3
1
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11111
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0

2

−

∞

×⋅δ∫
π

∫

⋅δ∫
π

∫
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)()1(
22

8

110
1

0

0

0
1

0

3
3

3

3

3
4

,

11

1

qqq
qq

q

q

p

spqn
pd

n
sd

PH

qqss

ps

qss

ps

psqq

−→+














ω−ω+−−

ω+ω−δ
+

ω−ω+

ω−ω+δ

×+−δ−
ππ

π=

−++

∫∫

which is related to the imaginary part of the three-point function
of eq. (20) by [39, 40, 42]:

H + H + H = ImM q,-q-qq,qqq,qq 11111,

The contribution to the Z
1
2 stopping power coming

from double excitations, which is of higher order in the
screened interaction than the contribution of eq. (29), has not
been included in eq. (28).  However, contributions of eqs. (30)
and (31), which are proportional to Z

1
3, are all of the same

order in the screened interaction; they all need, therefore, to
be taken into account, and they all can be derived from the
knowledge of the Z

1
3 contribution to the self-energy by going

beyond the GW approximation.
It is interesting to notice that Z

1
3 contributions to the

stopping power that are proportional to the product of two
imaginary parts of the screened interaction, appearing as a
consequence of both single and double excitations, can be
combined, and we also find that contributions to the Z

1
3

stopping power that are proportional to the product of three
imaginary parts of the screened interaction, coming from single
and double excitations, cancel out.

Consequently, one finds the following result for the
contribution to the stopping power that is proportional to Z

1
3:

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)
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0
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0
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3
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π

∫

⋅δ∫
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∞

∞

∞

where

111 qqqqqq11 ReMReWReWImW = )q(q,f −−

HReWReWReW = )q(q,f qq,qqqq12 111 −

and

HReWImW2ImW- = )q(q,f q,qqqqq13 111 −

Contributions to the Z
1
3 stopping power of eq. (34)

coming from f
1
 and f

2
 of eqs. (35) and (36) both appear as a

consequence of single excitations: the first one comes from
the cross product between the first and third diagrams of
Figure 3, and gives, therefore, the contribution from losses to
one-step single excitations generated by the quadratically
screened ion potential, while the second term comes from the
cross product between the first and second diagrams of Figure
3 and gives the contribution from losses to two-step single
excitations generated by the linearly screened ion potential.
The third term comes from both cross products, and also from
losses to double excitations.  Contributions coming from single
plasmons are included in both f

1
 and f

3
, and contributions

coming from the excitation of double plasmons are only
included in f

3
.

Alternatively, the stopping power of an electron gas
can be obtained from the knowledge of the wake potential
induced in the vicinity of the projectile, as the induced retarding
force that the polarization charge distribution exerts on the
projectile itself, and a second-order many-body perturbation
analysis of the wake potential [12, 41] at r, defined as the mean
value of the interaction between a test unit positive charge at
that point and the electron gas, leads to eq. (34) for the Z

1
3

stopping power, as demonstrated in [42].
For high velocities of the probe, the electron gas can

be considered as if it were at rest, one can use, therefore, the
so-called static electron gas approximation for both linear and
quadratic response functions, and this results in f

2
 and f

3
 giving

no contribution to the integral of eq. (34), i.e., in the high-
velocity limit, only the contribution to the Z

1
3 stopping power

that is proportional to only-one imaginary part of the linearly
screened interaction, W

q
, is different from zero.  Furthermore,

it has been shown [42] that this contribution to the Z
1
3 effect

can be approximated, in the high-velocity limit, by:

L
v

Z = )(-dE/dx 12

2
p3

1
(2) ω

where ω
p
2 represents the plasma frequency ω = 4πn.  n is the

electron density of the medium, and L
1
 is the Z

1
3 correction to

the so-called stopping number:

p
3

p
1

2

v
  L

ω
νπω

≈
13.2

ln42.1
2

At high velocities, both the wake potential and the
stopping power can also be derived within a quantum
hydro-dynamical model of the electron gas.  In this model, we
expand the nonlinear hydrodynamical equations and find, after
quantization, a result for the Hamiltonian of the electron plasma-
heavy ion system, in terms of the triple vertex interaction
between three excitations, that exactly agrees with the result
obtained by Ashley and Ritchie [4] by following a different
procedure.  Then, we find second and third order wake
potentials and electronic stopping powers, and also double
plasmon excitation probabilities that coincide with plasmon-
pole like approximations to the full RPA results [13].

Results

Contributions to electron inelastic mean free paths
coming from single excitations of the electron plasma have
been calculated in the high velocity limit [17, 37], and in the
full RPA [8, 52, 53].  Figure 4 shows, as a solid line, our full RPA
results for the double plasmon inverse mean free path of
electrons passing through an electron gas of a density equal
to that of aluminum, as a function of the velocity, together
with the double plasmon inverse mean free path of positrons
(dashed line) and the high-velocity limit of eq. (24) multiplied
by a factor of 2.16 (dotted line):

v

r
10 x   

2
s3-1-

2p 13.3≈γ

At high velocities of the projectile, the electron gas
can be considered to be at rest, the effect of the Pauli restriction
is, therefore, removed, and the behaviour of the double
plasmon inverse mean free path, as a function of the velocity,
is independent of the particle statistics.  On the other hand, it
is interesting to note that the high-velocity limit of eq. (40)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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gives a good account of the full RPA result for both incident
electrons and positrons in a wide range of projectile velocities.
In particular, for aluminum and an incident electron energy of

40 keV, from eq. (40), we find a ratio for the double relative to
the single plasmon of 1.93 x 10-3, in agreement with the
experiment [46].

Contributions to the stopping power that are
proportional to Z

1
2 and Z

1
3, as obtained from eqs. (29) and

(34), are plotted in Figure 5 by solid lines, as a function of the
velocity,  again  for  r

s
 = 2.07.  It  is  interesting to notice that

both Z
1
2 and Z

1
3 contributions to the stopping power exhibit

a linear dependence on the velocity up to velocities
approaching the stopping maximum; this linear dependence
has also been observed for the low-velocity stopping power
when it is calculated to all orders in the probe charge, on the
basis of the density functional theory [55].  The linear
dependence of the Z

1
3 correction to the stopping power is,

however, a con-sequence of two competing effects.  First,
there is the effect of one-step single excitations generated by
the quadratically screened ion potential, represented by a
dashed line in the same figure, and then the effect of two-step
single excitations generated by the linearly screened ion
potential, represented by a dashed-dotted line.  The
contribution from losses to two-step single excitations,
represented by f

2
 of eq. (36), is very small at high velocities

when the velocity distribution of target electrons can be
neglected.  In this case, the static elec-tron gas approximation
can be made, the only non-vanishing contribution to the Z

1
3

effect comes, in this approximation, from f
1
 of eq. (35), i.e., from

losses to one-step single excitations generated by the
quadratically screened ion potential, and one finds that the
result obtained in this approximation is well reproduced by
eq. (38), represented in Figure 5 by a dotted line.  This
approximation gives a good account of the full RPA result,
even at intermediate velocities where the velocity of target
electrons is not negligible, and this is again a consequence of
two competing effects.  First, the non-negligible motion of the
electron gas gives rise to a smaller contribution from losses to
one-step single excitations, and this is almost compensated
by the non-vanishing contribution from losses to two-step
single excitations.  Contributions from losses to double
excitations are small in a wide range of projectile velocities,
and they are exact-ly equal to zero as far as the electron gas
can be considered to be at rest.

In order to analyze the contribution to the nonlinear
stopping power coming from losses to collective excitations,
we first show in Figure 6 the separate contributions to the
linear term from plasmon excitation and electron-hole pair
excitation by the incident particle.  For a momentum transfer
that is smaller than q

c
 (the critical wave vector where the

plasmon dispersion enters the electron-hole pair excitation
spectrum), both the plasmon and the electron-hole pair
excitation contribute to the energy loss, though contributions
from losses from electron-hole pair excitations are very small.
For q > q

c
, however, only the excitation of electron-hole pairs

con-tributes.  Total contributions to the Z
1
2 stopping power

Figure 4.  Full RPA double plasmon inverse mean free path of
electrons passing through an electron gas of a density equal
to that of aluminum (r

s
 = 2.07), as a function of the velocity

(solid line).  The dashed line represents the double plasmon
inverse mean free path of posi-trons, and the dotted line, the
high-velocity limit of eq. (24).

Figure 5.  Full RPA Z
1
3 and Z

1
3 contributions to the stop-ping

power calculated from eqs. (29) and (34), re-spectively, for Z
1

and r
s
 = 2.07, as a function of the ve-locity of the projectile.

Dashed and dashed-dotted lines represent Z
1
3 contributions

from f
1
 and f

2
 of eqs. (35) and (36), respectively.  The dotted

line represents the high-velocity limit of eq. (38).
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coming from q < q
c
 and q > q

c
 are shown in Figure 7, and

contributions coming from q < √ω
p
 and q > √2ω

p
 are plotted in

Figure 8; √2ω
p
 is the low-density limit of q

c
.  Contributions to

the stopping power coming from losses to plasmons is,
therefore, smaller than contributions from losses to electron-
hole pairs, especially at high electron-densities, though there
is, at high velocities, exact equipartition of the energy loss

corresponding to momentum transfers larger and smaller than
√2ω

p
.  This equipartition rule appears straight-forward in the

electron gas at rest approximation, and it has been formulated,
for an electron gas not at rest, by Lindhard and Winther [32].
This equipartition is also found to be exact, in the high velocity

Figure 6.  Full RPA Z
1
2 contribution to the stopping power

(solid line), versus velocity.  Dashed and dotted lines represent
contributions from plasmon and single electron-hole pair
excitations, respectively.

Figure 7.  Full RPA Z
1
2 contribution to the stopping power

(solid line), versus velocity.  Dashed and dotted lines represent
total contributions for q < q

c
 and q > q

c
, respectively, q

representing the momentum transfer, and q
c
, the critical

momentum for the plasmon being a well-defined excitation.

Figure 8.  As in Figure 7, with q
c
 approximated by its low-

density limit: q = √2ω
p
.

Figure 9.  Full RPA Z
1
3 contribution to the stopping pow-er

(solid line), as a function of the velocity of the projectile.  The
total contribution from f

1
 of eq. (35) (solid line) has been split

into contributions coming from losses to single plasmons
(dashed line) and single electron-hole pairs (dotted line).  The
dashed-dotted line represents the total contribution from f

2
 of

eq. (36), which appears as a consequence of losses to electron-
hole pair excitations.
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limit, by using Coulomb scattering of independent electrons
with q

min
 = ω

p
/v or by assuming that independent electrons

are scattered by a velocity dependent Yukawa potential with
screening length proportional to ω

p
/v.

As far as the Z
1
3 stopping power is concerned, we

have split the contributions to f
1
 from losses to single plasmons

and single electron-hole pairs, and we have found the result
shown in Figure 9 by dashed and dotted lines, respectively.
On the other hand, all contributions to f

2
, represented in this

figure by a dashed-dotted line, come from losses to electron-
hole pairs.  Thus, it is obvious from this figure that contributions
to the Z

1
3 effect coming from losses to plasmons is small,

showing that nonlinear corrections to losses from single
plasmons are not important, and that collective excitations
appear to be well described by linearly screened ion potentials.
The equipartition rule, valid within first order perturbation
theory and/or a linear response theory of the electron gas,
cannot be extended, therefore, to higher orders in the external
perturbation.

Finally, in order to account approximately for the Z
1
3

effect coming from both the conduction band and the inner-
shells, a local plasma approximation has been used, by
assuming that a local Fermi energy can be attributed to each
element of the solid, and experimental differences between
the stopping power of silicon for protons and antiprotons
have been successfully explained in this way [40].

Conclusions

In conclusion, we have developed a quadratic response
theory for the understanding of nonlinear aspects in the
interaction of charged particles with matter.  In the frame of
many-body perturbation theory, we have studied the
interaction of charged particles with the elec-tron gas, within
the random phase-approximation, and, in particular, the
nonlinear wake potential generated by moving ions in matter,
the Z

1
3 correction to the stopping power, and processes

involved in multiple excitations of electron-hole pairs and
plasmons.

Double plasmon mean free paths for incident electrons
and positrons, and also second order contributions to the
stopping power coming from the excitation of single and double
plasmons have been evaluated, for the first time, in the full
RPA, as a function of the velocity of the projectile.

Our results for the Z
1
3 correction to the stopping power

show that for velocities smaller than the Fermi velocity, the
stopping power is, up to third order in the ion charge, a linear
function of the projectile velocity.  We have presented, for the
high-velocity limit, a for-mula that gives a good account of
the full RPA result in a wide range of projectile velocities, and
our theory agrees well with the experiment.  We have also
sepa-rated the contributions to the stopping power coming
from losses to plasmon generation, and we have found that

collective excitations are well described by linearly screened
ion potentials.

A nonlinear quantum hydrodynamical model of the
electron gas has also been developed [13].  It has been
demonstrated that double plasmon excitation probabilities and
the second order wake potential and stopping power coincide,
within this model, with a plasmon-pole like approximation to
our full RPA scheme.  An extension of this model to study the
bounded electron gas is now in progress [14].

Full calculations of second order contributions to the
wake potential and the induced electron density, within the
RPA, for different values of the velocity of the projectile and
the electron density of the medium will be published elsewhere
[15].

An analysis of the differences between a self-energy
approach to the Z

1
3 correction to the stopping power and the

open diagrammatical approach presented here, and, also,
investigations of the Z

1
3 stopping power for incident electrons

and positrons are now in progress.
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