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ELECTRON DIFFRACTION BY CARBON NANOTUBES

Abstract

This paper first presents results from electron
diffraction (ED) and transmission electron microscopy (TEM)
of carbon nanotubes. TEM and ED of straight or coiled
nanotubes are shown and the mechanisms of formation of the
diffraction patterns caused by their specific atomic structures
are qualitatively explained. Then a quantitative theory of
kinematical diffraction by straight carbon nanotubes is
proposed. The formalism is inspired from the theory of X-Ray
diffraction by helical structures originally developed by
Cochran, Crick and Vand for biological molecules. Each of the
cylindrical graphene layers in a nanotube is viewed as being
constructed from a finite set of regularly spaced carbon helices
sharing the nanotube axis. This description leads to an exact,
compact formula for the total kinematical diffraction amplitude
of a complete monolayer tubule of arbitrary chirality. We
illustrate the theory with computer simulations of the diffraction
patterns of monolayer tubules and multilayer nanotubes of
mixed chiralities and compare with observed ED patterns. The
closed-form formula for the scattering amplitude of a single
tubule also provides the molecular form factor to further
compute the diffraction by the regular lattice of parallel tubules
observed recently. We finally indicate briefly how the method
can be extended to compute the kinematical diffraction by
coiled nanotubes and other helical structures of nanometer
size.
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Introduction

It has been realized in the past ten years that pure
elemental carbon can condense in a variety of new three-
dimensional structures different from the traditional crystalline
sp2 planar graphite and sp3 diamond. When a high-
temperature carbon vapor cools down and condenses in an
inert atmosphere (Kroto et al., 1985; Krätschmer et al., 1990)
spheroidal, closed-cage carbon clusters called fullerenes are
formed with predominantly sp2 bonding between the atoms,
the most celebrated example being the truncated-icosahedron
shaped C

60 
molecule first identified by Kroto et al., (1985). In

addition to these globular fullerenes, other types of sp2 bonded
clusters were discovered, in particular hollow carbon fibers of
micrometer lengths and nanometer diameters. Iijima (1991) was
the first to observe these tubular fullerenes in the electrode
deposit formed in the carbon-arc method of fullerene
production (Krätschmer et al., 1990). Using transmission
Electron Diffraction (ED) and high-resolution Transmission
Electron Microscopy (TEM), he could demonstrate that the
nanotubes consist of a few individual graphene sheets rolled
up into coaxial circular cylinders of nanometer diameters and
that the seamless cylinders are separated by the canonical
graphitic interlayer distance of about 3.4 Å. Ebbesen and
Ajayan (1992) succeeded in adjusting the conditions of the
carbon-arc evaporation to make nanotubes in large quantities.
The nanotubes can be purified from undesirable soot
components by controlled oxidation (Ebbesen et al., 1994).
Shortly after the discovery of the multilayer nanotubes, Iijima
and Ichihashi (1993) and Bethune et al., (1993) were able to
produce, in a carbon-arc generator, abundant amounts of
single-wall, or monolayer tubules by co-evaporating a
transition metal (e.g., Fe or Co) along with carbon. Iijima and
Ichihashi (1993) managed to obtain ED and TEM pictures of
such a single-wall tubule. The reader is referred to Ebbesen
(1994) for a review of nanotube (carbon-arc) synthesis and
properties.

Among the most detailed TEM and ED studies of the
morphology of straight multilayer nanotubes are those
reported by Zhang et al. (1993a,b) and by Liu and Cowley
(1994a,b). A few selected examples will be discussed.

A different approach to carbon nanotube synthesis is
the low-temperature, catalytic growth method which was used
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by José-Yacaman et al. (1993) and by Ivanov et al. (1994).
This method, which consists in the cracking of hydrocarbons
on the surface of a finely divided metal catalyst, was already
in widespread use for the catalytic production of mesoscopic
carbon fibers (reviews of which are given by: Dresselhaus et
al., 1988; Baker, 1989; Rodriguez, 1993). Ivanov et al. (1994)
showed that in the appropriate synthesis conditions, besides
the straight nanotubes, several weight percent of regularly
coiled nanotubes were co-synthesized by the catalyst. Apart
from their size, the coiled nanotubes appear to be similar to
the coiled carbon filaments of mesoscopic diameters previously
observed (see Kawaguchi et al., 1992, and references therein).
TEM and ED studies (Ivanov et al., 1994; Zhang et al., 1994)
have shown that, like globular fullerenes, the coiled as well as
the straight, catalytically grown nanotubes when properly
annealed and purified are hollow and have a degree of
graphitization comparable to that of the carbon-arc grown
species which makes them suitable for observation by high-
resolution electron microscopy and diffraction.

A further method of nanotube synthesis is by
electrolysis (Hsu et al., 1995).

A number of papers have been devoted to the possible
growth mechanisms for straight or coiled nanotubes (Amelinckx
et al., 1994, 1995b; Colbert et al., 1994; Gamaly and Ebbesen,
1995; Fonseca et al., 1995; Guo et al., 1995a,b; Colbert and
Smalley, 1995) but these will not be discussed here.

Nanotubes are of great interest for their novel
structural (Dresselhaus et al., 1992), electronic (Hamada et
al., 1992; Mintmire et al.,, 1992; Charlier and Michenaud, 1993;
Lambin et al., 1995; Langer et al., 1995), optical (Hiura et al.,
1993; Bacsa and De Heer, 1995; Henrard et al., 1996), magnetic
(Lu, 1995) and other properties. For practical applications, they
are expected to exhibit mechanical properties (Robertson et
al., 1992) approaching the theoretical limit for sp2 bonded
carbon and could lead to composite materials superior in
strength to those prepared with the macroscopic and
mesoscopic carbon fibers in current industrial usage
(Dresselhaus et al., 1988).

In the rest of this paper, we concentrate on the two
techniques best suited for ascertaining the structural
characteristics of a single nanotube, namely TEM and ED.
We examine a few typical TEM and ED micrographs of straight
or coiled nanotubes. We discuss qualitatively the mechanisms
by which the micrographs are generated from the scattering
of electrons by the assumed atomic structure of the nanotubes.
Then we present a mathematical theory for the calculation of
electron scattering in the first Born, or kinematical
approximation. Computer simulations based on the theory will
be shown to successfully predict the principal features of the
diffraction patterns observed experimentally for straight
nanotubes. Finally we indicates in outline how the theory can
be extended to obtain the diffraction from coiled nanotubes
(Ivanov et al., 1994) as well as from other helical structures of

light atoms such as the conical scroll carbon fibers recently
revealed by ED (Amelinckx et al., 1992).

TEM and ED micrographs of nanotubes

In this section, we present selected TEM and ED
micrographs of straight or coiled nanotubes and explain in
simple terms the major characteristic features arising from the
underlying atomic structures.

In order to avoid confusion, throughout the rest of
this paper, we will systematically use the word tubule to refer
to a carbon tube having one single graphene layer while the
word nanotube will be reserved for multiwall tubes.

Straight nanotubes

Figure 1 reproduces the original micrographs obtained
by Iijima (1991) for a straight nanotube. Figure 1a shows two
parallel sets of 7 lines separated by a uniform region. The lines
are lattice fringes generated by the electron beam running
approximately perpendicular to the axis of the 7-layers, hollow,
circular nanotube. The electrons channel between the quasi-
planar sheets of the carbon honeycomb lattice parallel to the
beam on either sides of the nanotube. The outer and inner
diameters of the nanotube are 6.5 nm and 2.2 nm, respectively,
and the layers are separated by the graphitic distance of 0.34
nm. In effect, Figure 1a represents a projection of the structure
in the beam direction. The corresponding diffraction pattern
is presented in Figure 1b. There are two sets of spots organized
in mm2 mirror symmetry about the projection of the nanotube
axis. The bright, equidistant spots labeled (0002m) are aligned
perpendicular to the nanotube axis. They are produced by the
diffraction from the two sets of parallel quasi-planes whose
projections are shown in Figure 1a and which act as line
gratings for the electron waves. The other set of spots
arranged in circles around the transmitted(0000) beam is
produced by the diffraction of the two stacks of 7 hemi-
cylindrical layers upstream and downstream of the beam. The
first-order circle in Figure 1b comprises three hexagonal sets
of spots.

To understand the details of the pattern, one must
take account of the possible chiral arrangement of atoms in
the successive tubules of the nanotube (Iijima, 1991). When
constructing a seamless cylinder by rolling up a piece of
graphene as shown in Figure 2a, one can obtain an achiral or
a chiral tubule depending on whether the free edges are sealed
without (Fig. 2b,c) or with (Fig. 2d) an integer offset of the
honeycomb network along the seam. An achiral tubule can be
either of the “perpendicular” type (i.e. having one set of C-C
bonds perpendicular to the tube axis, Fig. 2b) or of the “parallel”
type (C-C bonds parallel to the axis, Fig. 2c). Chiral tubules are
characterized by a chiral angle α which is proportional to the
quantized hexagon offset introduced at the seam (Fig. 2d).
There are several ways to define α but in the present paper we
shall use the angle between the tubule diameter and the nearest



Electron diffraction by carbon nanotubes

417

zig-zag line of atoms, as shown in Figure 2a.
Achiral tubules produce a hexagonal set of diffraction

spots (middle hexagon in Fig. 1b) having the (projection of
the) tube axis as symmetry axis. The observed spots are not
the usual circular diffraction features characteristic of 3-D
crystalline materials but are diffuse, comma-shape streaks

elongated normal to the tube axis and fading away from the
axis (the origin of the streaking will be explained below).  In
Figure 1b, the middle hexagon of the set of three in the first-
order circle has two edges lying parallel to the tube axis. These
spots originate from one or several achiral, parallel tubules
(Fig. 2c). The absence in Fig. 1b of a hexagon of first order
spots with edges perpendicular to the tube axis indicates the
absence of perpendicular tubules (Fig. 2b) in this nanotube.

A chiral tubule on the other hand will produce two
hexagonal sets of streaked spots rotated symmetrically with
respect to the previous achiral set. One hexagon is the result
of diffraction by the upstream, hemi-cylindrical portion of the
tube and the other by the downstream part. The rotation angle
separating the two hexagons is twice the chiral angle α in
Figure 2a. In Figure 1b, one clearly observes a pair of hexagons
of streaked spots in the first order circle symmetrically placed
with respect to the achiral spots and rotated with respect to
the latter by a chiral angle α of about 12°.

Figure 3 shows a diffraction pattern obtained by Zhang
et al. (1993b) from the nanotube shown in Figure 3a. The
electron beam is perpendicular to the nanotube axis. The

Figure 1. (a) Bright-field TEM image of a 7-layers nanotube;
the 0.34 nm distance between the fringes sets the distance
scale. (b) Observed diffraction pattern for the nanotube in a
(Iijima, 1991). (c) Computer simulated pattern for a model 7-
layers nanotube made of the successive (29,0), (38,0), (47,0),
(48,13), (55,16), (63,17), (70,20) tubules, having radii increasing
by about 0.34 nm (the (L,M) tubule notation is made clear in
Figure 2a). The small vertical splitting of the chiral streaks is
caused by the slightly different chiral angle of about 12° of
the outer four tubules. The spots marked (0002m) and the
intervening intensity modulation are produced by the vertical
double diffraction grating of Figure 1a.

Figure 2. (a) Definition of an (L,M) tubule in a graphene sheet
(Hamada et al., 1992); the tubule is obtained by rolling up the
sheet and superposing the (L,M) site with the (0,0) site. C is
the tubule circumference and a is its chiral angle. (b) Achiral
(5,5) “perpendicular” tubule. (c) Achiral (9,0) “parallel” tubule.
(d) Chiral (7,3) tubule.
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narrow, forward-scattering beam allows a better resolution of
the (000±2) spots which are seen to be elongated towards and
away from the center of the pattern in Figure 3b. This
micrograph and higher resolution ED micrographs (Bernaerts
et al., 1995a) indicate that the diffuse radial intensity can be
resolved into weak, regularly spaced spots.

This phenomenon arises from an interference between
the electron waves scattered by the left and right sides of the
nanotube acting as parallel slits and therefore provides an
implementation of the famous Young two-slits experiment
performed here with electrons and a nanotube (a similar
phenomenon was observed from intergrown lamellae in Nd

1-

x
Ce

x
CuO

4
 superconductor, Verwerft et al., 1990). The theory

developed later will provide the mathematical form of the diffuse
intensity oscillations between the (0002m) spots. The first
order circle in Figure 3b reveals several hexagonal sets of split
spots due to perpendicular or nearly perpendicular tubules
(of which the chiral angle, in the convention of Figure 2a, is
about 27.5°, i.e., 2.5° away from the purely perpendicular
configuration). The streaks are clearly observed to have a
modulated intensity fading away from the axis.

The spots have varying contrast when tilting the
nanotube axis away from the normal to the electron beam, as

shown in the series of ED patterns of Figure 4. The intensity
of the streaking is also changed by such tilting experiments. A
detailed interpretation of these pictures has been provided by
Zhang et al. (1993a,b) in terms of geometrical considerations
in the reciprocal space of a cylindrical graphene sheet. The
reader is referred to this reference for a complete discussion.

We now provide a different but qualitatively equivalent
interpretation of the streaking phenomenon by reasoning in
the real space of the nanotube (see also Amelinckx et al.,
1995a). A mathematical theory of streaking in the kinematical
approximation will be given in the next section. When the
electron beam travels towards a nanotube, it sees the
honeycomb lattice of the graphene sheets of each tubule as
having a well defined and constant lattice spacing along the
tubule axis. However, it sees a shrinking lattice parameter along
the tubule circumference, towards the tubule edges where the
hexagons are looked upon at grazing incidence. The diffraction
of the electrons will then give rise to spots which remain sharp
in the direction along the tubule axis; but normal to it, the
spots will be elongated away from the tubule axis, that is
towards larger diffraction angles since produced by apparently
shorter lattice spacings. The intensity of each spot increases
towards the axis and ends up at the nominal hexagonal
position. This behavior arises by virtue of the fact that the
orientation of the honeycomb lattice perpendicular to the beam
represents an extremum. According to the simplified view
presented here, the streaking is the analogue, in wavevector
space, of what is known, in the frequency domain, as
“chirping” and is the reciprocal of the real-space apparent
chirping of the lattice spacing around the tubule circumference.
This concept can be spectacularly illustrated by optical
simulation experiments, as explained in detail by Amelinckx et
al. (1995a). It will be confirmed by the theory that the streak
intensity does not vary continuously as predicted by this
simple model but is modulated as a result of the same
interference of the diffraction by the two tubule walls, as was
invoked for the (0002m) spots.

The changes of the diffraction pattern upon tilting in
Figure 4 are also a chirping phenomenon of sort but this time
in the direction along the nanotube axis. Indeed, tilting the
nanotube away from the normal to the beam reduces the
apparent honeycomb lattice spacing along the tube axis as
seen by the electron waves. Hence, while the (0002m) spots
(which lie on the tilt axis) remain unaffected by the tilting, all
spots not on the tilt axis must recede from it. This is clearly
demonstrated in Figure 4 where the two pairs of spots marked
A, B and C, D are seen to “climb up” the second order circle
and end up coalescing at the top and disappearing when the
tilt angle increases. Detailed geometrical constructions which
explain the changes of the diffraction pattern upon tilting are
discussed by Zhang et al. (1993b). The theory described below
will allow us to perform computer simulations of the diffraction
of a tubule by an off-normal electron beam. A practical use of

Figure 3. (a) Bright-field image of a thick multilayer nanotube
(20 nm outer diameter) and (b) the corresponding diffraction
pattern showing that the nanotube contains a majority of
perpendicular or nearly perpendicular tubules; note the diffuse
intensity between the equatorial (0002l) spots and the
modulated streaking of the hexagonal spots.
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the tilting experiment will be discussed later.

Coiled nanotubes

When nanotubes are grown catalytically (Ivanov et
al., 1994), the inhomogeneity and anisotropy of the growth
process on the surface of the supporting metal particle creates
stresses in the nascent nanotube which may cause it to bend
and twist periodically, resulting in the formation of a regular
helix (Kawaguchi et al.,1992; Amelinckx et al., 1994; Fonseca
et al., 1995). TEM images of such coils are shown in Figure 5.
Consideration of the stiffness of the C-C sp2 bond indicates
that it would be quite impossible to deform elastically a straight
nanotube into such a highly contorted shape.  In addition, an
elastically deformed tube would not remain stable upon release
of the stress. Plastic deformation must have taken place at or
near the interface with the metal particle during growth.

High resolution imaging of selected areas of the coil

(Bernaerts et al., 1995a), such as the one shown in Figure 6,
reveals that the coiled nanotube is actually sharply bent at a
succession of knees joining two straight cylindrical segments.
Apart from their short length, the latter have the same structure
as the micron-long straight nanotubes of the previous section.
The polygonized texture of the coiled nanotube is confirmed
by the corresponding diffraction patterns. Selected area ED
micrographs of two helix periods and one single period are
shown in Figures 7b and 7d, respectively, alongside bright-
field images of the nanotubes (Bernaerts et al., 1995a). The
diffraction spots of each straight segment lie on quasi-
continuous circles which are reminiscent of a powder pattern
of ordinary graphite. But the most conspicuous feature is the
first order diffraction arc labeled (0002) in Figure 7b. This arc is
produced by the (0002) spots of the successive straight
nanotube segments. It reflects the changing orientation of

Figure 4. Sequence of electron diffraction patterns of a nanotube (18 layers with an innermost diameter of about 1.3 nm) obtained
by tilting the vertical nanotube by the indicated angle about a horizontal axis. Note the changes in the spot contrast and in the
streaking intensities. The second order symmetric pairs of spots marked A, B and C, D move toward the twelve o’clock position
upon tilting. The spots C, D belong to achiral, parallel tubules and merge in Fig.4f when the tilt angle is 30°.
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the segments of which the axis describes a cone around the
helix axis. The angular opening of the arc is related to the helix
radius-to-pitch ratio. Note in Figure 7d that the arc is spotty as
a result of the “space quantization” of the segment orientation
in the polygonized helix. Moreover, the arc is most intense at
its edges, which again stems from the extremum nature of the
segment orientation at the edges of the cone it describes.
Counting the number of spots in the (0002) arc of Figure 7d or
estimating the bend angle in Figure 6 indicates that there must
be about a dozen straight segments per helix turn.

How can one connect two nanotube segments at an
angle of about 30° without grossly distorting the honeycomb
lattice of each of the graphene layers of the tubes? Remarkably,
solutions to this problem were discussed theoretically by
Dunlap (1992) and by Ihara et al. (1993) even before the
observation of the coiled nanotubes. In Dunlap’s construction,
the bending of a single graphene tubule can be accomplished,
while maintaining the continuity of the honeycomb lattice, by
introducing a single pentagon at the apex and a single
heptagon diametrically opposed at the saddle point of the
knee. A ball-and-stick model of the structure is shown in Figure
8 (Fonseca et al., 1995). Chiral as well as achiral tubules of

equal or of different diameters can be connected in this way
with just a single pair of 5-7 ring defects.  In a multilayer coiled
nanotube, the 5-7 rings of the knees in each layer are assumed
to be aligned in a common direction (Fonseca et al., 1995).
Note that one or several atoms around the 5 and/or the 7 rings
can be removed without causing the collapse of the knee
which is kept rigid by the rest of the continuous honey-comb
lattice. Hence, vacancies and vacancy clusters may have been
inserted during the growth process in place of the highly
strained, 5-7 topological defects.

The precise value of the knee angle is still a matter of
discussions. A recent study by Zhang and Zhang (1995) using
TEM and ED from a coiled nanotube seen along its axis reveals
that there are just 12 straight segments per helix period in their
particular sample and hence that the bend angle must be less
than 30°. This appears to be consistent with Dunlap’s
estimation of 30° from his construction (Dunlap, 1994).
However molecular model building (Fonseca et al., 1995) as
well as theoretical equilibrium structure calculations (Lambin
et al., 1995) suggest that the bend angle should be larger than
or close to 36°, at least in the small diameter tubules which are
amenable to such simulations. Note that bending at less than
36° can be accomplished by a non diametrically opposed 5-7
pair (Ihara et al., 1993). High resolution TEM and ED
observations specifically designed to study the knee region
could lead to the identification of the actual or most frequently
occurring modes of bending in coiled nanotubes.

Sequencing the nanotube chirality

We have discussed the effect introduced by the
chirality of individual tubules on the diffraction pattern: each
chiral tubule produces a pair of hexagons of streaking spots
(in every diffraction order) whose angular separation, which
is twice the chiral angle, can be measured accurately. But a
complete characterization of a given multilayer nanotube
would require the “sequencing” of the nanotube chirality,
that is the specification of the chiral angle of each and every
successive tubule of the nanotube. This remarkable feat
appears to be within reach of high resolution electron
microscopy by at least two different but related methods, one
working in real space, the other via reciprocal space. The
principle of both methods is illustrated in Figure 9.

The first method would involve an examination of the
nanotube bright field image at the best resolution attainable
today which allows one to resolve the graphene repeat distance
of 0.21 nm between zigzag rows of atoms (Zhang et al., 1993a).
Consider, in the image of Figure 1a, one of the lattice fringes
corresponding to the edge of a particular tubule whose chirality
is to be determined. The method would consist in tilting the
nanotube axis away from the normal to the electron beam until
the zigzag (curved) “rows” at the edge of the chosen tubule
are brought into alignment with the electron beam. A sketch of
the tilting experiment is given in Figure 9a,b. When correctly
aligned in this way, the quasi-continuous lattice fringe chosen

Figure 5. Coiled nanotubes of various radii and pitches. The
inset indicates (arrows) than the coils are polygonized.
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on the left side of the tubule in Figure 1a (or on the right side,
depending on the chiral handedness) should break up into
resolvable beads separated by 0.21 nm (Fig. 9b). The tilt angle
and its sign would then give the chiral angle and handedness
of that particular tubule. The method was already used in
TEM of biological structures such as the helical arrangement
of proteins in the tobacco mosaic virus (Finch, 1972, and
references therein) and is also reminiscent of a computer
experiment in which a space-filling model of a DNA molecule
is tilted in order to obtain a better view through the small and
large grooves of the double helix (Rich, 1992). A computer
simulation (Bernaerts et al., 1996) has demonstrated the
feasibility in principle of this method. However, several practical
problems, the most serious of which is the severe radiation
damage caused by the high intensity electron beam in high-
resolution TEM, have so far prevented the actual
implementation of this direct approach.

The second method makes use of the diffraction
contrast, dark-field imaging technique. It consists in producing
an image of the nanotube by selecting, with a small objective
aperture, those electrons which have been scattered into a

particular diffraction spot belonging to one hexagonal set of
chosen chiral angle. Such electrons will image primarily those
tubules which are responsible for their diffraction into the
selected spot and hence will allow, in principle, a “reading” of
the position (relative to the bright field image of the nano-tube)
of the tubule(s) having the chosen chirality. Among the spots
belonging to a chiral tubule, the most suitable ones for dark-
field imaging are those closest to the twelve o’clock (and six
o’clock) site in the first order diffraction circle (Fig. 9c). As
was discussed before, a tilting of the tubule axis away from
the normal to the electron beam will cause these spots to
climb towards the top (and bottom) of the diffraction circle
and merge when the tilt angle coincides with the chiral angle
of the tubule(s) under scrutiny. This is immediately clear by
referring to Figure 9b again: for the correct chiral alignment,
the zigzag atomic helices (drawn as continuous lines in Fig. 9)
project into cycloids which have sharp horizontal cusps on
the left (or right) side of the tilted tubule. The regular cusps
generate a linear grating in the direction of the tubule axis
which diffracts the electron waves and give rise to the two
merging streaked spots at twelve o’clock, as discussed in the

Figure 6. High resolution image of a coiled nanotube revealing its polygonized texture. The maximum projection of the polygon
angle is about 30°. The inset shows the approximately circular cross section of the nanotube.
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previous section. Hence a small aperture placed there (Fig. 9c)
will lead to a dark-field image illuminating a narrow portion of
the left wall of the nanotube preferentially to the right wall (or
vice-versa).

Very recently, Bernaerts et al. (1996) have given a first
successful implementation of the dark-field imaging method.
They produced a “map” of the chirality distribution in a
multilayer nanotube and gave a detailed, reciprocal-space
interpretation of the successful method. They further report
on other remarkable observations in diffraction contrast, dark-
field imaging bearing on the defective structures of nanotubes
(Bernaerts et al., 1996, 1997).

Kinematical Diffraction Theory

Validity of the First Born Approximation

In this section, we construct a kinematical theory of
wave diffraction by a straight nanotube, in view of confirming
the previous interpretations which were based on geometrical

considerations alone. The theory will go beyond the
geometrical description by allowing one to predict, under
legitimate conditions, the relative diffraction  intensities.  This
should  be  useful  for  X-ray diffraction (XRD) for which, as is
well known, the kinematical theory is generally adequate.
Unfortunately, there are so far very few XRD studies of carbon
nanotubes. One early measurement on a nanotube powder is
due to Zhou et al. (1994) and the theory presented here should
prove useful for interpreting the observed θ-2θ plot. Ideally,
one would like to experiment on a single crystal or, at least, on
oriented nanotube fibers. Macroscopic samples of oriented
nanotubes have been successfully prepared for other
purposes (de Heer et al., 1995), but these samples are not
likely to be made of nanotubes of a single species (e.g.,
monodispersed diameter, unique chirality distribution) as one
would like to have for exploiting an XRD fiber diagram (see
however the very recent paper by Thess et al., 1996).

The definite advantage of electron diffraction over

Figure 7 (a) Coiled nanotube and (b) the corresponding diffraction pattern of a selected area indicated in (a) by the rectangle and
comprising two helix periods; note the (0002) arcs. (c) The same coiled nanotube as in (a) and (d) diffraction from a selected area
of one single period; note the spotty appearance of the (0002) arc and the intensity maxima at the arc extremities.
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XRD is that the scattering power of atoms for electrons is
such that the beam can be focused onto one single nanotube
for diffraction and imaging, as illustrated in the previous
section. This very advantage however usually entails one
interpretational drawback, namely that the conditions for the
validity of the first Born or kinematical approximation to
describe the electron scattering quantitatively may be difficult
to meet (Gevers, 1970): for heavy materials, the applicability of
the kinematical theory to the calculation of Bragg spot
intensities demands that the thickness of the diffracting object
traversed by the electron beam be less that 10 nm. For carbon
nanotubes however, the conditions should not be so severe
on account of the smaller scattering power of the light carbon
atom, as we now show.

The kinematic atomic scattering amplitudes f
e
(q) of

elements for fast electrons have been compiled by Smith and
Burge (1962) and by Doyle and Turner (1968) who analyzed

Figure 8. Ball-and-stick model of a single nanotube knee of
about 30°. The bend is obtained by inserting a pair of
pentagonal and heptagonal ring defects diametrically opposed
at the outer elliptic and inner hyperbolic (saddle) points of the
knee. The stick connects the aligned 5-7 rings in the two
tubules which are separated by the 0.34 nm graphitic distance.

Figure 9. Principle of the tilting experiment to determine the
handedness of a chiral tubule. In (a) a familly of three zig-zag
rows of atoms are represented as parallel, right handed spirals
making an angle a with the horizontal, tilting axis. In (b) the
tubule axis has been tilted by an angle α, its upper tip toward
the viewer; note that the sinusoidal projections of the spirals
in (a) have changed to cycloids in (b) with their sharp cusps
appearing on the left side of the tubule. In (c) the streaked
spots at one and eleven o’clock move upon tilting toward the
twelve o’clock position marked A where an aperture is placed
for dark-field imaging of the tubule.
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scattering factors calculated from realistic atomic
wavefunctions. The first Born approximation to high-energy
electron scattering (by the screened nuclear Coulomb
potential) used in these calculations is dominant provided
that the “fine structure constant” Ze2/ v = (Zc/v)/137, where
Z is the nuclear charge and v is the electron velocity, is much
smaller than one (Landau and Lifshitz, 1967). For Z = 6 and for
300 keV electrons, a typical electron energy used in the TEM-
ED works discussed in the present paper, one finds Ze2/ v ≈
0.07, a value indeed small enough to validate the first Born
approximation. From the tabulated data (Doyle and Turner,
1968), one can then estimate a total elastic cross section
(including the correction of relativistic length contraction) of
σ Å 2.2 10-2 Å2 per carbon atom. Ignoring coherent scattering
within and between the graphene layers, of which the area
density is about 0.4 atom/Å2, we find that the total scattering
probability is of order 10-2 per atomic layer. After traveling
through N layers, the relative Poisson probabilities for single
and double scattering would be 10-2N and 10-4N2/2!
respectively. If we demand that the double scattering be less
than 10 % of the single scattering, N may not exceed 20 layers.

In a quantitative evaluation of the intensity of electron
wave diffraction by a crystalline, cartesian material, one

eventually considers the “extinction distances” ξg for Bragg
beams characterized by the reciprocal lattice vectors g. In the
so-called one-beam kinematical theory (Gevers, 1970), ξg is
the distance traveled after which the wave intensity is totally
transferred by elastic scattering from the forward beam to the
diffracted beam g in the exact Bragg orientation. For the
kinematical theory to be valid, the thickness traversed by the
beam should be much smaller than all ξg. For electrons of
kinetic energy E and wavelength λ, ξg at the exact Bragg angle
is given by ξg Å λE/Vg where Vg is the corresponding Fourier
component of the atomic lattice potential for the high-energy
electrons. Vg is related to the atomic scattering amplitude f

e
(g)

by

( ) ( )gf
m

eVg e
aig

2

1 2
. h

∑µ
µ

Ω
=

where the Σµ extends over the independent atomic sites aµ in
the graphite unit cell of volume Ω Å 17 Å3. Using again the
table of f

e
(g) in Doyle and Turner (1968), one finds Vg Å 0.25

eV for the lowest-order g parallel to the graphene plane. Due
to such a relatively small value of the carbon crystal potential,
for E = 300 keV one finds ξg Å 2.5 µm or about 7000 graphite
layers. Hence, in bulk graphite, the forward beam in an exact
Bragg direction will not be appreciably depleted by elastic
scattering until traversing several hundred layers. For
directions away from an exact Bragg angle, the depletion by
each of the diffracted beams is much reduced (Gevers, 1970).
In nanotubes, the turbostratic disorder of successive tubules
will tend to suppress the coherent Bragg scattering and
prevents the build up of amplitude in particular reflections.

We thus reach the conclusion that the kinematical
theory should be a valid approximation for carbon nanotubes
made of several tens of monolayers and hence the theory
appears to be quite suitable for the nanotubes actually
observed in the works reported above.
CCV Theory

In formulating our theory, we take the view that a
straight monolayer tubule can be constructed by assembling
a finite set of parallel monoatomic carbon helices sharing the
nanotube axis. A glance at Figure 2 shows that this can be
done in a number of ways both for achiral and for chiral
tubules. We use this approach because there already exists
an analytical treatment of diffraction by a regular, monoatomic,
circular helix. The theory was developed by Cochran, Crick
and Vand in 1952 (Cochran et al., 1952, referred to here as the
CCV theory) for the diffraction of X-rays by polypeptide α-
helices and was applied to DNA molecules shortly thereafter
(Watson and Crick, 1953; Franklin and Gosling, 1953. See also
Klug et al., 1958; Vainshtein, 1966). These biological molecules
often can be viewed as collections of C, H, N, O, P, S etc.
coaxial helices. The CCV theory turns out to be particularly

Figure 10. Cylindrical coordinates of atoms on a regular circular
helix of pitch P and atomic repeat distance p along the helix
axis.
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straight-forward to apply to straight, circular carbon nanotubes
since they have a single type of atoms regularly arranged
along exactly circular and equidistant coaxial helices. The
theoretical approach developed here is similar to the one
introduced earlier by Qin (1994) and was formulated quite
independently (Lucas et al., 1996).

To set the notations, we provide a particularly
straightforward derivation of the CCV result. The scattering
amplitude of a collection of atoms at fixed positions r

j
, is given

by

( ) ( ) ( ) ( )∑≡=
j

rik jekfkAkfkT
.

where k is the wavevector transfer and f(k) is the kinematic
atomic scattering factor for X-rays or for electrons, assumed
to be isotropic (the theory can be generalized to “anisotropic”
atoms). The diffraction factor A(k) is the Fourier transform of
the nuclei density

( ) ( )∑ −δ=
j jRrrp

On a regular, circular, monoatomic helix of radius r,
pitch P and atomic repeat distance p in the z-direction of the
helix axis, the atomic positions are given, in cylindrical
coordinates, by (see Fig. 10)
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where j is an integer and (r, φ
o
, z

o
) are the coordinates of an

atom taken as a conventional origin. To evaluate equation (1)
in cylindrical coordinates according to equation (2), we use
the Jacobi-Anger expansion of a plane wave in Bessel
functions (Arfken, 1985):
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and k = (k
x
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y
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z
) are the cartesian coordinates of the

wavevector transfer. This relation can be readily demonstrated
by noting that the plane wave, being a periodic function of ϕ,
can be expanded in the Fourier series (eqn. 3) of exp(-inϕ); the

expansion coefficients are obtained, in the usual way, as an
integral of the left hand side of equation (3) multiplied by
exp(inϕ), which yields the Bessel function J

n
 and the other

phase factors in equation (3). Substituting equations (3) and
(2) into equation (1), the summation over j in (1) can then be
performed by using the well known identity
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The result is the CCV formula:
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The diffracted intensity is the square modulus of this
expression. The δ-function means that the intensity is nonzero
only on horizontal “layer-lines” [Polanyi (1921): the basic
concept of layer-planes and layer-lines in the X-ray structures
of fibers is implicit in this paper. The word “layer-line”
(Schichtlinie) first appears in this paper and has been used
ever since to describe X-Ray fiber diagrams). The layer-lines
are positioned at

Tp

m
+
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π

If P/p is irrational, k
z
 can take all real values. If P/p is

rational the layer-lines occur only at discrete values of k
z
 =

2πl/T where l is an integer and T, the true helix period, is the
smallest common multiple of P and p.

We can now apply this result to a nanotube.
As Figure 2 illustrates, a tubule of arbitrary chirality

can conveniently be specified by two integers (L,M) giving
the position of the hexagonal atomic cell which, on rolling up
a flat sheet of graphene to make a seamless tubule, is brought
in coincidence with the cell at the origin (Hamada et al., 1992).
Parallel and perpendicular achiral tubules are of the type (L,0)
and (M,M), respectively. Let us arbitrarilly choose in Figure
2a one of the zig-zag rows of atoms which makes a nonzero
angle with respect to the tubule circumference C. In Figures
2b, c or d, these atoms make two helices related to one another
by a single screw operation (z

1
, ϕ

1
). Shifting this zig-zag pair of

helices L 1 times by the tubule helical symmetry operation (z
o
,

ϕ
o
) covers the tubule completely (discussions of helical

(1)

(2)

(3)

(4)

(6)

(5)
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symmetries of nano-tubes have been given by Klein et al.,
1993, White et al., 1993, and Dresselhaus et al., 1995). The
diffraction amplitude of the complete tubule is therefore
obtained by adding up the amplitudes, as given by equation
(5), of a finite set of L helix pairs. Since the successive
amplitudes differ only by phase factors, the total amplitude
will involve summing a geometrical series.

Diffraction by an Achiral Tubule

As an illustration of how the method works
mathematically, let us consider the simple case of a parallel
tubule (L,0) (Fig. 2c). From equation (1), an initial zig-zag pair
of helices separated by the pure translation (z

1
=d,ϕ

1
=0) along

the z-axis will produce the scattering amplitude

( ) ( )( )11
. zik

j

Rik
pair

zj eekA += ∑

where z
1
 = d Å 0.14 nm is the C-C bond distance. Note in

passing that the pair amplitude vanishes if k
z
z

1
 is an odd

multiple of π. This happened to be the case for the celebrated
B-DNA molecule (Franklin and Gosling, 1953) which has two
helical strands displaced by z

1
 = 3P/8 and of which the X-ray

fiber diagram indeed shows a missing 4th layer-line (k
z
z

1 
= 3π).

If we now subject the pair of helices to L-1 pure
translations (z

o
=3d, ϕ

o
=0) along the z-axis and add up the

amplitudes (7) for each pair, the amplitude gets multiplied by
the geometrical series
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The first factor is the amplitude of a single helix, as
given in equation (5); the second means that there are two
kinds of inequivalent helices in the tubule, just as there are
two inequivalent atoms in the hexagonal unit cell of the
honeycomb lattice; and the last factor gives the interference
between all the pairs in the complete tubule. Because in a
parallel tubule the helix period is P = Lz

o
 = 3dL and because k

z

is quantized to the layer-lines k
z
 = 2πl/P, this last factor amounts

to
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where the Kronecker δ
l,sL

 suppresses all layer-lines except
those at l = sL, s integer. The diffraction pattern is therefore
confined to layer-lines separated by integer multiples of 2πL/
P = 2π/3d which is the expected result since, in the parallel
tubule, the repeat distance in the z-direction is 3d. Along each
allowed layer-line, the intensity is given by a linear combination
of Bessel functions. As will be seen in the computer
simulations, the overall result is a mm2-symmetric hexagonal
set of spots streaking, in an oscillatory fashion, away from the
tubule axis.

Diffraction by a Chiral Tubule

We now formulate the result of the application of the
CCV theory to the diffraction amplitude of a general chiral
tubule specified by the two arbitrary integers (L,M). The
pattern is again organized in layer-lines labeled by an integer
l. The total scattered amplitude along the l’th layer-line
factorizes as follows:

( ) ( ) ( ) ( )2/π+ψ
∑ ⊥ kin

n ntub erkJkf=kT
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n
 (L,M)     B

n
 (L,M)

The scattered intensity is the square modulus of this
expression. The factors have the following meaning: f(k), J

n

and ι
k
 have been defined before in equations (1) and (3);

A
n
(L,M), represents the contribution of the two inequivalent

helices of the tubule, as in equation (8), and is given by
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B
n
(L,M) is the factor associated with the summation over L

pairs of helices making up the complete tubule:
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Let us denote by C the circumference of the tubule in units of
the honeycomb lattice parameter d√3. This is given by

( )222
MLML=
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r
=C ++π

The sum over n in equation (10) is restricted to integer values
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of n satisfying the selection rule of the l’th layer-line

l = nq + mp

where m is an integer and p, q are integers obtained after
reduction of the rational fraction

2M+L

C
=

q

p 22

Irrespective of the chirality, the true helix period T is always an
integer multiple of the atomic period along the axis of a carbon
helix and is given by (Dresselhaus et al., 1995):
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) and (ϕ
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These formulae are arrived at by simple geometrical
constructions in the plane of the honeycomb lattice.

Then, taking equations (14)-(18) into account, some
algebra shows that the factor in equation (12) simply reduces
to

B
n
   = L Σ

s
δ

n+mM,sL

where s in any integer. The effect of the Kronecker δ-functions
is to eliminate all layer-lines pertaining to the single, original
helix pair and to leave only such layer-lines as will construct
two hexagonal patterns of spots each rotated by the chiral
angle ± α with respect to the mm2-symmetric position (i.e., the
position characteristic of an achiral (L,0) tubule). Due to the
oscillations of the Bessel functions, each “spot” is a streak
fading away in an oscillatory fashion perpendicular to the
meridional axis of the pattern.

Computer Simulations

We now illustrate the theory with computer simulations
of the diffraction by straight tubules and nano-tubes. In the
calculations, we have used the actual kinematic form factor
for carbon such as listed by Doyle and Turner (1968). Since in

electron microscopy work, the spot intensities are seldom
measured quantitatively, our simulations will at this stage serve
only to confirm the capability of the theory to obtain the
qualitative features of the diffraction patterns.

We note that the complete formula in equations (10)-
(12) is computationally extremely efficient: the only variable
input is the pair of integers (L,M) which give the tubule size
and chirality. The position of each layer-line of nonvanishing
intensity is determined in advance by the purely geometrical
factor B

n
(L,M); and along a given layer-line, the intensity

calculation demands only a few dominant Bessel functions.
Due to the closed form of the formula, the computing time is
independent of tubule size. By contrast, the brute force
calculation of the scattering from the thousands of individual
atoms would require constructing their coordinates and
sweeping the reciprocal space in search of the diffraction
spots.
Monolayer tubules: normal incidence

In the spirit of our approach of building up a tubule by
assembling a set of helices, we first present the result of a
computer experiment: Figure 11 shows the successive patterns
obtained by diffraction, at normal incidence, from an increasing
number of helix pairs, beginning with just one pair (Figure
11a) and ending with the full complement of L=18 pairs of a
complete (18,0) parallel tubule (Fig. 11d). In Figure 11a, one
recognizes the diamond and maltese cross structures
characteristic of the diffraction by a regular helical molecule
such as the celebrated DNA (Franklin and Gossling, 1953).
There are many layer-lines along which the intensity is given
by a dominant Bessel function of increasing order. Note that
the regions about the long diagonals of the diamonds are
extinguished by the destructive interference between the
waves scattered by the two inequivalent helices (in this
simulation, the two inequivalent helices were chosen to be
connected by parallel C-C bonds shown in the perspective
drawing below the pattern; note that this choice of starting
helix pair, which corresponds to the analytical formulae of
equation 18, is different from the zig-zag pair discussed
previously. The end result of the simulation for the complete
tubule is of course independent of this choice). In the next
three patterns produced by 6, 12 and 18 helix pairs, the layer-
lines are seen to become progressively removed by destructive
interferences, except for those destined to build up the final
hexagonal, mm2 symmetry pattern.

The spots are elongated perpendicular to the tubule
axis: this is the streaking phenomenon observed in the real ED
patterns (Iijima, 1991; Iijima and Ichihashi, 1993; Zhang et al.,
1993b). The intensity modulation of the zeroth layer-line is
essentially a representation of the oscillations of the zeroth
order Bessel function. This central line would be the only one
present if the scattering pattern was produced by a smooth,
continuous cylinder of the same radius. The oscillations
basically represent a slit function and arise from the interference

(14)

(15)

(16)

(17)

(18)

(19)
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Figure 11. Computer simulations of the diffraction patterns of an increasing number of helix pairs from one pair (a) to the complete
set of 18 pairs (d) making up the complete (18,0) tubule. The diamond repeat of the maltese cross characteristic of atomic helices
in (a) is seen to evolve into the hexagonal spot pattern of a tubule in (d) by the destructive interference removal of intervening layer
lines in (b) and (d).
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between waves scattered by the two edges of the cylinder.
Such a continuous tube has only one characteristic length, its
diameter, which sets the length scale for the argument of the
Bessel function. This is further demonstrated by Figure 12
which is the normal incidence diffraction pattern of a (36,0)
parallel tubule. The oscillation frequency in the zeroth layer-
line has doubled in comparison with Figure 11d. The streaking
spots now also exhibit intensity oscillations which reflect the
same interference effect of the tubule edges. These streak
modulations were barely visible in the less contrasted picture
of the smaller (18,0) tubule. The enhanced contrast in the
(36,0) pattern also reveals the second order hexagon of
streaking spots. The present interpretation of the modulated
streak intensities was already provided by Iijima and Ichihashi
(1993) in terms of Fraunhofer diffraction from the two portions
of the tubule parallel to the incident electron beam.

Figure 13 shows the simulated diffraction of an (18,1)
chiral tubule. There are now two first order hexagonal sets of
spots which are obtained from the achiral parallel hexagon of
Figure 10d by clockwise and counterclockwise  rotations  by
the  small  chiral  angle cos-1[(2L+M)/2C] Å 2.68°. Note that the
twelve o’clock streak has split into two symmetric modulated
streaks, leaving zero intensity on the (projection of the) tubule
axis.

Although only the amplitudes are additive and not
the intensities, one expects that the general geometrical

features in the diffraction pattern of a multilayer nanotube will
reflect the  patterns of  individual tubules  such as shown in
Figures 12 and 13. Since the chiral angle can vary from zero
(parallel tubule) to 30° (perpendicular tubule), a nanotube will
usually contain a number of tubules with small chiral angles,
say of the order of or smaller than 10°.  Such tubules will
produce overlapping horizontal streaking spots near the twelve
o’clock (and six o’clock) positions, because the streaking is
nearly tangent to the first order circle around these positions.
Due to the finite resolution in the ED micrograph, this overlap
will therefore result in thick and long streaks about one and 11
o’clock. The other four hexagonal spots of each tubule
however will give rise to well resolved pairs of nonoverlapping
streaks, as in Figure 13. This explains the frequently observed
reinforced streaks at the top and bottom of the first order
diffraction circle, such as those shown in Figures 1b and 4.
For a nanotube containing a majority of nearly perpendicular
tubules, the horizontal streak reinforcement should appear at
twelve o’clock in the second-order circle, as in Figure 3b.
Monolayer tubules: oblique incidence

We have performed calculations of the diffraction of
an  electron beam by a tubule at  various incidence angles, in
order to simulate a tilting experiment such as the one shown in
Figure 4. A large (25,10) tubule of 2.41 nm diameter and 16°
chiral angle was selected for the simulation. The four
diffraction patterns in Figure 14 correspond to tilting the tubule

Figure 12. Computer simulation of the diffraction pattern of a
(36,0) tubule. The modulation frequency of the streaks is
doubled as compared to the case of the twice smaller (18,0)
tubule in Figure 11d.

Figure 13. Computer simulation of the diffraction pattern of
an (18,1), nearly parallel, chiral tubule. There are now two sets
of hexagonal streaked spots turned with respect to each other
by twice the chiral angle of 2.68°.
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axis away from the beam normal by an angle θ of 0, 10, 20 and
30 degrees, respectively. The detailed effect of tilting the
sample can be computed from Eqn. (10) by rotating the transfer
wavevector k by an angle θ around the y-axis in the opposite
direction.

One observes that the layer-lines recede from the
zeroth order layer-line when θ increases. Measuring distances
between  layer-lines  in  the  direction  of  the tubule axis
confirms that they increase like 1/cosθ. This “chirping” in
reciprocal space corresponds to a decrease of the apparent
axial lattice spacing, as seen by the electron waves, by a factor
cosθ (this is easily verified by considering a simple line grating
at oblique incidence, see Amelinckx et al., 1995a). The other
striking effect of the tilting on the diffraction pattern is the
“climbing motion” of the pair of spots marked A,B and C,D

towards the twelve o’clock position on their respective circles.
They form a single streak when θ = 20° and beyond but the
simulation shows that they began to  coalesce when θ neared
the chiral angle of 16°. This behavior reproduces qualitatively
the observation of Figure 4. It justifies setting the dark-field
imaging aperture at twelve o’clock to measure the chiral angle
of a tubule or set of tubules, as discussed previously (Fig. 9c).

Multilayer Nanotubes

A nanotube containing N coaxial tubules separated
by the graphite interlayer spacing c

o
 Å 0.34 nm is fully specified

by giving i) a set of integer pairs (L
m
,M

m
), m = 1,...,N, specifying

the chirality sequence and ii) the relative registry between the
successive tubules, i.e. the cylindrical coordinates (r

m
,ϕ

om
,z

om
)

Figure 14. Computer simulation of the diffraction patterns obtained by tilting the axis of a (25,10) tubule through the indicated
angles. This computer experiment simulates qualitatively the real experiment shown on Figure 4. Note the motion of the spots A,
B and C, D upon tilting.
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of a set of initial atoms in the tubules. The (L
m
,M

m
) pairs

should satisfy, up to a small tolerance of at most a few per
cent, the condition that the circumference C

m
 given by

equation (13) increases by 2πc
o
/ Å 8.81 from one tubule to the

next in the set. Starting from an inner tubule of radius C
1
, a

possible tubule set can be read off the honeycomb lattice of

Figure 15 in which successive concentric  equidistant circles
of radii C

m
 have been drawn. Any pair (L,M) representative of

a lattice point sitting on or near (to within the tolerance) one of
the circles, defines an acceptable tubule of the set. Figure 15
makes it clear that for fixed external dimensions C

1
 and C

N
 of

the nanotube, there can be several sets of tubules differing by
their chirality (and handedness) and that the bigger the
nanotube size, the larger this chirality degeneracy. The highly
efficient diffraction formula for a complete tubule developed
in this paper allows the simulation of the diffraction patterns
corresponding to all possible chirality sequences compatible
with the above construction rules.  The observed TEM/ED
chirality map discussed before (Bernaerts et al., 1996).

When two or more coaxial tubules are considered,
interferences are expected from adding the complex diffraction
amplitudes of individual tubules.  Three sets of parameters
are expected to govern interference effects: (i) the new
characteristic distance c

o
 Å 0.34 nm will produce periodic

reinforcements of diffracted intensities in the direction normal
to the nanotube axis; (ii) different chirality sequences will lead
not only to different spot patterns but also to different,
nonadditive spot intensities; (iii) changing the relative tubule
registry by gliding or rotating the tubules with respect to each
other about their common axis should also affect the spot
intensities. In this paper, we will explore only the first two
effects.

We can easily predict the major interference effect
associated with the interlayer distance c

o
. Indeed we expect a

constructive interference when k⊥ Å 2πn/c
o
 along the zeroth

order layer-line where n is a nonzero integer. If all the tubule
radii r

m
 are much larger than c

o
, the arguments of the Bessel

functions in equation (10) will be large as soon as we leave the
center of the diffraction pattern towards the first order circle:
k⊥ r

m
 Å 2πnr

m
/ c

o
 = C

m
n/ c

o
 Å 13n for, say, an (18,0) tubule. We

can then make use of the approximate expression of the
dominant Bessel function J

o
(x) for large argument x = k⊥ r

(Abramowitch and Stegun, 1984): J
o
(x) Å  cos(x-π/4). Adding

the various terms for tubule radii r
m
 = r

1
 + m c

o
, we see that the

phase in the cosine changes by 2π from one tubule to the
next. Ignoring the slow decrease of the J

o
 oscillation

ampli-tudes, the end result is a total amplitude at k⊥  = 2πn/c
o

growing like the number N of tubules and the intensity of the
(0002n) spot growing like N2. This quantitatively explains the
appearance of the (0002n) sets of spots as the principal feature
in the diffraction pattern of every multilayer nanotube. Figure
16 confirms this behavior. It shows the intensity of the zeroth
layer-line in the calculated diffraction pattern of Figure 1c.
The nanotube comprises 7 tubules whose radii and chiralities
(see the figure caption) have been chosen to simulate Figure
1a and the observed chiral angles of the diffraction pattern in
Fig. 1b. The zeroth layer-line (Figs. 1c and 16) exhibits the
predicted strong reinforcements corres-ponding to the
observed (0002n) spots and, in addition, shows intervening

Figure 15. Construction in the graphene lattice of tubule
circumferences for coaxial tubules separated by the graphitic
distance of 0.34 nm. All lattice points sitting on or near the
circles define possible tubules for a multilayer nanotube.

Figure 16. Simulated intensity distribution along the zeroth
layer-line produced by the 7-layers nanotube of Figure 1c
should be helpful in guiding and narrowing down the
exploration of the “chirality space” of a nanotube.
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oscillations due to the interference of the two nanotube walls
(the Young two-slits experiment). The agreement between
simulated and observed patterns is not completely satisfactory
but could certainly be improved by searching the chirality
and registry space of the 7-layers nanotube, as explained
before.

Discussion

This paper has presented a short review of TEM-ED
observations of straight and coiled nanotubes. In the
description of the observed patterns, the emphasis was put
on the important characteristics which call for a quantitative
theory of electron diffraction by nanotubes. Such a complete
theory was developed for the straight nanotubes comprising
any number of tubules of arbitrary chiralities and the simulated
patterns based on this theory were successfully compared
with the observed ones.

We wish to close this paper by pointing out a number
of opportunities offered by the new theoretical approach.

The computer-efficient theory allows for the simulation
of the diffraction by nanotubes with defects. For example
atomic vacancies or vacancy clusters can be easily simulated
by subtracting the amplitudes of the missing atoms from the
perfect nanotube amplitude. Another example is the case of
an “excentric” nanotube, i.e., having one or several missing
layers which eventually produce anomalous lattice fringe
spacings in the TEM image of the nanotube (Bernaerts et al.,
1996). This situation simply requires adding the amplitudes of
non coaxial but parallel tubules.

Very recently, Thess et al. (1996) have succeeded in
producing, by carbon laser ablation, “ropes” of
monodispersed, parallel (10,10) perpendicular tubules and have
taken a powder XRD diagram of the material. The present
theory is ideally suited to compute the fiber and powder
diagram of such a system since it provides the exact tubule
molecular form factor from which to calculate the diffraction
of the ordered triangular lattice of tubules in the “rope”.

Other helical structures of light elements such as the
carbon conical scrolls (Amelinckx et al., 1992) and the BN and
BCN nanotubes recently discovered (Tenne, 1995; Stephan
et al., 1994) are ameanable to an application of the present
theory since they can be described as an ensemble of regular
helices. The theory will also be found useful for interpreting
X-ray diffraction data from nanotubes made of heavy elements
such as the disulfide MoS

2
, WS

2
 (e.g., Tenne, 1995).

Certain fundamental extensions of the theory are
required to deal with coiled nanotubes. Since these are made
up from connected pieces of straight cylindrical segments, it
will be necessary to account for the finite length of the straight
sections and of the irregular atomic arrangement in the
connecting knee regions which contain ring defects (Ivanov
et al., 1994). The latter must be introduced numerically, atom

by atom, while the former can be handled analytically via
equations (4) and (5) in which the δ-function is replaced by a
slit-function giving the diffraction amplitude of a helix of finite
length.

Nanotubes containing cylindrical scrolls (Amelinckx
et al., 1995b) pose a special simulation problem. They require
the diffraction amplitude of helices of finite length wound
around a circular cone. This can be written analytically and
involves derivatives of the cylindrical Bessel functions
(Abramowitz and Stegun, 1984). Work along these lines is in
progress.
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Discussion with Reviewers

M.S. Dresselhaus: In reading the paper I wanted to know
how electron microscopy could distinguish between cylinders
and scrolls.
Authors: The only, admittedly indirect, TEM evidence for
scrolls is the observation (Bernaerts et al., 1995b) of anomalous
spacings between basal lattice fringes in one wall or the other
in the bright field image of a nanotube. The interpretation in
terms of scrolls is consistent with the frequent finding that
the number of distinct chiral angles is less than the number of
tubules in a nanotube, a multiturn scroll having of course a
constant chiral angle. One or several missing tubules in a
nanotube would also lead to singular fringe spacings
(Bernaerts et al., 1997) as a result of the van der Waals attraction
of the inner portion of the nanotube towards the outer layers,
although this interpretation would not explain the paucity of
chiralities. The issue could be resolved by the chance imaging
of a nanotube fragment along its axis.
M.S. Dresselhaus: I wonder whether resonances due to
periodic stacking of nanotube arrays could be found. In view
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of the interest in the single wall nanotubes produced by the
Rice group (Thess et al., 1996), some comments on what TEM
can tell us about these materials would be of interest.
Authors: As stated the scattering amplitude of a single tubule
will serve as the molecular form factor for the scattering by a
tubule array, the total scattering amplitude being the product
of the form factor by the Fourier transform of the two-
dimensional array. A simplified form factor was used by Thess
et al. (1996) to interpret their X-ray diffraction data from the
triangular array of (10,10) tubules observed by the Rice group.
Extinction of array resonances by the form factor are indeed
observed (Thess et al., 1996). Similar effects are expected for
electron diffraction but have not been reported so far.

D.T. Colbert: Regarding the assignments made to the nanotube
of Figure 1a from the simulation of Figure 1c, it is striking that
the best simulation is for the first three layers to be of zig-zag
type. Assuming that the (m,n) assignments are accurate, which
I do not contest, do the authors have any explanation for this
that would shed light on the growth mechanism? My own
view is that the stabilizing adatom interactions between open
edges first discussed in Guo et al. (1995a) is most effective for
zero- and low-helicity zig-zag tubes (armchair layers are
stabilized by the formation of C-C triple bonds along the “arms”).
As layer diameters increase, this give way to the importance
of finding the helicity that produces a diameter giving the
best van der Waals interaction with neighboring layers, since
the latter interaction grows as the square of the diameter. In
addition, since adatom interlayer interactions were proposed
to maintian the growing tip in an open state, keeping the
innermost layers open is especially important; again, this is
most effective for zig-zag layers.
Authors: We agree that atomic processes such as invoked by
Guo et al. (1995a) and Thess et al. (1996) are likely to influence
the choice of chirality sequence made by nature during growth.
However, while the set of tubule diameters and chiral angles
can be read off the experimental micrographs of Figures 1a
and 1b, these micrographs give no direct information on the
order in which the chiralities occur in the nanotube nor on the
relative glide positions of the successive tubules. For the
simulation of Figure 1c, the chirality sequence mentioned in
the caption and zero glides were chosen rather arbitrarily as a
first trial set and without attempting any optimization with the
observed diffraction intensities.

J.M. Cowley: Have the authors found any evidence for the
multi-walled carbon nanotubes of non-circular cross section
found, for example, by Liu and Cowley (1994a)?
Authors: We have not found direct evidence of the polygonal
cross section of tubules, even though we are convinced that
polygonization must occur. By “polygonisation”, we refer to
the model proposed in Zhang et al. (1993a). The difference
between circular and polygonized (18-20 sided polygon) in

our sense is small and difficult to prove directly. This is
different from the pentagonal model introduced by Liu and
Cowley (1994a) to explain the singular c-fringe spacings. We
attribute these anomalous spacings (Amelinckx et al., 1995b)
to the presence of dislocation-like defects (scrolls with ending
of graphene sheets).

J.M. Cowley: The dark-field method used by Bernaerts et al.
(1996) should be a very effective one. Do their results confirm
the conclusion of Liu and Cowley (1994b), that in a multi-
walled nanotube the chirality changes after every three or
four graphitic sheets?
Authors: Our scroll model for the anomalous fringe spacings
provides at the same time an explanation for the problem raised
by this question. We do confirm that the number of different
chiral angles within a multishell tube is three to four times
smaller than the number of shells.

J.M. Cowley: The arguments made regarding the validity of
the kinematical approximation for transmission through
graphitic sheets or for diffraction from ordered graphite
crystals under two-beam diffraction conditions do not seem
to be directly relevant to the case of nanotubes for which the
important consideration is the scattering by the graphitic layers
in the tube walls which are nearly parallel to the incident beam.
Have the authors considered the projected potential
distributions from the weak-phase-object approximation which
leads to asymmetries in the diffraction pattern, as observed
by Cowley et al. (1996)?
Authors: We agree that considerations on planar graphitic
sheets or crystalline graphite are not quantitatively applicable
to the curvilinear geometry of nanotubes. However, a full
dynamical theory of diffraction by the latter is not yet available
and the former systems were therefore considered for an order-
of-magnitude evaluation of the scattering power of nanotubes.
We believe that this evaluation was necessary to test the
applicability of the first Born approximation. Regarding the
asymmetries in the (00l) diffraction intensities it appears that
such asymmetries could be discovered by Cowley et al. (1996)
with the use of “nano-beams”, i.e., electron beams of diameter
of the order of one nm or less. We have not considered this
situation since the electron beams used in the work described
in the present paper covers several hundred Å. The
a-symmetries we observed in this case (Bernaerts et al., 1997)
occur between the (00l)-constructed dark-field images of the
left and the right walls of a circular nanotube. These
asymmetries, which we attribute again to the presence of
singular fringe spacings in one nanotube wall, are unrelated
to those observed by Cowley et al. (1996).
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