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Abstract

This paper first presents results from electron
diffraction (ED) and transmission electron microscopy (TEM)
of carbon nanotubes. TEM and ED of straight or coiled
nanotubes are shown and the mechanisms of formation of the
diffraction patterns caused by their specific atomic structures
are qudlitatively explained. Then a quantitative theory of
kinematical diffraction by straight carbon nanotubes is
proposed. Theformalismisinspired from thetheory of X-Ray
diffraction by helical structures originally developed by
Cochran, Crick and VVand for biological molecules. Each of the
cylindrical graphenelayersin ananotubeis viewed asbeing
constructed from afiniteset of regularly spaced carbon helices
sharing the nanotube axis. This description leadsto an exact,
compeact formulafor thetotal kinematical diffraction amplitude
of a complete monolayer tubule of arbitrary chirality. We
illustratethetheory with computer smulationsof thediffraction
patterns of monolayer tubules and multilayer nanotubes of
mixed chiralitiesand comparewith observed ED patterns. The
closed-form formulafor the scattering amplitude of asingle
tubule also provides the molecular form factor to further
computethediffraction by theregular lattice of parallel tubules
observed recently. Wefinally indicate briefly how the method
can be extended to compute the kinematical diffraction by
coiled nanotubes and other helical structures of nanometer
sze
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Introduction

It has been redlized in the past ten years that pure
elemental carbon can condense in a variety of new three-
dimensional structuresdifferent fromthetraditiona crystaline
sp? planar graphite and sp® diamond. When a high-
temperature carbon vapor cools down and condenses in an
inert atmosphere (Kroto et al., 1985; Kratschmer et al., 1990)
spheroidal, closed-cage carbon clusters called fullerenes are
formed with predominantly sp? bonding between the atoms,
themost cel ebrated exampl e being the truncated-icosahedron
shaped C, moleculefirstidentified by Krotoet al., (1985). In
additionto theseglobular fullerenes, other typesof sp? bonded
clusterswerediscovered, in particular hollow carbon fibers of
micrometer lengthsand nanometer diameters. lijima(1991) was
the first to observe these tubular fullerenes in the electrode
deposit formed in the carbon-arc method of fullerene
production (Krétschmer et al., 1990). Using transmission
Electron Diffraction (ED) and high-resolution Transmission
Electron Microscopy (TEM), he could demonstrate that the
nanotubes consist of afew individua graphene sheetsrolled
upinto coaxia circular cylindersof nanometer diametersand
that the seamless cylinders are separated by the canonical
graphitic interlayer distance of about 3.4 A. Ebbesen and
Ajayan (1992) succeeded in adjusting the conditions of the
carbon-arc evaporation to make nanotubesin large quantities.
The nanotubes can be purified from undesirable soot
components by controlled oxidation (Ebbesen et al., 1994).
Shortly after the discovery of themultilayer nanotubes, lijima
and Ichihashi (1993) and Bethune et al ., (1993) were ableto
produce, in a carbon-arc generator, abundant amounts of
single-wall, or monolayer tubules by co-evaporating a
transition metd (e.g., Feor Co) alongwith carbon. lijimaand
I chihashi (1993) managed to obtain ED and TEM pictures of
such asingle-wall tubule. The reader is referred to Ebbesen
(1994) for areview of nanotube (carbon-arc) synthesis and
properties.

Among the most detailed TEM and ED studies of the
morphology of straight multilayer nanotubes are those
reported by Zhang et al. (1993a,b) and by Liu and Cowley
(1994a,b). A few selected exampleswill bediscussed.

A different approach to carbon nanotube synthesisis
thelow-temperature, catalytic growth method which wasused
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by José-Yacaman et al. (1993) and by Ivanov et al. (1994).
Thismethod, which consistsin the cracking of hydrocarbons
onthe surface of afinely divided metal catalyst, was aready
inwidespread usefor the catalytic production of mesoscopic
carbon fibers (reviews of which are given by: Dresselhaus et
al., 1988; Baker, 1989; Rodriguez, 1993). Ivanov et al. (1994)
showed that in the appropriate synthesis conditions, besides
the straight nanotubes, severa weight percent of regularly
coiled nanotubes were co-synthesized by the catalyst. Apart
from their size, the coiled nanotubes appear to be similar to
thecoiled carbon filaments of mesoscopic diametersprevioudy
observed (seeKawaguchi et al., 1992, and referencestherein).
TEM and ED studies (Ivanov et al., 1994; Zhang et al ., 1994)
have shownthat, likeglobular fullerenes, thecoiled aswell as
the straight, catalytically grown nanotubes when properly
annealed and purified are hollow and have a degree of
graphitization comparable to that of the carbon-arc grown
species which makes them suitable for observation by high-
resolution el ectron microscopy and diffraction.

A further method of nanotube synthesis is by
eectrolysis(Hsuetal., 1995).

A number of papershave been devoted to the possible
growth mechanismsfor straight or coiled nanotubes (Amelinckx
etal., 1994, 1995b; Colbert et al., 1994; Gamay and Ebbesen,
1995; Fonsecaet al., 1995; Guo et al., 1995a,b; Colbert and
Smalley, 1995) but thesewill not be discussed here.

Nanotubes are of great interest for their novel
structural (Dresselhaus et al., 1992), electronic (Hamada et
al., 1992; Mintmireet al.,, 1992; Charlier and Michenaud, 1993,
Lambinetal., 1995; Langer et al., 1995), optica (Hiuraetal.,
1993; Bacsaand DeHeser, 1995; Henrard et al ., 1996), magnetic
(Lu, 1995) and other properties. For practica applications, they
are expected to exhibit mechanical properties (Robertson et
al., 1992) approaching the theoretica limit for sp? bonded
carbon and could lead to composite materials superior in
strength to those prepared with the macroscopic and
mesoscopic carbon fibers in current industrial usage
(Dresselhauset al., 1988).

In the rest of this paper, we concentrate on the two
techniques best suited for ascertaining the structural
characteristics of a single nanotube, namely TEM and ED.
Weexamineafew typical TEM and ED micrographsof straight
or coiled nanotubes. We discuss qualitatively the mechanisms
by which the micrographs are generated from the scattering
of eectronsby theassumed atomic structure of the nanotubes.
Then we present amathematical theory for the cal culation of
electron scattering in the first Born, or kinematical
approximation. Computer simul ationsbased on thetheory will
be shown to successfully predict the principal features of the
diffraction patterns observed experimentally for straight
nanotubes. Finally weindicatesin outline how thetheory can
be extended to obtain the diffraction from coiled nanotubes
(Ivanov et al., 1994) aswell asfrom other helical structuresof
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light atoms such as the conical scroll carbon fibers recently
revealed by ED (Amelinckx etal., 1992).

TEM and ED micrographsof nanotubes

In this section, we present selected TEM and ED
micrographs of straight or coiled nanotubes and explain in
simpletermsthemajor characteristic featuresarising fromthe
underlying atomic structures.

In order to avoid confusion, throughout the rest of
thispaper, wewill systematically usetheword tubuleto refer
to acarbon tube having one single graphene layer while the
word nanotubewill be reserved for multiwall tubes.

Sraight nanotubes

Figure 1 reproducestheorigina micrographsobtained
by lijima(1991) for astraight nanotube. Figure 1ashowstwo
paralle setsof 7 linesseparated by auniformregion. Thelines
are lattice fringes generated by the electron beam running
approximately perpendicular tothe axisof the 7-layers, hollow,
circular nanotube. The electrons channel between the quasi-
planar sheets of the carbon honeycomb lattice parallel to the
beam on either sides of the nanotube. The outer and inner
diametersof thenanotubeare 6.5 nmand 2.2 nm, respectively,
and the layers are separated by the graphitic distance of 0.34
nm. In effect, Figure larepresentsaprojection of the structure
in the beam direction. The corresponding diffraction pattern
ispresentedin Figure 1b. Therearetwo setsof spotsorganized
inmm2 mirror symmetry about the projection of the nanotube
axis. Thebright, equidistant spotslabeled (0002m) arealigned
perpendicular to the nanotube axis. They are produced by the
diffraction from the two sets of parallel quasi-planes whose
projections are shown in Figure 1a and which act as line
gratings for the electron waves. The other set of spots
arranged in circles around the transmitted(0000) beam is
produced by the diffraction of the two stacks of 7 hemi-
cylindrical layersupstream and downstream of thebeam. The
first-order circlein Figure 1b comprisesthree hexagonal sets
of spots.

To understand the details of the pattern, one must
take account of the possible chiral arrangement of atomsin
the successive tubules of the nanotube (lijima, 1991). When
constructing a seamless cylinder by rolling up a piece of
graphene as shown in Figure 2a, one can obtain an achiral or
achiral tubule depending onwhether thefree edgesare sealed
without (Fig. 2b,c) or with (Fig. 2d) an integer offset of the
honeycomb network along the seam. An achiral tubule canbe
either of the*perpendicular” type (i.e. having one set of C-C
bonds perpendicular tothetubeaxis, Fig. 2b) or of the* pardld”
type(C-Chondsparald totheaxis, Fig. 2c). Chira tubulesare
characterized by achiral anglea whichisproportional tothe
quantized hexagon offset introduced at the seam (Fig. 2d).
Therearesevera waysto definea but inthe present paper we
shall usethe angle between the tubule diameter and the nearest
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Figurel. (a) Bright-field TEM image of a7-layers nanotube;
the 0.34 nm distance between the fringes sets the distance
scale. (b) Observed diffraction pattern for the nanotubein a
(lijima, 1991). (c) Computer simul ated pattern for amodel 7-
layers nanotube made of the successive (29,0), (38,0), (47,0),
(48,13), (55,16), (63,17), (70,20) tubules, having radii increasing
by about 0.34 nm (the (L,M) tubule notation is made clear in
Figure2a). The small vertical splitting of the chird streaksis
caused by the dightly different chiral angle of about 12° of
the outer four tubules. The spots marked (0002m) and the
intervening intensity modulation are produced by thevertical
doublediffraction grating of Figure 1a.

Zig-zag line of atoms, asshownin Figure 2a.

Achiral tubules produce ahexagona set of diffraction
spots (middle hexagon in Fig. 1b) having the (projection of
the) tube axis as symmetry axis. The observed spots are not
the usual circular diffraction features characteristic of 3-D
crystalline materials but are diffuse, comma-shape stresks
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Figure2. (a) Definitionof an(L,M) tubulein agraphene sheet
(Hamadaet al., 1992); thetubuleisobtained by rolling up the
sheet and superposing the (L,M) sitewith the (0,0) site. C is
thetubule circumference and aisitschiral angle. (b) Achira
(5,5) “perpendicular” tubule. (c) Achira (9,0) “pardld” tubule.
(d) Chird (7,3) tubule.

elongated normal to the tube axis and fading away from the
axis (the origin of the streaking will be explained below). In
Figure 1b, the middle hexagon of the set of threein thefirst-
order circlehastwo edgeslying paraledl tothetubeaxis. These
spots originate from one or severa achiral, paralle tubules
(Fig. 2c). The absencein Fig. 1b of a hexagon of first order
spots with edges perpendicular to the tube axisindicates the
absence of perpendicular tubules (Fig. 2b) in this nanotube.

A chirdl tubule on the other hand will produce two
hexagonal sets of streaked spots rotated symmetrically with
respect to the previous achiral set. One hexagon isthe result
of diffraction by the upstream, hemi-cylindrical portion of the
tube and the other by the downstream part. Therotationangle
separating the two hexagons is twice the chiral angle a in
Figure2a. InFigure 1b, oneclearly observesapair of hexagons
of streaked spotsinthefirst order circlesymmetrically placed
with respect to the achiral spots and rotated with respect to
thelatter by achiral angle a of about 12°.

Figure 3 showsadiffraction pattern obtained by Zhang
et al. (1993b) from the nanotube shown in Figure 3a. The
electron beam is perpendicular to the nanotube axis. The
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Figure3. (a) Bright-fieldimage of athick multilayer nanotube
(20 nm outer diameter) and (b) the corresponding diffraction
pattern showing that the nanotube contains a majority of
perpendicular or nearly perpendicular tubules; notethediffuse
intensity between the equatorial (0002l) spots and the
modulated streaking of the hexagona spots.

narrow, forward-scattering beam allowsabetter resol ution of
the (000+2) spotswhich are seento be elongated towardsand
away from the center of the pattern in Figure 3b. This
micrograph and higher resolution ED micrographs (Bernaerts
et al., 19953) indicate that the diffuse radial intensity can be
resolved into weak, regularly spaced spots.

Thisphenomenon arisesfrom an interference between
the electron waves scattered by theleft and right sides of the
nanotube acting as paralel dits and therefore provides an
implementation of the famous Young two-dlits experiment
performed here with electrons and a nanotube (a similar
phenomenon was observed fromintergrown lamellagin Nd,
.Ce CuO, superconductor, Verwerft et al., 1990). The theory
developed | ater will providethemethematical formof thediffuse
intensity oscillations between the (0002m) spots. The first
order circlein Figure 3b revealssevera hexagond setsof split
spots due to perpendicular or nearly perpendicular tubules
(of which the chiral angle, in the convention of Figure 23, is
about 27.5°, i.e, 2.5° away from the purely perpendicular
configuration). The streaks are clearly observed to have a
modulated intensity fading away fromtheaxis.

The spots have varying contrast when tilting the
nanotube axis away from thenormal to the electron beam, as
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shownin the series of ED patterns of Figure 4. Theintensity
of thestresking isalso changed by suchtilting experiments. A
detailed interpretation of these pictures has been provided by
Zhang et al. (1993a,b) in termsof geometrical considerations
in the reciprocal space of a cylindrical graphene sheet. The
reader isreferred to thisreference for acomplete discussion.

Wenow provideadifferent but qualitatively equivaent
interpretation of the streaking phenomenon by reasoning in
the rea space of the nanotube (see aso Amelinckx et al.,
1995g). A mathematical theory of streakinginthekinematical
approximation will be given in the next section. When the
electron beam travels towards a nanotube, it sees the
honeycomb lattice of the graphene sheets of each tubule as
having awell defined and constant | attice spacing along the
tubuleaxis. However, it seesashrinking lattice parameter along
thetubule circumference, towardsthetubul e edgeswherethe
hexagonsarelooked upon at grazing incidence. Thediffraction
of theeectronswill then giveriseto spotswhich remain sharp
in the direction along the tubule axis; but normal to it, the
spots will be elongated away from the tubule axis, that is
towardslarger diffraction anglessince produced by apparently
shorter lattice spacings. Theintensity of each spot increases
towards the axis and ends up at the nominal hexagonal
position. This behavior arises by virtue of the fact that the
orientation of the honeycomb lattice perpendicular tothebeam
represents an extremum. According to the simplified view
presented here, the streaking is the analogue, in wavevector
space, of what is known, in the frequency domain, as
“chirping” and is the reciproca of the real-space apparent
chirping of thelattice spacing around thetubule circumference.
This concept can be spectacularly illustrated by optical
smulation experiments, asexplainedin detail by Amelinckx et
al. (19953). It will be confirmed by the theory that the streak
intensity does not vary continuously as predicted by this
simple model but is modulated as a result of the same
interference of the diffraction by thetwo tubulewalls, aswas
invoked for the (0002m) spots.

The changes of the diffraction pattern upon tilting in
Figure 4 are a so achirping phenomenon of sort but thistime
in the direction along the nanotube axis. Indeed, tilting the
nanotube away from the normal to the beam reduces the
apparent honeycomb lattice spacing along the tube axis as
seen by the electron waves. Hence, while the (0002m) spots
(whichlieonthetilt axis) remain unaffected by thetilting, all
spots not on the tilt axis must recede fromit. Thisis clearly
demonstrated in Figure 4 wherethetwo pairsof spotsmarked
A,BandC, D areseento “climb up” the second order circle
and end up coalescing at the top and disappearing when the
tilt angleincreases. Detailed geometrical constructionswhich
explain the changes of the diffraction pattern upontilting are
discussed by Zhang et al. (1993b). Thetheory described below
will alow usto perform computer smulationsof thediffraction
of atubule by an off-normal e ectron beam. A practical use of



Electron diffraction by carbon nanotubes

Figure4. Sequenceof electron diffraction patterns of ananotube (18 layerswith aninnermost diameter of about 1.3 nm) obtained
by tilting the vertical nanotube by the indicated angle about a horizontal axis. Note the changes in the spot contrast and in the
streaking intensities. The second order symmetric pairs of spotsmarked A, B and C, D movetoward the twelve 0’ clock position
upontilting. The spots C, D belong to achiral, parallel tubulesand mergein Fig.4f whenthetilt angleis30°.

thetilting experiment will bediscussed | ater.
Cailed nanotubes

When nanotubes are grown catayticaly (Ivanov et
al., 1994), the inhomogeneity and anisotropy of the growth
process on the surface of the supporting metal particle creates
stresses in the nascent nanotube which may cause it to bend
and twist periodically, resulting in the formation of aregular
helix (Kawaguchi etal.,1992; Amelinckx et al., 1994; Fonseca
etal., 1995). TEM imagesof such coilsareshownin Figure5s.
Consideration of the stiffness of the C-C sp? bond indicates
that it would be quiteimpossibleto deform elagtically astraight
nanotube into such a highly contorted shape. In addition, an
eladticdly deformed tubewould not remain stableuponrelease
of the stress. Plastic deformation must have taken place at or
near theinterface with the metal particle during growth.

High resolution imaging of selected areas of the cail
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(Bernaerts et al., 1995a), such asthe one shown in Figure 6,
revealsthat the coiled nanotube is actualy sharply bent at a
succession of kneesjoining two straight cylindrical segments.
Apart fromtheir short length, thelatter havethe same structure
asthemicron-long straight nanotubes of the previous section.
The polygoni zed texture of the coiled nanotubeis confirmed
by the corresponding diffraction patterns. Selected area ED
micrographs of two helix periods and one single period are
shown in Figures 7b and 7d, respectively, aongside bright-
field images of the nanotubes (Bernagrts et al., 1995q). The
diffraction spots of each straight segment lie on quasi-
continuous circleswhich are reminiscent of apowder pattern
of ordinary graphite. But the most conspicuous featureisthe
first order diffractionarclabeled (0002) in Figure 7b. Thisarcis
produced by the (0002) spots of the successive straight
nanotube segments. It reflects the changing orientation of
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Figure5. Coiled nanotubes of variousradii and pitches. The
inset indicates (arrows) than the coils are polygonized.

the segments of which the axis describes a cone around the
helix axis. Theangular opening of thearcisrelated tothehelix
radius-to-pitchratio. Notein Figure 7d that thearcisspotty as
aresult of the* space quantization” of the segment orientation
inthe polygonized helix. Moreover, thearcismost intense at
itsedges, which again stemsfrom the extremum nature of the
segment orientation at the edges of the cone it describes.
Counting the number of spotsinthe(0002) arc of Figure 7d or
estimating the bend anglein Figure 6 indicatesthat there must
be about a dozen straight segments per helix turn.

How can one connect two nanotube segments at an
angle of about 30° without grossly distorting the honeycomb
| attice of each of thegraphenelayersof thetubes?Remarkably,
solutions to this problem were discussed theoretically by
Dunlap (1992) and by lhara et al. (1993) even before the
observation of the coiled nanotubes. In Dunlap’sconstruction,
the bending of asingle graphene tubule can be accomplished,
whilemaintaining the continuity of the honeycomb lattice, by
introducing a single pentagon at the apex and a single
heptagon diametrically opposed at the saddle point of the
knee. A ball-and-stick model of thestructureisshowninFigure
8 (Fonsecaet al., 1995). Chiral aswell as achiral tubules of
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equal or of different diameters can be connected in this way
withjustasinglepair of 5-7ring defects. Inamultilayer coiled
nanotube, the 5-7 rings of thekneesin each layer areassumed
to be aligned in a common direction (Fonseca et al., 1995).
Notethat one or several atomsaround the 5 and/or the 7 rings
can be removed without causing the collapse of the knee
whichiskept rigid by the rest of the continuous honey-comb
lattice. Hence, vacanciesand vacancy clustersmay have been
inserted during the growth process in place of the highly
strained, 5-7 topological defects.

The precise value of the knee angleis still amatter of
discussions. A recent study by Zhang and Zhang (1995) using
TEM and ED from acoiled nanotube seen dongitsaxisreveds
that therearejust 12 straight segmentsper helix period intheir
particular sample and hence that the bend angle must be less
than 30°. This appears to be consistent with Dunlap’s
estimation of 30° from his construction (Dunlap, 1994).
However molecular model building (Fonsecaet al., 1995) as
well astheoretical equilibrium structure calculations(Lambin
et al., 1995) suggest that the bend angle should be larger than
or closeto 36°, at leastin the small diameter tubuleswhich are
amenable to such simulations. Note that bending at lessthan
36° can be accomplished by anon diametrically opposed 5-7
pair (Ilhara et al., 1993). High resolution TEM and ED
observations specifically designed to study the knee region
couldlead to theidentification of theactual or most frequently
occurring modes of bending in coiled nanotubes.

Sequencing thenanotubechirality

We have discussed the effect introduced by the
chirality of individual tubuleson the diffraction pattern: each
chiral tubule produces a pair of hexagons of stresking spots
(in every diffraction order) whose angular separation, which
is twice the chiral angle, can be measured accurately. But a
complete characterization of a given multilayer nanotube
would require the “sequencing” of the nanotube chirality,
that isthe specification of the chiral angle of each and every
successive tubule of the nanotube. This remarkable feat
appears to be within reach of high resolution electron
microscopy by at least two different but rel ated methods, one
working in real space, the other via reciprocal space. The
principle of both methodsisillustrated in Figure 9.

Thefirst method wouldinvolve an examination of the
nanotube bright field image at the best resolution attainable
today which alowsoneto resolvethegraphenerepest distance
of 0.21 nm between zigzag rowsof atoms(Zhang et al., 19933).
Consider, intheimage of Figure 1a, one of thelattice fringes
corresponding to the edge of aparticular tubulewhosechirality
isto be determined. The method would consist in tilting the
nanotubeaxisaway fromthenormal to the el ectron beam until
the zigzag (curved) “rows’ at the edge of the chosen tubule
arebrought into alignment with the electron beam. A sketch of
thetilting experiment isgivenin Figure 9a,b. When correctly
aligned inthisway, the quasi-continuous|atti ce fringe chosen
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Figure6. High resolution image of acoiled nanotube revealing its polygonized texture. The maximum projection of the polygon
angleisabout 30°. Theinset shows the approximately circular cross section of the nanotube.

ontheleft sideof thetubulein Figure 1a(or ontheright side,
depending on the chiral handedness) should break up into
resolvable beads separated by 0.21 nm (Fig. 9b). Thetiltangle
and its sign would then give the chiral angle and handedness
of that particular tubule. The method was already used in
TEM of biological structuressuch asthe helical arrangement
of proteins in the tobacco mosaic virus (Finch, 1972, and
references therein) and is also reminiscent of a computer
experiment inwhich aspace-fillingmodel of aDNA molecule
istilted in order to obtain abetter view through the small and
large grooves of the double helix (Rich, 1992). A computer
simulation (Bernaerts et al., 1996) has demonstrated the
feagbility inprincipleof thismethod. However, severd practical
problems, the most serious of which is the severe radiation
damage caused by the high intensity electron beam in high-
resolution TEM, have so far prevented the actual
implementation of thisdirect approach.

The second method makes use of the diffraction
contrast, dark-field imaging technique. It consistsin producing
animage of the nanotube by selecting, with asmall objective
aperture, those electrons which have been scattered into a
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particular diffraction spot belonging to one hexagona set of
chosen chiral angle. Such electronswill image primarily those
tubules which are responsible for their diffraction into the
selected spot and hencewill dlow, inprinciple, a“reading” of
theposition (relativeto thebright field image of the nano-tube)
of the tubule(s) having the chosen chirality. Among the spots
belonging to achiral tubule, the most suitable ones for dark-
field imaging are those closest to the twelve o' clock (and six
o'clock) sitein the first order diffraction circle (Fig. 9c). As
was discussed before, atilting of the tubule axis away from
the normal to the electron beam will cause these spots to
climb towards the top (and bottom) of the diffraction circle
and merge when thetilt angle coincideswith the chiral angle
of the tubule(s) under scrutiny. Thisisimmediately clear by
referring to Figure 9b again: for the correct chira alignment,
thezigzag atomic hdlices (drawn ascontinuouslinesin Fig. 9)
project into cycloids which have sharp horizontal cusps on
the left (or right) side of the tilted tubule. The regular cusps
generate a linear grating in the direction of the tubule axis
which diffracts the electron waves and give rise to the two
merging streaked spots at twelve o' clock, as discussed in the
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Figure7 (a) Coiled nanotube and (b) the corresponding diffraction pattern of aselected areaindicated in (a) by the rectangleand
comprising two helix periods; notethe (0002) arcs. (c) The same coiled nanotube asin (a) and (d) diffraction from aselected area
of one single period; note the spotty appearance of the (0002) arc and theintensity maximaat the arc extremities.

previous section. Henceasmall aperture placed there (Fig. 9¢)
will lead to adark-fieldimageilluminating anarrow portion of
theleft wall of the nanotube preferentially totheright wall (or
vice-versa).

Very recently, Bernaertset al. (1996) havegiven afirst
successful implementation of the dark-field imaging method.
They produced a “map” of the chirality distribution in a
multilayer nanotube and gave a detailed, reciprocal-space
interpretation of the successful method. They further report
on other remarkable observationsin diffraction contrast, dark-
fieldimaging bearing on the defective structures of nanotubes
(Bernaertset al., 1996, 1997).

Kinematical Diffraction Theory
Validity of theFirst Born Approximation

In this section, we construct a kinematical theory of
wavediffraction by astraight nanotube, in view of confirming
the previousinterpretationswhich were based on geometrical
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considerations alone. The theory will go beyond the
geometrical description by alowing one to predict, under
legitimate conditions, therelativediffraction intensities. This
should be useful for X-ray diffraction (XRD) for which, asis
well known, the kinematical theory is generally adequate.
Unfortunately, thereare sofar very few XRD studiesof carbon
nanotubes. One early measurement on a nanotube powder is
duetoZhou et al. (1994) and thetheory presented here should
prove useful for interpreting the observed 6-26 plot. |dedlly,
onewould liketo experiment onasinglecrystd or, at least, on
oriented nanotube fibers. Macroscopic samples of oriented
nanotubes have been successfully prepared for other
purposes (de Heer et al., 1995), but these samples are not
likely to be made of nanotubes of a single species (e.g.,
monodispersed diameter, unique chirality distribution) asone
would liketo havefor exploiting an XRD fiber diagram (see
however the very recent paper by Thesset al., 1996).

The definite advantage of electron diffraction over
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Figure 8. Ball-and-stick model of asingle nanotube knee of
about 30°. The bend is obtained by inserting a pair of
pentagonal and heptagona ring defectsdiametrically opposed
at the outer dliptic andinner hyperbalic (saddl€) pointsof the
knee. The stick connects the aligned 5-7 rings in the two
tubuleswhich are separated by the 0.34 nm graphitic distance.

XRD is that the scattering power of atoms for electronsis
such that the beam can be focused onto one single nanotube
for diffraction and imaging, as illustrated in the previous
section. This very advantage however usualy entails one
interpretational drawback, namely that the conditionsfor the
validity of the first Born or kinematical approximation to
describethe el ectron scattering quantitatively may bedifficult
tomeet (Gevers, 1970): for heavy materids, theapplicability of
the kinematical theory to the calculation of Bragg spot
intensitiesdemandsthat the thickness of the diffracting object
traversed by the electron beam belessthat 10 nm. For carbon
nanotubes however, the conditions should not be so severe
on account of the smaller scattering power of thelight carbon
atom, aswe now show.
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Figure9. Principle of thetilting experiment to determinethe
handednessof achiral tubule. In (a) afamilly of threezig-zag
rowsof atomsarerepresented asparallel, right handed spiras
making an angle awith the horizontal, tilting axis. In (b) the
tubule axis has been tilted by an anglea, its upper tip toward
the viewer; note that the sinusoidal projections of the spirals
in (a) have changed to cycloidsin (b) with their sharp cusps
appearing on the left side of the tubule. In (c) the streaked
spotsat oneand eleven o’ clock move upon tilting toward the
twelve o’ clock position marked A wherean apertureisplaced
for dark-field imaging of thetubule.

The kinematic atomic scattering amplitudes f (q) of
elementsfor fast el ectrons have been compiled by Smith and
Burge (1962) and by Doyleand Turner (1968) who analyzed
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I

Figure10. Cylindrica coordinatesof stomsonaregular circular
helix of pitch P and atomic repeat distance p along the helix
axis

scattering factors calculated from realistic atomic
wavefunctions. Thefirst Born approximation to high-energy
electron scattering (by the screened nuclear Coulomb
potential) used in these calculations is dominant provided
that the “fine structure constant” Ze?/fv = (Zc/v)/137, where
Zisthenuclear chargeand v isthe electron vel ocity, ismuch
smaller than one (Landau and Lifshitz, 1967). For Z=6andfor
300keV electrons, atypica electronenergy usedinthe TEM-
ED works discussed in the present paper, one finds Ze%/hv =
0.07, avalue indeed small enough to validate the first Born
approximation. From the tabulated data (Doyle and Turner,
1968), one can then estimate a total elastic cross section
(including the correction of relativistic length contraction) of
o A 2.2 102 A2 per carbon atom. Ignoring coherent scattering
within and between the graphene layers, of which the area
density isabout 0.4 atom/A2, we find that the total scattering
probability is of order 10 per atomic layer. After traveling
through N layers, the rel ative Poisson probabilitiesfor single
and double scattering would be 102N and 10“N?%2!
respectively. If we demand that the double scattering be less
than 10 % of the singlescattering, N may not exceed 20 layers.

Inaquantitative eval uation of theintensity of electron
wave diffraction by a crystalline, cartesian material, one
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eventually considers the “extinction distances” ¢ for Bragg
beams characterized by thereciprocd latticevectorsg. Inthe
so-called one-beam kinematical theory (Gevers, 1970), Eg is
the distance travel ed after which the wave intensity istotally
transferred by elastic scattering from theforward beam tothe
diffracted beam g in the exact Bragg orientation. For the
kinematical theory to bevalid, the thicknesstraversed by the
beam should be much smaller than all Eg. For electrons of
kinetic energy E and wavelength A, Eg at theexact Braggangle
isgivenby Zg A )\E/Vg whereVg isthe corresponding Fourier
component of the atomic | attice potential for the high-energy
electrons. V isrelated to theatomic scattering amplitudef (g)

by
vg=L1( &0 [ 1 (q)
Q 2m ¢

wherethe z, extends over the independent atomic sites a, in
the graphite unit cell of volume Q A 17 A3, Using again the
tableof f (g) in Doyleand Turner (1968), onefindsV A 0.25
eV for thelowest-order g paralel to the graphene plane. Due
tosuchareatively small value of the carbon crystal potentia,
for E=300keV onefi ndsZg A 2.5 umor about 7000 graphite
layers. Hence, in bulk graphite, theforward beamin an exact
Bragg direction will not be appreciably depleted by elastic
scattering until traversing several hundred layers. For
directions away from an exact Bragg angle, the depletion by
each of the diffracted beamsismuch reduced (Gevers, 1970).
In nanotubes, the turbostratic disorder of successive tubules
will tend to suppress the coherent Bragg scattering and
preventsthe build up of amplitudein particular reflections.

We thus reach the conclusion that the kinematical
theory should beavalid approximation for carbon nanotubes
made of severa tens of monolayers and hence the theory
appears to be quite suitable for the nanotubes actually
observed in the works reported above.
CCV Theory

In formulating our theory, we take the view that a
straight monolayer tubule can be constructed by assembling
afinite set of parallel monoatomic carbon helices sharing the
nanotube axis. A glance at Figure 2 shows that this can be
done in a number of ways both for achiral and for chiral
tubules. We use this approach because there already exists
ananaytical treatment of diffraction by aregular, monoatomic,
circular helix. The theory was developed by Cochran, Crick
andVandin 1952 (Cochranet al., 1952, referred to hereasthe
CCV theory) for the diffraction of X-rays by polypeptide a-
helices and was applied to DNA molecules shortly thereafter
(Watsonand Crick, 1953; Franklin and Godling, 1953. Seedso
Klugetal., 1958; Vainshtein, 1966). Thesebiologica molecules
often can be viewed as collections of C, H, N, O, P, S etc.
coaxid helices. The CCV theory turns out to be particularly
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straight-forward to apply to straight, circular carbon nanotubes
since they have a single type of atoms regularly arranged
along exactly circular and equidistant coaxia helices. The
theoretical approach developed here is similar to the one
introduced earlier by Qin (1994) and was formulated quite
independently (Lucaset al., 1996).

To set the notations, we provide a particularly
straightforward derivation of the CCV result. The scattering
amplitudeof acollection of atomsat fixed positionsr , isgiven

by

@

where k is the wavevector transfer and f(K) is the kinematic
atomic scattering factor for X-rays or for electrons, assumed
to beisotropic (thetheory can begenerdized to“ anisotropic’
atoms). Thediffractionfactor A (k) isthe Fourier transform of
the nuclel density

p(r):2j5(r‘Rj)

On aregular, circular, monoatomic helix of radiusr,
pitch P and atomic repeat distance p in the z-direction of the
helix axis, the atomic positions are given, in cylindrical
coordinates, by (see Fig. 10)

21 .
I'j:(r,(pj:FZj,zj:Jp+zoj (2)

wherej isan integer and (r, @,, z) are the coordinates of an
atomtaken asaconventional origin. To evaluate equation (1)
in cylindrical coordinates according to equation (2), we use
the Jacobi-Anger expansion of a plane wave in Bessel
functions (Arfken, 1985):

2m .
r =[r,(Pj :szvzj = Jp+zoj
(€

where

k
kE JKi+kZ W, = tan‘l(—yJ
kX

and k = (kx,ky,kz) are the cartesian coordinates of the
wavevector transfer. Thisrel ation can bereadily demonstrated
by noting that the plane wave, being a periodic function of ¢,
can beexpanded inthe Fourier series (egn. 3) of exp(-ing); the
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expansion coefficients are obtained, in the usua way, as an
integral of the left hand side of equation (3) multiplied by
exp(ing), which yields the Bessel function J and the other
phase factorsin equation (3). Substituting equations (3) and
(2) into equation (1), the summation over j in (1) can then be
performed by using thewell known identity

e

4)

Theresultisthe CCV formula:

HCRIO» kZ—Zr{%+%Hx

ein(wk+ngn(k Or)e otk

©

The diffracted intensity is the square modulus of this
expression. The &-function meansthat theintensity isnonzero
only on horizontal “layer-lines’ [Polanyi (1921): the basic
concept of layer-planesand layer-linesinthe X-ray structures
of fibers is implicit in this paper. The word “layer-ling”
(Schichtlinie) first appears in this paper and has been used
ever sinceto describe X-Ray fiber diagrams). Thelayer-lines
are positioned at

ko= 2{}?] = 2n$ ©

If Plpisirrationd, k, cantekeall red values. If Plpis
rational the layer-lines occur only at discrete values of k, =
211/T wherel isan integer and T, the true helix period, isthe
smallest common multipleof Pand p.

We can now apply this result to a nanotube.

AsFigure 2 illustrates, atubule of arbitrary chirality
can conveniently be specified by two integers (L,M) giving
theposition of the hexagonal atomic cell which, onrolling up
aflat sheet of grapheneto makeaseamlesstubule, isbrought
incoincidencewiththecdll at theorigin(Hamadaet al., 1992).
Parallel and perpendicular achira tubulesare of thetype(L,0)
and (M,M), respectively. Let usarbitrarilly choosein Figure
2aone of the zig-zag rows of atoms which makes anonzero
angle with respect to the tubule circumference C. In Figures
2b, cor d, theseatomsmaketwo helicesrelated to oneanother
by asinglescrew operation (z,, ¢,). Shifting thiszig-zag pair of
helicesL 1timesby thetubulehelica symmetry operation (z,,
¢.) covers the tubule completely (discussions of helical
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symmetries of nano-tubes have been given by Klein et al.,
1993, White et al., 1993, and Dresselhaus et al., 1995). The
diffraction amplitude of the complete tubule is therefore
obtained by adding up the amplitudes, as given by equation
(5), of afinite set of L helix pairs. Since the successive
amplitudes differ only by phase factors, the total amplitude
will involve summing ageometrical series.

Diffraction by an Achiral Tubule

As an illustration of how the method works
mathematically, let us consider the simple case of a parallel
tubule(L,0) (Fig. 2c). Fromequation (1), aninitial zig-zag pair
of helices separated by the puretrangd ation (z,=d,$,=0) along
thez-axiswill producethe scattering amplitude

(Z.eik'R" X1+ e”‘zzl)
j

where z, = d A 0.14 nm is the C-C bond distance. Note in
passing that the pair amplitude vanishes if k z is an odd
multiple of Tt Thishappened to be the casefor the celebrated
B-DNA molecule (Franklin and Godling, 1953) which hastwo
helica strands displaced by z, = 3P/8 and of which the X-ray
fiber diagramindeed showsamissing 4th layer-line(k z, = 3m).

If we now subject the pair of helices to L-1 pure
trandations (z.=3d, ¢ =0) aong the z-axis and add up the
amplitudes (7) for each pair, the amplitude gets multiplied by
the geometrical series

@

Apair (k)

E:l ink,z,
e z
n=0
Theresultis
. 1- iLK,z,
Auld= (T e 87

The first factor is the amplitude of asingle helix, as
given in equation (5); the second means that there are two
kinds of inequivalent helices in the tubule, just as there are
two inequivalent atoms in the hexagonal unit cell of the
honeycomb lattice; and the last factor gives the interference
between all the pairs in the complete tubule. Because in a
parallel tubulethehelix periodisP=Lz = 3dL and becausek,
isquantizedtothelayer-linesk = 2ri/R, thislast factor amounts
to
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1-gltkze  p_gi2r

- 1-gi2m/L

=Lo g ©
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where the Kronecker &, suppresses al layer-lines except
thoseat | = L, sinteger. The diffraction pattern is therefore
confined to layer-lines separated by integer multiplesof 2./
P = 2rv3d which is the expected result since, in the parallel
tubule, therepeat distancein the z-directionis3d. Along each
alowedlayer-line, theintensity isgiven by alinear combination
of Bessel functions. As will be seen in the computer
simulations, the overal resultisamm?2-symmetric hexagona
et of gpotsstreaking, inan oscillatory fashion, away fromthe
tubuleaxis.

Diffraction by aChiral Tubule

We now formulate the result of the application of the
CCV theory to the diffraction amplitude of a general chira
tubule specified by the two arbitrary integers (L,M). The
patternisagain organized in layer-lineslabel ed by aninteger
I. The total scattered amplitude along the I'th layer-line
factorizesasfollows:

Ttub (k): f (k)zn ‘]n(k 0O rkin(l,pk +1T/2)

A (LM) B (LM)

(10)

The scattered intensity is the square modulus of this
expression. The factors have the following meaning: f(k), J.
and 1, have been defined before in equations (1) and (3);
A (L,M), represents the contribution of the two inequivalent
helices of the tubule, asin equation (8), and is given by

A(LM)= 1+ ¢ na+2alT) 1

B, (L,M) isthe factor associated with the summation over L
pairsof helicesmaking up the completetubule:

B (LM)= 1-exp|i(-ng,+ 21 z,/T)L]
e 1-expli(-ng,+ 21 2, /T)|

(12

L et usdenote by C the circumference of the tubulein units of
the honeycomb lattice parameter dv3. Thisisgiven by

1/(|_2+|_M +Mzi

Thesum over ninequation (10) isrestricted to integer values

21r

KT =
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of n satisfying the selection rule of thel’th layer-line
[ =ng+mp (14

where m is an integer and p, g are integers obtained after
reduction of therational fraction

2c?
L+ 2M

(19

P
q

Irrespectiveof thechirdity, thetruehelix period T isadwaysan
integer multiple of the atomic period d ong theaxisof acarbon
helix andisgiven by (Dresselhauset al., 1995):

T= patg (16)
2C

Finally the screw operations (¢,,z) and (¢,,z,) are obtained
from

2L+ M
o= gz ™ 1

-3M
=4 18
Zo 2C ( )

These formulae are arrived at by simple geometrical
constructionsin the plane of the honeycomb lattice.

Then, taking equations (14)-(18) into account, some
algebrashowsthat thefactor in equation (12) simply reduces
to

B, =L 33

s n+mM,sL

(19)

wheresin any integer. Theeffect of the Kronecker &-functions
istoeliminateall layer-lines pertaining to the single, original
helix pair and to leave only such layer-lines aswill construct
two hexagonal patterns of spots each rotated by the chiral
angle+ a with respect to the mm2-symmetric position (i.e,, the
position characteristic of an achiral (L,0) tubule). Dueto the
oscillations of the Bessel functions, each “spot” is a streak
fading away in an oscillatory fashion perpendicular to the
meridional axisof the pattern.

Computer Smulations

Wenow illustratethe theory with computer smulations
of the diffraction by straight tubules and nano-tubes. In the
calculations, we have used the actual kinematic form factor
for carbon such aslisted by Doyleand Turner (1968). Sincein

427

electron microscopy work, the spot intensities are seldom
measured quantitatively, our smulationswill at thisstage serve
only to confirm the capability of the theory to obtain the
qualitative features of the diffraction patterns.

We note that the complete formulain equations (10)-
(12) iscomputetionally extremely efficient: the only variable
input isthe pair of integers (L,M) which give thetubule size
and chirality. The position of each layer-line of nonvanishing
intensity is determined in advance by the purely geometrical
factor B (L,M); and along a given layer-ling, the intensity
calculation demands only afew dominant Bessel functions.
Dueto the closed form of the formula, the computing timeis
independent of tubule size. By contrast, the brute force
calculation of the scattering from the thousands of individual
atoms would require constructing their coordinates and
sweeping the reciproca space in search of the diffraction
spots.

Monolayer tubules normal incidence

Inthespirit of our approach of building up atubule by
assembling a set of helices, we first present the result of a
computer experiment: Figure 11 showsthe successive patterns
obtained by diffraction, at normal incidence, fromanincressing
number of helix pairs, beginning with just one pair (Figure
114) and ending with the full complement of L=18 pairsof a
complete (18,0) parallel tubule (Fig. 11d). In Figure 11a, one
recognizes the diamond and maltese cross structures
characteristic of the diffraction by aregular helical molecule
such as the celebrated DNA (Franklin and Gossing, 1953).
Therearemany layer-linesalong whichtheintensity isgiven
by adominant Bessel function of increasing order. Note that
the regions about the long diagonals of the diamonds are
extinguished by the destructive interference between the
waves scattered by the two inequivalent helices (in this
simulation, the two inequivalent helices were chosen to be
connected by parallel C-C bonds shown in the perspective
drawing below the pattern; note that this choice of starting
helix pair, which corresponds to the analytical formulae of
equation 18, is different from the zig-zag pair discussed
previously. The end result of the simulation for the complete
tubule is of course independent of this choice). In the next
three patterns produced by 6, 12 and 18 helix pairs, thelayer-
linesare seen to become progressively removed by destructive
interferences, except for those destined to build up the final
hexagonal, mm2 symmetry pattern.

The spots are elongated perpendicular to the tubule
axis: thisisthe stresking phenomenon observed inthereal ED
patterns(lijima, 1991; lijimaand I chihashi, 1993; Zhang et al .,
1993b). The intensity modulation of the zeroth layer-lineis
essentially a representation of the oscillations of the zeroth
order Bessel function. Thiscentral linewould betheonly one
present if the scattering pattern was produced by a smooth,
continuous cylinder of the same radius. The oscillations
basically represent adit function and arisefromtheinterference
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Figure11. Computer s mulations of the diffraction patternsof anincreasing number of helix pairsfrom onepair (a) tothecomplete
set of 18 pairs (d) making up the complete (18,0) tubule. The diamond repest of the maltese cross characteristic of atomic helices
in(a) isseento evolveinto the hexagona spot pattern of atubulein (d) by the destructiveinterferenceremoval of intervening layer
linesin(b) and (d).
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Figure12. Computer simulation of the diffraction pattern of a
(36,0) tubule. The modulation frequency of the stresks is
doubled as compared to the case of the twice smaller (18,0)
tubulein Figure11d.

between waves scattered by the two edges of the cylinder.
Such acontinuoustube has only one characteristic length, its
diameter, which sets the length scale for the argument of the
Bessdl function. This is further demonstrated by Figure 12
which isthe normal incidence diffraction pattern of a (36,0)
paralle tubule. The oscillation frequency in the zeroth layer-
linehasdoubledin comparisonwith Figure11d. The stresking
spotsnow also exhibit intensity oscillationswhich reflect the
same interference effect of the tubule edges. These stresk
modul ationswere barely visiblein theless contrasted picture
of the smaller (18,0) tubule. The enhanced contrast in the
(36,0) pattern also reveals the second order hexagon of
streaking spots. The present interpretation of the modulated
stresk intensitieswasalready provided by lijimaand | chihashi
(1993) intermsof Fraunhofer diffraction fromthetwo portions
of thetubule parallel to theincident electron beam.

Figure 13 showsthe simulated diffraction of an (18,1)
chiral tubule. Thereare now two first order hexagonal sets of
spotswhich are obtained from the achiral parallel hexagon of
Figure 10d by clockwise and counterclockwise rotations by
the small chiral anglecos[(2L+M)/2C] A 2.68°. Notethat the
twelveo’ clock streak has split into two symmetric modul ated
streaks, leaving zero intensity on the (projection of the) tubule
axis

Although only the amplitudes are additive and not
the intensities, one expects that the general geometrical
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Figure 13. Computer simulation of the diffraction pattern of
an(18,1), nearly parald, chira tubule. Thereare now two sets
of hexagonal streaked spotsturned with respect to each other
by twicethechiral angleof 2.68°.

featuresinthediffraction pattern of amultilayer nanotubewill
reflect the patterns of individual tubules such as shownin
Figures 12 and 13. Since the chiral angle can vary from zero
(parallel tubule) to 30° (perpendicular tubule), ananotubewill
usually contain anumber of tubuleswith smal chiral angles,
say of the order of or smaller than 10°. Such tubules will
produce overlapping horizontal streaking spotsnear thetwelve
o'clock (and six 0’ clock) positions, because the streaking is
nearly tangent to thefirst order circle around these positions.
Dueto thefiniteresolutioninthe ED micrograph, thisoverlap
will thereforeresultin thick and long streaks about oneand 11
o'clock. The other four hexagonal spots of each tubule
however will giverisetowel | resolved pairsof nonoverlapping
stresks, asin Figure 13. Thisexplainsthe frequently observed
reinforced streaks at the top and bottom of the first order
diffraction circle, such as those shown in Figures 1b and 4.
For ananotube containing amajority of nearly perpendicular
tubules, the horizontal streak reinforcement should appear at
twelve o' clock in the second-order circle, asin Figure 3b.
Monolayer tubules: obliqueincidence

We have performed calculations of the diffraction of
an electron beam by atubuleat variousincidenceangles, in
order to smulate atilting experiment such astheoneshownin
Figure4. Alarge (25,10) tubule of 2.41 nm diameter and 16°
chiral angle was selected for the simulation. The four
diffraction patternsin Figure 14 correspond tottilting thetubule
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Figure 14. Computer simulation of the diffraction patterns obtained by tilting the axis of a (25,10) tubule through the indicated
angles. Thiscomputer experiment simulates qualitatively therea experiment shown on Figure 4. Note the motion of the spotsA,

B and C, D upontilting.

axisaway from thebeam norma by anangle 6of 0, 10, 20 and
30 degrees, respectively. The detailed effect of tilting the
samplecan becomputed from Egn. (10) by rotating thetransfer
wavevector k by an angle around the y-axisin the opposite
direction.

One observes that the layer-lines recede from the
zeroth order layer-linewhen Bincreases. Measuring distances
between layer-lines in the direction of the tubule axis
confirms that they increase like 1/cos6. This “chirping” in
reciprocal space corresponds to a decrease of the apparent
axid lattice spacing, asseen by theelectron waves, by afactor
cosB(thisiseasily verified by consderingasimplelinegrating
at obligueincidence, sceAmelinckx et al., 1995a). The other
striking effect of the tilting on the diffraction pattern is the
“climbing motion” of the pair of spots marked A,B and C,D
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towardsthetwelve o’ clock position ontheir respectivecircles.
They form asingle stresk when 6= 20° and beyond but the
simulation showsthat they beganto coalesce when 6 neared
thechira angleof 16°. Thisbehavior reproducesqualitatively
the observation of Figure 4. It judtifies setting the dark-field
imaging apertureat twelve o’ clock to measurethechira angle
of atubuleor set of tubules, asdiscussed previoudly (Fig. 9¢).

Multilayer Nanotubes

A nanotube containing N coaxial tubules separated
by thegraphiteinterlayer spacing ¢, A 0.34 nmisfully specified
by givingi) aset of integer pairs(L, ,M, ), m=1,...,N, specifying
thechirality sequenceandii) theréelativeregistry betweenthe
successivetubules, i.e. thecylindrica coordinates(r, ,9,...2,,.)
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Figure 15. Construction in the graphene lattice of tubule
circumferencesfor coaxial tubules separated by the graphitic
distance of 0.34 nm. All lattice points sitting on or near the
circles define possible tubules for amultilayer nanotube.
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Figure 16. Simulated intensity distribution along the zeroth
layer-line produced by the 7-layers nanotube of Figure 1c
should be helpful in guiding and narrowing down the
exploration of the“chirality space” of ananotube.

of aset of initial atoms in the tubules. The (L M ) pairs
should satisfy, up to a small tolerance of at most a few per
cent, the condition that the circumference C_ given by
equation (13) increasesby 21 / A 8.81fromonetubuletothe
next in the set. Starting from an inner tubule of radius C, a
possible tubule set can be read off the honeycomb lattice of

Figure 15 in which successive concentric equidistant circles
of radii C_ havebeendrawn. Any pair (L,M) representative of
alattice point sitting on or near (to within thetolerance) one of
the circles, defines an acceptable tubule of the set. Figure 15
makesit clear that for fixed external dimensionsC, and C,, of
the nanotube, there can be several setsof tubulesdiffering by
their chirality (and handedness) and that the bigger the
nanotubesize, thelarger thischirality degeneracy. Thehighly
efficient diffraction formulafor acomplete tubule devel oped
in this paper allowsthe simulation of the diffraction patterns
corresponding to al possible chirality sequences compatible
with the above construction rules. The observed TEM/ED
chirality map discussed before (Bernaertset al ., 1996).

When two or more coaxia tubules are considered,
interferencesare expected from adding the complex diffraction
amplitudes of individual tubules. Three sets of parameters
are expected to govern interference effects: (i) the new
characteristic distance ¢, A 0.34 nm will produce periodic
reinforcementsof diffracted intensitiesin the direction normal
tothenanotubeaxis; (ii) different chirality sequenceswill lead
not only to different spot patterns but also to different,
nonadditive spot intensities; (iii) changing therelative tubule
registry by gliding or rotating the tubuleswith respect to each
other about their common axis should also affect the spot
intengities. In this paper, we will explore only the first two
effects.

We can easily predict the major interference effect
associated with theinterlayer distance c,.. Indeed we expect a
constructive interference when kDA 2m/c along the zeroth
order layer-linewhere nisanonzero integer. If al thetubule
radii r_are much larger than c , the arguments of the Bessel
functionsin equation (10) will belargeassoon asweleavethe
center of the diffraction pattern towardsthefirst order circle:
kr A2mr /c =C n/c A 13nfor,say, an (18,0) tubule. We
can then make use of the approximate expression of the
dominant Bessel function J (x) for large argument x = k. r
(Abramowitch and Stegun, 1984): J (x) A cos(x-174). Adding
thevarioustermsfor tubuleradii r_=r, + mc , weseethat the
phase in the cosine changes by 2t from one tubule to the
next. Ignoring the slow decrease of the J, oscillation
ampli-tudes, the end result isatotal amplitude at k | = 2rm/c,
growing likethe number N of tubulesand theintensity of the
(0002n) spot growing like N2, Thisquantitatively explainsthe
appearance of the (0002n) setsof spotsasthe principal feature
inthediffraction pattern of every multilayer nanotube. Figure
16 confirmsthisbehavior. It showstheintensity of the zeroth
layer-line in the calculated diffraction pattern of Figure 1c.
The nanotube comprises 7 tubuleswhoseradii and chiralities
(seethe figure caption) have been chosen to simulate Figure
laand the observed chiral angles of the diffraction patternin
Fig. 1b. The zeroth layer-line (Figs. 1c and 16) exhibits the
predicted strong reinforcements corres-ponding to the
observed (0002n) spots and, in addition, shows intervening
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oscillations dueto theinterference of the two nanotubewalls
(the Young two-dlits experiment). The agreement between
simulated and observed patternsisnot compl etely satisfactory
but could certainly be improved by searching the chirality
and registry space of the 7-layers nanotube, as explained
before.

Discussion

This paper has presented a short review of TEM-ED
observations of straight and coiled nanotubes. In the
description of the observed patterns, the emphasis was put
on theimportant characteristicswhich call for a quantitative
theory of electron diffraction by nanotubes. Such acomplete
theory was developed for the straight nanotubes comprising
any number of tubulesof arbitrary chiralitiesand thesimulated
patterns based on this theory were successfully compared
with the observed ones.

Wewish to closethis paper by pointing out anumber
of opportunities offered by the new theoretical approach.

Thecomputer-efficient theory dlowsfor thesmulation
of the diffraction by nanotubes with defects. For example
atomic vacancies or vacancy clusterscan beeasily smulated
by subtracting the amplitudes of the missing atoms from the
perfect nanotube amplitude. Another example is the case of
an “excentric” nanotube, i.e., having one or severd missing
layers which eventualy produce anomalous lattice fringe
spacingsin the TEM image of the nanotube (Bernaertset al .,
1996). Thissituation simply requiresadding theamplitudes of
non coaxia but parallel tubules.

Very recently, Thess et al. (1996) have succeeded in
producing, by carbon laser ablation, “ropes’ of
monodispersed, pardle (10,10) perpendicular tubulesand have
taken a powder XRD diagram of the material. The present
theory is idedlly suited to compute the fiber and powder
diagram of such a system since it provides the exact tubule
molecular form factor fromwhichto calculatethediffraction
of the ordered triangular lattice of tubulesin the*rope’.

Other helical structures of light elements such as the
carbon conical scrolls(Amelinckx et al., 1992) and the BN and
BCN nanotubes recently discovered (Tenne, 1995; Stephan
et al., 1994) are ameanable to an application of the present
theory since they can be described as an ensemble of regular
helices. The theory will aso be found useful for interpreting
X-ray diffraction datafrom nanotubes made of heavy elements
such asthedisulfideMoS,, WS, (e.g., Tenne, 1995).

Certain fundamental extensions of the theory are
required to deal with coiled nanotubes. Since these are made
up from connected pieces of straight cylindrical segments, it
will benecessary to account for thefinitelength of the straight
sections and of the irregular atomic arrangement in the
connecting knee regions which contain ring defects (Ivanov
etal., 1994). Thelatter must beintroduced numerically, atom
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by atom, while the former can be handled andyticaly via
equations (4) and (5) inwhich the &-functionisreplaced by a
dit-function giving thediffraction amplitude of ahelix of finite
length.

Nanotubes containing cylindrical scrolls (Amelinckx
etal., 1995h) poseaspecial smulation problem. They require
the diffraction amplitude of helices of finite length wound
around acircular cone. This can be written analytically and
involves derivatives of the cylindrical Bessel functions
(Abramowitz and Stegun, 1984). Work along theselinesisin
progress.
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Discussion with Reviewers

M.S. Dresselhaus: In reading the paper | wanted to know
how el ectron microscopy could distinguish between cylinders
and scrolls.

Authors: The only, admittedly indirect, TEM evidence for
scrollsistheobservation (Bernaertset al ., 1995b) of anomalous
spacings between basdl latticefringesin onewall or the other
inthe bright field image of ananotube. The interpretation in
terms of scrolls is consistent with the frequent finding that
thenumber of distinct chiral anglesislessthan the number of
tubules in a nanotube, a multiturn scroll having of course a
constant chiral angle. One or several missing tubules in a
nanotube would also lead to singular fringe spacings
(Bernaertset al., 1997) asaresult of thevan der Waal sattraction
of theinner portion of the nanotube towards the outer layers,
although thisinterpretation would not explain the paucity of
chiralities. Theissue could beresolved by the chanceimaging
of ananotube fragment along itsaxis.

M.S. Dresselhaus: | wonder whether resonances due to
periodic stacking of nanotube arrays could befound. Inview
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of the interest in the single wall nanotubes produced by the
Ricegroup (Thesset al., 1996), somecommentsonwhat TEM
can tell us about these materials would be of interest.

Author s: Asstated the scattering amplitude of asingletubule
will serve asthe molecular form factor for the scattering by a
tubule array, the total scattering amplitude being the product
of the form factor by the Fourier transform of the two-
dimensiond array. A smplified form factor was used by Thess
et al. (1996) to interpret their X-ray diffraction datafrom the
triangular array of (10,10) tubulesobserved by the Rice group.
Extinction of array resonances by the form factor are indeed
observed (Thesset al., 1996). Similar effectsareexpected for
electron diffraction but have not been reported so far.

D.T. Colbert: Regarding theass gnmentsmadeto the nanotube
of Figure lafromthesimulation of Figure 1c, itisstriking that
the best smulationisfor thefirst threelayersto be of zig-zag
type. Assuming that the (m,n) assignmentsare accurate, which
| do not contest, do the authors have any explanation for this
that would shed light on the growth mechanism? My own
view isthat the stabilizing adatom i nteractions between open
edgesfirst discussedin Guo et al. (1995a) ismost effectivefor
zero- and low-hélicity zig-zag tubes (armchair layers are
dabilized by theformation of C-Ctriplebondsdongthearms”).
Aslayer diametersincrease, this give way to the importance
of finding the hdicity that produces a diameter giving the
best van der Waal sinteraction with neighboring layers, since
the latter interaction grows as the square of the diameter. In
addition, since adatom interlayer interactions were proposed
to maintian the growing tip in an open state, keeping the
innermost layers open is especialy important; again, thisis
most effectivefor zig-zag layers.

Authors: We agreethat atomic processes such asinvoked by
Guoet al. (1995a) and Thesset al. (1996) arelikely toinfluence
thechoiceof chirality sequence made by nature during growth.
However, while the set of tubule diametersand chiral angles
can be read off the experimental micrographs of Figures 1a
and 1b, these micrographs give no direct information on the
order inwhich the chiralitiesoccur in the nanotube nor onthe
relative glide positions of the successive tubules. For the
simulation of Figure 1c, the chiraity sequence mentioned in
the caption and zero glideswere chosen rather arbitrarily asa
first trial set and without attempting any optimizationwiththe
observed diffraction intensities.

J.M. Cowley: Have the authors found any evidence for the
multi-walled carbon nanotubes of non-circular cross section
found, for example, by Liuand Cowley (19944)?

Author s We have not found direct evidence of the polygonal
cross section of tubules, even though we are convinced that
polygonization must occur. By “polygonisation”, werefer to
the model proposed in Zhang et al. (1993a). The difference
between circular and polygonized (18-20 sided polygon) in
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our sense is small and difficult to prove directly. Thisis
different from the pentagonal model introduced by Liu and
Cowley (19944) to explain thesingular c-fringe spacings. We
attribute these anomal ous spacings (Amelinckx et al., 1995b)
tothe presence of did ocation-like defects(scrollswith ending
of graphene sheets).

J.M. Cowley: Thedark-field method used by Bernaertset al.
(1996) should beavery effectiveone. Dotheir resultsconfirm
the conclusion of Liu and Cowley (1994b), that in a multi-
walled nanotube the chirdity changes after every three or
four graphitic sheets?

Authors: Our scroll modd for theanomal ousfringe spacings
providesat thesametimean explanation for theproblemraised
by this question. We do confirm that the number of different
chira angles within a multishell tube is three to four times
smaller than the number of shells.

J.M. Cowley: The arguments made regarding the validity of
the kinematical approximation for transmission through
graphitic sheets or for diffraction from ordered graphite
crystals under two-beam diffraction conditions do not seem
to be directly relevant to the case of nanotubes for which the
important consideration isthe scattering by thegraphitic layers
inthetubewallswhicharenearly parallel totheincident beam.
Have the authors considered the projected potential
digtributionsfrom the wesk-phase-object gpproximation which
leads to asymmetries in the diffraction pattern, as observed
by Cowley et al. (1996)?

Authors: We agree that considerations on planar graphitic
sheetsor crystallinegraphite are not quantitatively applicable
to the curvilinear geometry of nanotubes. However, a full
dynamical theory of diffraction by thelatter isnot yet available
and theformer systemsweretherefore considered for an order-
of-magnitude eval uation of the scattering power of nanotubes.
We believe that this evaluation was necessary to test the
applicability of the first Born approximation. Regarding the
asymmetriesin the (00!) diffractionintensitiesit appearsthat
such asymmetriescould bediscovered by Cowley et al. (1996)
withtheuseof “nano-beams’, i.e., electron beamsof diameter
of the order of one nm or less. We have not considered this
Situation since the electron beams used in thework described
in the present paper covers several hundred A. The
asymmetrieswe observedinthiscase (Bernaertset al., 1997)
occur between the (00I)-constructed dark-field images of the
left and the right walls of a circular nanotube. These
asymmetries, which we attribute again to the presence of
singular fringe spacings in one nanotube wall, are unrelated
to those observed by Cowley et al. (1996).
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