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Abstract

Urolithiasis in childhood is less frequently observed than
inadults, but it still hasaconsiderable morbidity. Incontrast
to the situation in adults, an infectious or metabolic cause
for stone formation is detected in the majority of pediatric
patients. The underlying molecular mechanism of
urolithiasis has been shown in anumber of conditions, and
some of them have been discovered in pediatric patients.
Mutations of the AGXT-gene (2937.3) have been found to
be responsible for the enzyme defect in primary
hyperoxaluria type I, and two of the genes provoking
cystinuria have been identified (type I: 2p21, type Ill:
19g13.1). Inboth xanthinuriaand 2,8 dihydroxyadeninuria
mutations of the responsible gene have been discovered.
Itisvery likely that amolecular basisfor the different types
of hypercalciuriawill also befound, likein X-linked hyper-
calciuric nephropathy with tubular proteinuria(Dent’sdis-
ease), or in X-linked recessive nephrolithiasis (Xpl11.22).
However, the molecul ar defect does not necessarily predict
the clinical course, even in monogenic diseases. Yet in
patientswith the same di sease genotype extreme differences
in the disease phenotype have been observed. Thisreview
provides current understanding of the metabolic disorders
and molecular mechanisms of urolithiasisin childhood.
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Introduction

Interesting advances in the understanding of the
pathophysiology and the molecular mechanisms of uro-
lithiasis have been made during the last few years. Al-
though some of the molecular mechanismsfound, have come
from studies in pediatric patients, they turn out to be
important for al groups of patients. Due to our better
knowledge of both the metabolic basis and the molecular
mechanism of stone di sease, the management and treatment
has been greatly improved.

Urolithiasisin children is far less common than in
adults, but still has a considerable morbidity [13]. The
incidence of urolithiasis in adults increases with age af-
fecting up to 12% of men and 5% of women by the age of 70
years. In contrast, the incidence is considerably lower in
children but differs between countries [7, 13, 81]. Within
the United States, urolithiasis is more common in the
southeastern regions, whereit may account for 1in 1,000to
1in 7,600 hospital discharges[115].

Inthe majority of pediatric patientswith urolithiasis,
ametabolic cause for stone formation can beidentified and
severa metabolic disordersarewell-defined (e.g., cystinuria
or primary hyperoxaluriatype 1). However, thereisalarge
subgroup of patients showing a subtle increase of urinary
lithogenic factors(calcium, oxalate), or areduction of stone-
inhibitory substances, likeurinary citrate[82]. If theselatter
abnormalities are also classified as metabolic disorders, as
itisoften done[86, 101, 143], then urolithiasis of metabolic
origin constitutesthe largest etiologic group. Accordingly,
less than one third of all patients will have idiopathic
urolithiasis. It istherefore, essential to perform metabolic
examinationsinall patientsand to screen dl family members
if ametabolic disorder has been diagnosed.

Unlikethe situation in adults, ametabolic cause for
stone formation is found in the mgjority of pediatric pa
tients. All children with urolithiasis should, therefore,
undergo thorough investigation. The underlying molecu-
lar mechanism has been determined in anumber of diseases
and it isvery likely that more common conditions, such as
certainformsof hypercalciuria, will alsobeshownto havea
molecular basis.
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Calcium Stones

Hypercalciuria

Hypercal ciuriaand stones composed of calcium-oxa-
late are the most frequent conditions in both adult and
pediatric patientswith urolithiasis (Table 1, [13]). Thereis
no sharp differentiation between normal (upto 0.1 mmol (4
mg)/kg per day [36, 45]) or abnormal levelsof urinary calcium
excretion, so diagnosisof hypercalciuriaissometimesvague
except for very high excretions (> 0.2 mmol/kg per day).
Whether such children will form stones or develop
nephrocal cinosis also depends on additional factors (urine
volume, pH) and the concentration of other urinary
lithogenic and stone-inhibitory substances, primarily of
oxalateand citrate[56, 69, 82].

Primary (idiopathic) hyper calciuria, whichissup-
posed to have an autosomal-dominant inheritance, is the
most common cause of calcium-containing stones [23].
| diopathic hypercal ciuriawas primarily found to consist of
both intestinal hyperabsorption and urinary hyperexcretion
of calcium[91]. It hastraditionally been dividedinto arenal
and an absorptive subtype, when urinary calcium excretion
inthefasting stateiselevated in therenal but normal inthe
absorptive type [72, 143]. To differentiate both forms the
oral calciumloading (1000 mg) test wasintroduced [54, 111,
142], but is not always accepted and may be misleading
[54]. It wasdemonstrated, that the subtypesare not distinct
entities, but rather two extremes [22], and many pediatric
patients cannot easily be classified.

The renal form is supposed to result from reduced
tubular calcium resbsorption. Hypocal cemiastimulates PTH
secretion, which leads to an increase in bone resorption
and intestinal calcium absorption and hence to higher
vitamin D synthesis and hypercalciuria [84, 86]. The
concept of absorptive hypercalciuria is based on an
increased intestinal absorption of calcium leading to ele-
vated serum calcium and hence to a suppression of the
PTH secretion[12, 50]. Asaresult, thetubular reabsorption
of calciumisdecreased, which leadsto hypercalciuria[84].
An increased affinity to vitamin D,, or an increased
production of 1.25(OH),D, might explain this condition, as
high plasma1.25(OH),D, va ues have been found in patients
with hypercalciuria [84, 103, 120]. Relative
hypoparathyroidism dueto excess calcitriol production has
been demonstrated at least in adult stone formers with
idiopathic hypercalciuria[51].

A familial syndromeof hypocalcemiawith hyper -
calciuria dueto mutationsin the cal cium-sensing receptor
was recently observed. Autosomal dominant hypopara-
thyroidism with hypocalcemiais suspected to be dueto a
loss of calcium sensing receptor regulation. Five heter-
ogeneous missense mutations have been found on the cal-
cium sensing receptor gene (CASR), which is located on
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Table 1. Renal stone analysis in infants and children
obtained with infrared-spectroscopy [13]

Stones Girls Boys
n=350 n=500
Calcium-oxalate
Weddellite (CaOx-dihydrate) 35.7% 29.0%
Whewellite (CaOx-monohydrate) 27.7% 29.2%
63.4% 58.2%
I nfectious
Struvite 12.9% 15.0%
Carbonate-apatite 9.7% 12.8%
Ammoniumhydrogen-urate 20% 1.2%
24.6% 29.0%
Other Phosphatestones
Brushite 17% 3.2%
Uricacid 14% 2.2%
Uricacid dihydrate 0.3% 0.6%
Cystine 0.3% 1.2%
Protein 14% 16%
Artefacts 6.9% 4.0%

chromosome 3q13.3-21 (Table 2, [ 75]). The CASR genecan
either activate, asit doesin thisform of hypoparathyroidism,
or inactivate the calcium sensing receptor [1, 38].
Hypocalcemia is associated with hypercalciuria and
treatment with vitamin D resultsin an increase of urinary
calcium excretion, nephrocalcinosis and later, possibly, in
rend impairment [113].

A molecular basis was also found in arare but ex-
tremely severe form of idiopathic hypercalciuria with
X-linked recessive nephrolithiasis (XRN) and rena im-
pairment [42]. The primary defect of this renal tubular
disorder is unknown, therefore, the mapping of the mutant
geneto chromosome Xpl1.22 wasimportant to better define
thisdisease[135]. The mutant geneiscloseto severa eye
disease genes, so patients have to be carefully screened
opthalmologicaly [126]. Carrier females were said to be
asymptomatic, however, a recent study showed, that they
could aso have (dight) hypercalciuria, and most of them
showed low molecular weight proteinuria[126].

X-linked hypercalciuric nephropathy, also called
Dent’sdisease, isaform of Fanconi syndromewith tubular
proteinuria, hypercalciuria, rickets, nephrocalcinosis,
urolithiasis and eventual rend failure (Table 2, [93]). A
microdeletion of chromosome Xp11.22 was found to be
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Table2. Genetic defectsinurolithiasis.

Increased Disease Defect Gene Inheritance*
excretion
Calcium Familial idiopathic AD
hypercalciuria
Familial hypocalcemia Cal cium-sensing receptor 3013321 AD
with hypercalciuria (CASR)
X-linked hypercalciuric Murtation of CLCN5-gene Xp11.22 XL
nephropathy with tubular (renal chloride channel gene)
proteinuria (Dent’s disease)
X-linked recessive Murtation of CLCN5-gene Xp11.22 XL
nephrolithiasistypel (XRN)
X-linked-recessive hypophos- Mutation of CLCN5-gene Xpl11.22 XL
phatemic rickets (XLRH)
Distal renal tubular acidosis Mutations of RTA-1 gene ? AD
Bartter’ssyndrome Na-K-2Cl cotransporter
(NKCC2
William'ssyndrome Deletion of the elastin gene (ELN) 7011.23
calcitonin receptor gene (?) 7921.3
Wilson's disease Copper transporting protein 13p14.1-21.1
Oxalate Primary hyperoxauria Alanineglyoxylate- 2q37.3 AR
.typel(PH1) aminotransferase
Primary hyperoxauria Glyoxylate-reductase/ AR
type2 (PH 2) D-Glycerate dehydrogenase
Cystine Cystinuriatypel rBAT/D2H (SLC3A1) 2p21 AR
Cystinuriatypelll (typell) 19913.1 AR
Uricacid Lesch-Nyhan syndrome Hypoxanthine-guanine X026-27.2 XL
phosphoribosyltransferase
Phosphoribosyl-pyrophosphate- ~ Phosphoribosyl-pyrophos- Xg22-24 XL
synthetase superactivity phate-synthetase
Glycogen-storage disease type 1 Glucose-6-phosphatase 1721 AR
2,8Dihy- Dihydroxyadeninuria Adenine-phos- 16g22.2-22.3 AR
droxy-adenine phoribosyltransferase
Xanthine Xanthinuria Xanthin-oxidase 2p23-22 AR

* AD: autosomal -dominant;

XL: X-linked;

AR: autosomal -recessive.

responsible[116]. Three nonsense, four missense and two
donor splice site mutations, together with one intragenic
deletion and one microdeletion encompassing the entire
gene, have beenidentified [40].

A candidate gene (CLCN5), which encodes a puta-
tiverenal chloride channel, has been found in patientswith
Dent’'sdisease[39, 93]. Chloridechannelsareimportant for
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thecontrol of membrane excitability, transepithelial transport
and possibly cell volumeregulation [93]. CLCN5 belongs
to a family of voltage-gated chloride channel genes
(CLCN1-5, CLCNKa and Kb), which encode different
proteins (CLC1-5, CLCKaandKb). In patientswith Dent’s
disease CL C5 functionswere specifically hampered, which
|ead to the characteristic findings[93].
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Table 3. Metabolic disturbances associated with
urolithiasis.

M etabolicdisturbances

Hypercalciuria
Normocalcemic hypercalciuria
Idiopathic hypercalciuria
distal renal tubular acidosis
diuretics (furosemide)
Wilson's disease, Lowe's syndrome
Hyper calcemic hypercalciuria
Primary hyperparathyroidism
immobilisation
hyperthyroidism
hypothyroidism
Cushing-syndrome
adrenal insufficiency
bone metastasis
Bartter’sand William’'ssyndrome
I ntestinal hyper absor ption
HypervitaminosisD (A)
idiopathic hypercalcemiaof
childhood sarcoidosis
Hyperoxaluria
Primary hyperoxaduriatypel /11
secondary hyperoxaluria:
[ in malabsorption syndromes
] after intestinal resection
[l dietary
Hyperuricosuria
Inborn errors of metabolism
Lesch-Nyhan syndrome / gout
glycogen-storage diseases|, |11, V, VI
overproductioninleukaemiaor
non-Hodgkin-lymphoma
high protein diet
Hypocitraturia
d-RTA
idiopathic/ dietary

Dent’ sdisease hasphenotypic familiaritieswith XRN
and with X-linked recessive hypophosphatemic rickets
(XLRH), which has aso been mapped to chromosome
Xpl11.22 ([135], Table 2), but different mutations of the
CLCN5genewerefound for theseentities[93]. Nevertheless,
thesefindingsindicate, that CLCN5 and other renal chloride
channelsmay play animportant part in the pathophysiology
of uralithiasis.

Medullary nephrocal cinosis and cal cium-phosphate
stones are common in patients with distal renal-tubular
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acidosis(d-RTA, [14]). Ahighurinary pH (> 5.8 infasting
urines), hypercal ciuria(secondary to systemic acidosis) and
hypocitraturia (dueto atubular defect and the acidosis) are
the characteristics[47]. Inthecompleteform of distal RTA
theurine pH cannot belowered to lessthan 5.4 after an acid
loading test, it mostly remains > 6.1. This test should be
performed in older children, when diagnosis of distal RTA
issuspected [54]. Recently an autosomal dominant form of
inheritance was found in alarge kindred with a hereditary
form of distal RTA. Both, asymptomatic and an asympto-
matic form were caused by asingle RTA-1 gene and homo-
zygosity was observed to be followed by a severe form of
the disease [20].

There are severa clinical entities leading to hy-
percalcemiawith secondary hypercalciuria(Table 3, [3, 12,
44]). Primary hyperparathyroidism, the most frequent
cause of hypercalcemic hypercalciuriain adults, isvery rare
in children. Hypervitaminosis D due to the use of
multivitamin preparationsincluding vitamin D, or of vitamin
D added to milk preparations, can induce hypercal cemia
and hypercalciuria[35, 64, 73, 106]. An excessive daily
amount of vitamin A (> 10,000 units) may also lead to
hypercalcemia and can secondarily induce hypercalciuria
[125]. Immobilization over only 4 weeksinducesareduction
of bone calcium and bone mass of about 15-20%
accompanied by hypercalciuria [3]. Long term
administration of either furosemide or dexamethasone can
lead to hypercalciuria, nephrocalcinosis, or stone disease
[2,71,78].

Hypercalciuriais also found in several syndromes,
either linked to the pathogenesis (Bartter’ sand William’s
syndrome [26, 44]) or due to renal tubular damage (Wil-
son’sdisease and L owe' s syndrome[66, 141]). Patients
with Bartter’s syndrome develop nephrocal cinosis but no
stones. The characteristic findings are due to mutationsin
the Na-K-2Cl cotransporter NKCC2 [139]. William’ssyn-
drome (WS), which ischaracterized by hypercal cemiawith
aortic stenosis and mental retardation, is sometimes
accompanied by hypercal ciuriaand nephrocalcinosis. Itis
caused by adeletion of theelastin gene (ELN, [97], whichis
found on chromosome 7g11.23 (Table 2, [107]). A
dysfunction of the human calcitonin receptor (CTR) could
lead to disorders of calcium metabolism associated with
hypercal cemia, such astheWilliam’ssyndrome, but the CTR
gene is different from the WS gene and located on
chromosome 7g21.3[114]. Wilson’sdisease, which canbe
complicated by hypercalciuria and nephrolithiasis even as
the first symptom [66], is caused by the Wilson's disease
gene(WND), whichislocated on chromosome 13p14.1-21.1
[41]. It encodes a putative copper transporting protein,
that is exclusively expressed in the liver and which isim-
paired in patients with Wilson's disease [27].

Further conditions|eading to hypercalciuriainclude
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both hyper- and hypothyroidism, Cushing syndrome, ad-
renal insufficiency and metastatic malignant bone disease
[23, 86], long term assisted ventilation (acid base changes)
and long term parenteral nutrition [65, 138].

Hyperoxaluria

Hyper oxaluriaisprobably still being underestimated
asacause of calcium-stoneformation, although oxalateisa
moreimportant risk factor than calcium[61, 151]. Therefore,
evendightly elevated valuesarerdevant [6, 69, 90]. Urinary
oxalateismostly of endogenous origin, only 5-10% derive
from the daily nutritional intake. Oxalate absorption tests
showed however, that oxalate absorptionin calcium-oxaate
stoneformersistwofoldincreased when compared to normal
controls[55, 92]. Glyoxylate, arising from themetabolism of
glycine, hydroxyproline and glycolate, and ascorbic acid
arethe main precursorsof oxaate[151].

Primary hyperoxaluriatypel (PH 1) isarare, auto-
somal recessiveinherited disease[85] caused by adefectin
glyoxylate metabolism with low or absent activity of liver-
specific peroxisomal aanine:glyoxylate aminotransferase
(AGT, [28, 31]). The disease prevalenceis 2 patients per
million populationin Europe[83].

So far eleven PH | specific mutations and a variety
of normal polymorphisms (C154T) have been found (Table
4) of which the G630A mutation, responsible for a
peroxisomal to mitochondrial AGT mistargeting, isthemost
common[30, 32, 33,34,102,108, 121, 122, 124, 149]. Recently
three PH | specific microsatellites (D2S125, D2S140 and
D2S895) have been linked to the single AGXT-gene, which
islocated on chromosome 2g37.3 (Table 2, [32, 123, 148]).
The AGXT-gene is distributed over 11 exons, and as the
intron sequences flanking each exon have also been
determined, the entire coding region of the AGXT-gene can
beamplified of genomic DNA by polymerase chain reaction
[123]. Two different AGT alleles have been identified in
normal individuals: amajor alele is differentiated from a
minor alele[121, 122, 146]. They differ in at least three
positions, two of which lead to singleamino acid alterations
(e.g., Pro11l] Leuand11e340L]1 Met substitutions, Table4,
[121]). Thethird differenceisthat the minor allele contains
a74-bp duplication withinintron 1 [122]. Thefrequency of
theminor alleleissaid to bewithin 10-20%[121, 122]. Table
5 showsthevariation of clinical expression dependent either
on the specific mutations or the major/minor alleles.

A functional deficiency of AGT allowsglyoxylateto
be oxidized to oxalate and reduced to glycolate, instead of
being transaminated to glycine. This leads to the char-
cteristic highly elevated urinary excretion of oxalate and
glycolate (> 0.5 mmol/1.73 m? BSA/day). The urine is
supersaturated with respect to calcium-oxalate, which can
lead to renal calculi, medullary nephrocalcinosis, or both.
With disease progression and declining renal function,
calcium-oxalate crystals are deposited in the parenchyma
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Table4. Mutations and polymorphismsof theAGXT gene
[33,34,102,108, 121, 122,124, 149]

Location ~ Amino-acid
substitution
PH | specificmutations
G, A Exonl Gly,Arg
C.G Exon2 Tyr Ter
G A Exon2 Gly,Glu
T,A Exon4 Phelle
G, A Exon4 Gly,,/Arg
CeaT Exon5 Ser, . Phe
T,.C Exon6 Ser, .Pro
Te:C Exon7 lle,, Thr
CoroT Exon7 Arg,..Cys
Gy, A Exon7 Arg,..His
Gy A Exon7 Trp,,Stop
Normal polymor phisms
CiT Exonl Pro,Leu
74bp duplication Intron1 -
29/32bpVNTR Intron4 -
A..G Exon10 lle, Met

of other organs, aswell asin bones and retina [85].

Although PH | is a monogenic disease, its clinical
severity is only partly correlated with its degree of AGT
deficiency [29]. Thereisavery largeclinical, biochemical
and genetic heterogeneity with some patients presenting in
early renal failure due to nephrocal cinosis and others who
only have occasional passage of stones in adult life with
preserved renal function [89, 105]. Renal stones or
medullary nephrocal cinosisare usually thefirst signsof PH
I. However, diagnosis of PH 1 is often delayed for many
years[83]. Thus, it isimportant to exclude the diagnosis of
PH I inal calcium-oxalate stoneformers.

Asexpected for an autosomal -recessive disease, PH
| hasahorizontal pattern of inheritancein the vast mgjority
of affected families, but it can sometimes show a vertical
kind of inheritance[68]. Thisismostly duetothe segregation
of three rather than two mutant AGXT-alleleswithin these
families[68]. Affected membersof suchfamiliescan manifest
very different clinical phenotypes, both within and between
generations. This can be seen in patients within the same
generation and with the same disease genotype, which led
to the finding, that patients with a PH | specific AGXT-
genotype might remain asymptomatic and undiagnosed for
many years [68]. Thishasto be clearly considered, when
genetic counseling is offered in affected families.

Primary hyperoxaluriatypell (PH 2) islessfre-
quently observedthan PH 1. Itischaracterized by increased
urinary excretion of oxalate and L-glyceric acid due to a
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Table5. Mutations of the AGT gene and phenotypical expression [28, 30, 31]

Phenotypical expression Mutation/ minor / major
(% occurence) Polymor phism Allele
Peroxisometo mitochondrion G, A minor alele
AGT-mistargeting (41%) CT homozygous [1 AGT activity [
Partial peroxisometo mitochondrion AGT-mistargeting G, A
andintraperoxisomal AGT T A minor allele (homozygous)
aggregation (3%) (GaA)

Normal localization of cataytically inactive AGT (16%) G,A major allele (homozygous)
No catalytic AGT-activity and CeaT major allele (homozygous)
AGT-immunoreectivity (40%) T.C

Miscellaneous C,G heterozygous/ normal (minor)

allele probably not expressed

defect in both liver specific D-glycerate dehydrogenase and
glyoxylate reductase ([104, 137, 150], Table 2). Urinary
glycolate excretionisnormal. Theclinical courseof PH 2is
much milder thanin PH 1, althoughitsclinical characteristics
are comparable [62, 79, 80, 94]. End stagerenal failureis
rather the exception (in 5-10% of patients, [95]).

Mild metabolic hyper oxaluriaisatermreferring to
patientswith slightly elevated urinary oxal ate excretion and
plasmaoxalatelevel s[129], but isnot well defined and needs
to be differentiated from PH 1. As glycolate excretion is
also increased, hyperoxaluria due to overingestion or
overabsorption of dietary oxalateisruled out [129]. Patients
might have severerecurrent urolithiasis[46].

Secondary (enteric) hyperoxaluriaisacomplica-
tion in patients with fat malabsorption, e.g., cystic fibrosis
and chronic inflammatory bowel diseases (Crohn’sdisease)
or in patients with intestinal resections (short bowel
syndrome [67, 98, 110]). Normally, oxalate isintestinally
bound to cal cium to form insoluble cal cium-oxal ate, which
is not absorbed. In patients with enteric hyperoxaluria,
calciuminstead bindsto fatty acids, thusthe soluble oxalate
is better absorbed. Additionally, malabsorbed bile salts
increase the permeability for oxalate of thedistal colon[151].
Enteric hyperoxaluria may also lead to progressive
nephrocalcinosisand renal failureif not treated adequately.

Cystine Stones

Cystinuriaisan autosomal recessiveinherited dis-
order, which is caused by the defective transport of cystine
and the dibasic amino acids lysine, ornithine and arginine
through the epithelial cells of the renal tubule and the
intestinal tract. It is one of the most frequent genetic dis-
orderswith an overall prevalence of 1:7000 [13]. Cystine
stones occur at any age but areinfrequently seenin infants.
Whether stones are formed depends not only on the cystine
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excretion, but also ontheurinevolume and on a(low) urinary
pH. A highdietary sodium intake may increasethe urinary
cystine excretion [74, 109]. It is necessary to pay special
attention to the method used for analyzing urinary cystine
excretion: differentiation between cysteine and cystine
excretionisimportant, asonly cystineisrelatively insoluble
at normal urinary pH, but not cysteine[8].

Three different phenotypes have been distinguished
based on the urinary excretion in obligate heterozygotes
[130]. Cystinuriatypel includesthe heterozygotes, typell
ischaracterized by amoderate elevation of cystineexcretion
and type Il shows a mild elevation of cystine excretion.
Whereas the intestinal transport is disturbed in type Il and
I11, thereisno uptake at all intypel.

Recently, one of the genesresponsiblefor cystinuria
typel named rBAT or D2H (genome data base nomenclature:
SLC3A1, [16]) has been identified, mapping it to the
subregion of chromosome 2p21 [117, 153]. Thisgene may
encode an activator of the renal/intestinal basic amino acid
transporter. Several mutations have been found (Table 6),
all of which were associated with thetype| phenotype[17,
70]. Themost common mutation involves the substitution
of threoninefor methionine at codon 467 (Met467Thr, Table
6, [9, 118]). Whether al type| patients have mutationsin
therBAT / D2H generemainsto be determined. Other genes
are expected to be responsible for the other subtypes, as
the cystinuriatype |11 gene was localized to chromosome

19913.1[10].

Purine Stones

Uricacid stonesarefrequent inthe adult population
(5-25% of al stones, particularly in men and at an older
age), but are rarely found in children in Western Europe
(1%). They, however, are morefregquent (5-10%) in Eastern
Europeandthenear East[7, 81]. Uricacid hasapK of 5.35
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and ispoorly solublein acidic urine, but well soluble at pH
6.5. Therefore, alow urinepH isnext toalow urinevolume
and an increased excretion of uric acid, the most important
risk factor for uric acid stone formation. Hyperuricosuria
may result from high-purine diets, myeloproliferative
disorders, tumor lysissyndrome, enzyme defectsetc. (Table
3). Some drugs (e.g., probenecid, high dose salicylates,
contrast media) canincrease uric acid excretion.

Primary purineover production occursin somerare
inherited deficiencies of the purine salvage enzymes
hypoxanthine-phosphoribosyltransferase (HPRT) and ad-
enine-PRT (APRT, Table2). Partial deficiency of HPRT can
result in urolithiasisand renal failure[21, 136]. Complete
deficiency of HPRT leadsto the L esch-Nyhan syndrome,
whichisasevere X-linked recessive neurological disorder,
characterized by mental retardation, automutilation,
choreoathetosis, gout and uric acid nephrolithiasis[18, 37].
It is due to a defect of the hypoxanthine-
phosphoribosyltransferase gene (HPRT-gene), which is
located on chromosome Xg26-27.2 and consists of nine
exons and eight introns totaling 57 kb [76]. Mutations
affecting the splicing of exons 1, 2 and 9 and two missense
mutations in exons 3 and 8 [11, 96] and a deletion of the
HPRT genelocus[127] lead to aprofound enzyme deficiency.
A 5 kb DNA sequence deletion was found to have its
endpoints in the first and third introns of the HPRT-gene
[127].

Primary uricacid overproductionisasofoundin
X-linked inherited superactivity of phosphoribosylpyro-
phosphate synthetase 1 (PPS-1). The PPS-1 geneislocated
on chromosome Xg22-24[147].

Gout and nephralithiasis have also been reported in
glycogen storage disease type 1 [128], which isdueto a
mutation of the glucose-6-phosphate gene on chromosome
17921 (G6P-gene, [87, 88]). In Japanese patients an exon
redefinition by point mutation within exon 5 of the G6P gene
was found to be the major cause of glycogen storage
diseasetype la[77].

Deficiency of adenine-phosphoribosyltransferase
(APRT) results in the autosomal recessive inherited
2,8-dihydroxyadeninuria(Table2,[19]). Severa missense
mutations and a 7-bp deletion were found in the adenine-
phosphoribosyltransferase gene on chromosome
16022.2-22.3[15, 133]. Serumuricacidlevelsarenormal, the
stones are radiolucent and may be confused with uric acid
stones. Due to APRT-deficiency renal deposition of 2,8
dihydroxyadenine takes place leading to nephrolithiasisand
chronicrenal failure[43]. Theurine containscharacteristic
brownishround crystals. Diagnosisisconfirmed fromAPRT
activity in red blood cells or from excretion of 2,8
dihydroxyadenineintheurine[58, 59].

The xanthine-dehydrogenase-gene (XDH) codesfor
the last enzyme of the purine catabolic pathway and mu-
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Table 6. Mutationsand polymorphismsintherBAT / D2H
gene[9, 16, 70, 118].

Name Effect on Nucleotide
coding sequence change
Missense
R365W Arg, Trp Cloosl
P128Q Pro_,,GIn CiA
Y15IN Tyr,, Asn T,,A
R181Q Arg,,GIn G, A
T216M Thr, Met CorT
E268K Glu,,Lys G A
T3A1A Thr,, Ala AnG
R362C Arg,.,Cys Ciel
M467K Met,, Lys TP
M467T Met,, Thr To”
PE15T Pro,, Thr CaA
Y532H Tyr,His T..C
TE52R ThrArg C.G
L678P Leu,,Pro T,00C
F648S Phe,,.Ser T,.:C
Stop codon
R270X Arg Stop at 270 CosT
E483X Glu Stop at 483 G, T
Frameshift, deletion, insertion
1749dd A del of A at 1749
1306insC insC at 1306
5'dd1192 del1192pb
3de ? del
Polymor phism
114A/C noaachange AorCatll4d
231T/IA noaachange TorAat23l
1136+3de T 5'intron 6 TorGat1136+3
1398C/T noaachange CorTat1398
1473CIT noaachange CorTat1473
1854A/G Morlat618 AorGat1854
2189CIT 3-UTR CorTat2189

tations in this gene cause the autosomal-recessive disease
xanthinuria. The human genefor xanthine-dehydrogenase
has been localized by in situ hybridization to chromosome
2p22.30[1] 22.2 (Table 2,[132, 152]). Inxanthinuria, serum
uric acid concentration is very low due to deficiency of
xanthine-oxidase which converts xanthine to uric acid [5].
Characteristic findings of xanthinuriaare an orange-brown
urinary sediment or orange-stained diapers [5] and later
xanthine stones[145].
Extrinsicfactors

Primary bladder stones used to be very frequent
but have almost disappeared in the Western world, this
trend away from bladder cal culi to upper urinary tract stones



B. Hoppe and A. Hesse

is seen in association with industrialization and increasing
affluence. Bladder stonesare often composed of concentric
layersand contain cal cium-oxalate and/or uric acid. Dietary
factorsare mainly incriminated in their formation [13, 81].
Once removed, they do no tend to recur. Some primary
bladder stones are of infectious origin. Bladder stones are
sometimesfound in association with foreign bodiesor after
surgical procedures, where sutures or metallic staplesgive
basisfor crystal deposition and agglomeration [25].

Anatomical anomalies like uretero-pelvic junction
obstruction, primary ureter or neurogenic bladder, are often
found to bethereason for stone diseasein pediatric patients.
Renal calculi then develop due to disturbances in urine
transport, due to urine stasis or changes in urinary flow
(Table2,[13]).

Urolithiasismay occur from crystallization of sever-
a drugs, e.g., after high dose sulfonamide or ceftriaxon
therapy (Table 3, [52, 86, 100]). Finaly, stoneanalysiswith
infrared spectroscopy will occasionally reveal an artefact,
eg., gypsum (Tablel, [53]).

Modifier sof Crystallization

Hypocitraturia

A low citrate excretionisnot always adequately men-
tioned as arisk factor for renal stone disease [99]. Citric
acid, atricarboxylicacid, isavery potent inhibitor of calcium-
oxalate and cal cium-phosphate crystallization. Tento 35%
of theglomerular filtered citrateisexcreted intheurine. In
alkalosis citrate excretion increases, when less citrate is
reabsorbed in the proximal tubule[140]. Depending onthe
urinary pH, astable cal cium-citrate complex isformed and
calcium ions remain soluble, as less ions are bound to
oxalate. The “activity” product for calcium-oxalate will
thereforeimprove. Only 16% of calciumisboundtocitrate
inan acidic urine, but morethan 45% will be boundto citrate
atpH8[112].

Low urinary citrate excretion is characteristic of the
completeform of d-RTA [119]. Hypocitraturiaisalso ob-
served in persistent mild or latent metabolic acidosis, in
hypokalemiaand in patientswith malabsorption syndromes
[110Q]. Idiopathic hypocitraturia may be secondary to low
intestinal alkali absorption[134].

Other inhibitors

Glycosaminoglycans (heparan-sulfate), Tamm-Hors-
fall protein, nephrocalcin, uropontin and prothrombin
fragment 1 are other potent inhibitors of the CaOx crys-
tallization process[48, 49, 57, 60, 63, 131, 144]. However,
their physiological role has not yet been fully elucidated [4,
24,49,63].
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Outlook

The molecular mechanism of some underlying meta-
bolic conditionsfor the development of urolithiasishasbeen
recently determined. Whether every single urinary excretion
parameter has its own genetic “basis’ is of great interest,
but can currently not be answered. Hopefully, further work
will reveal the molecular basisof other inherited metabolic
disorders leading to urolithiasis, like most of the
hypercalciurias, of primary hyperoxaluria type Il, and of
stone-inhibitory substances, e.g., citrate excretion.
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Discussion with Reviewer

B. Hess: How frequent istheincompleteform of d-RTA in
children?

Authors: During recent years we did not see a case of
incompleted-RTA in our patient population (children). We
also could not find any informative data regarding the
incidence of incomplete RTA in childhood in the literature.
Additionally, theincompleteform of d-RTA isnot that easy
to diagnose. An acid loading test has to be carefully
considered, especialy in small infants and children and is
therefore not very often performed.
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