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METABOLIC DISORDERS AND MOLECULAR BACKGROUND OF UROLITHIASIS IN
CHILDHOOD

Abstract

Urolithiasis in childhood is less frequently observed than
in adults, but it still has a considerable morbidity.  In contrast
to the situation in adults, an infectious or metabolic cause
for stone formation is detected in the majority of pediatric
patients.  The underlying molecular mechanism of
urolithiasis has been shown in a number of conditions, and
some of them have been discovered in pediatric patients.
Mutations of the AGXT-gene (2q37.3) have been found to
be responsible for the enzyme defect in primary
hyperoxaluria type I, and two of the genes provoking
cystinuria have been identified (type I: 2p21, type III:
19q13.1).  In both xanthinuria and 2,8 dihydroxyadeninuria
mutations of the responsible gene have been discovered.
It is very likely that a molecular basis for the different types
of hypercalciuria will also be found, like in X-linked hyper-
calciuric nephropathy with tubular proteinuria (Dent’s dis-
ease), or in X-linked recessive nephrolithiasis (Xp11.22).
However, the molecular defect does not necessarily predict
the clinical course, even in monogenic diseases.  Yet in
patients with the same disease genotype extreme differences
in the disease phenotype have been observed.  This review
provides current understanding of the metabolic disorders
and molecular mechanisms of urolithiasis in childhood.
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Introduction

Interesting advances in the understanding of the
pathophysiology and the molecular mechanisms of uro-
lithiasis have been made during the last few years.  Al-
though some of the molecular mechanisms found, have come
from studies in pediatric patients, they turn out to be
important for all groups of patients.  Due to our better
knowledge of both the metabolic basis and the molecular
mechanism of stone disease, the management and treatment
has been greatly improved.

Urolithiasis in children is far less common than in
adults, but still has a considerable morbidity [13].  The
incidence of urolithiasis in adults increases with age af-
fecting up to 12% of men and 5% of women by the age of 70
years.  In contrast, the incidence is considerably lower in
children but differs between countries [7, 13, 81].  Within
the United States, urolithiasis is more common in the
southeastern regions, where it may account for 1 in 1,000 to
1 in 7,600 hospital discharges [115].

In the majority of pediatric patients with urolithiasis,
a metabolic cause for stone formation can be identified and
several metabolic disorders are well-defined (e.g., cystinuria
or primary hyperoxaluria type 1).  However, there is a large
subgroup of patients showing a subtle increase of urinary
lithogenic factors (calcium, oxalate), or a reduction of stone-
inhibitory substances, like urinary citrate [82].  If these latter
abnormalities are also classified as metabolic disorders, as
it is often done [86, 101, 143], then urolithiasis of metabolic
origin constitutes the largest etiologic group.  Accordingly,
less than one third of all patients will have idiopathic
urolithiasis.  It is therefore, essential to perform metabolic
examinations in all patients and to screen all family members
if a metabolic disorder has been diagnosed.

Unlike the situation in adults, a metabolic cause for
stone formation is found in the majority of pediatric pa-
tients.  All children with urolithiasis should, therefore,
undergo thorough investigation.  The underlying molecu-
lar mechanism has been determined in a number of diseases
and it is very likely that more common conditions, such as
certain forms of hypercalciuria, will also be shown to have a
molecular basis.
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Calcium Stones

Hypercalciuria

Hypercalciuria and stones composed of calcium-oxa-
late are the most frequent conditions in both adult and
pediatric patients with urolithiasis (Table 1, [13]).  There is
no sharp differentiation between normal (up to 0.1 mmol (4
mg)/kg per day [36, 45]) or abnormal levels of urinary calcium
excretion, so diagnosis of hypercalciuria is sometimes vague
except for very high excretions (> 0.2 mmol/kg per day).
Whether such children will form stones or develop
nephrocalcinosis also depends on additional factors (urine
volume, pH) and the concentration of other urinary
lithogenic and stone-inhibitory substances, primarily of
oxalate and citrate [56, 69, 82].

Primary (idiopathic) hypercalciuria, which is sup-
posed to have an autosomal-dominant inheritance, is the
most common cause of calcium-containing stones [23].
Idiopathic hypercalciuria was primarily found to consist of
both intestinal hyperabsorption and urinary hyperexcretion
of calcium [91].  It has traditionally been divided into a renal
and an absorptive subtype, when urinary calcium excretion
in the fasting state is elevated in the renal but normal in the
absorptive type [72, 143].  To differentiate both forms the
oral calcium loading (1000 mg) test was introduced [54, 111,
142], but is not always accepted and may be misleading
[54].  It was demonstrated, that the subtypes are not distinct
entities, but rather two extremes [22], and many pediatric
patients cannot easily be classified.

The renal form is supposed to result from reduced
tubular calcium reabsorption.  Hypocalcemia stimulates PTH
secretion, which leads to an increase in bone resorption
and intestinal calcium absorption and hence to higher
vitamin D synthesis and hypercalciuria [84, 86].  The
concept of absorptive hypercalciuria is based on an
increased intestinal absorption of calcium leading to ele-
vated serum calcium and hence to a suppression of the
PTH secretion [12, 50].  As a result, the tubular reabsorption
of calcium is decreased, which leads to hypercalciuria [84].
An increased affinity to vitamin D

3
, or an increased

production of 1.25(OH)
2
D

3
 might explain this condition, as

high plasma 1.25(OH)
2
D

3
 values have been found in patients

with hypercalciuria [84, 103, 120].  Relative
hypoparathyroidism due to excess calcitriol production has
been demonstrated at least in adult stone formers with
idiopathic hypercalciuria [51].

A familial syndrome of hypocalcemia with hyper-
calciuria due to mutations in the calcium-sensing receptor
was recently observed.  Autosomal dominant hypopara-
thyroidism  with  hypocalcemia is suspected to be due to a
loss of calcium sensing receptor regulation.  Five heter-
ogeneous missense mutations have been found on the cal-
cium sensing receptor gene (CASR), which is located on

chromosome 3q13.3-21 (Table 2, [75]).  The CASR gene can
either activate, as it does in this form of hypoparathyroidism,
or inactivate the calcium sensing receptor [1, 38].
Hypocalcemia is associated with hypercalciuria and
treatment with vitamin D results in an increase of urinary
calcium excretion, nephrocalcinosis and later, possibly, in
renal impairment [113].

A molecular basis was also found in a rare but ex-
tremely severe form of idiopathic hypercalciuria with
X-linked recessive nephrolithiasis (XRN) and renal im-
pairment [42].  The primary defect of this renal tubular
disorder is unknown, therefore, the mapping of the mutant
gene to chromosome Xp11.22 was important to better define
this disease [135].  The mutant gene is close to several eye
disease genes, so patients have to be carefully screened
opthalmologically [126].  Carrier females were said to be
asymptomatic, however, a recent study showed, that they
could also have (slight) hypercalciuria, and most of them
showed low molecular weight proteinuria [126].

X-linked hypercalciuric nephropathy, also called
Dent’s disease, is a form of Fanconi syndrome with tubular
proteinuria, hypercalciuria, rickets, nephrocalcinosis,
urolithiasis and eventual renal failure (Table 2, [93]).  A
microdeletion of chromosome Xp11.22 was found to be

Table 1.  Renal stone analysis in infants and children
obtained with infrared-spectroscopy [13]

Stones Girls Boys
n = 350 n = 500

Calcium-oxalate
Weddellite (CaOx-dihydrate) 35.7% 29.0%
Whewellite (CaOx-monohydrate) 27.7% 29.2%

63.4% 58.2%

Infectious
Struvite 12.9% 15.0%
Carbonate-apatite 9.7% 12.8%
Ammoniumhydrogen-urate 2.0% 1.2%

24.6% 29.0%

Other Phosphate stones
Brushite 1.7% 3.2%

Uric acid 1.4% 2.2%
Uric acid dihydrate 0.3% 0.6%
Cystine 0.3% 1.2%
Protein 1.4% 1.6%
Artefacts 6.9% 4.0%
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responsible [116].  Three nonsense, four missense and two
donor splice site mutations, together with one intragenic
deletion and one microdeletion encompassing the entire
gene, have been identified [40].

A candidate gene (CLCN5), which encodes a puta-
tive renal chloride channel, has been found in patients with
Dent’s disease [39, 93].  Chloride channels are important for

the control of membrane excitability, transepithelial transport
and possibly cell volume regulation [93].  CLCN5 belongs
to a family of voltage-gated chloride channel genes
(CLCN1-5, CLCNKa and Kb), which encode different
proteins (CLC1-5, CLCKa and Kb).  In patients with Dent’s
disease CLC5 functions were specifically hampered, which
lead to the characteristic findings [93].

Table 2.  Genetic defects in urolithiasis.

Increased Disease Defect Gene Inheritance*
excretion

Calcium Familial idiopathic AD
  hypercalciuria
Familial hypocalcemia Calcium-sensing receptor 3q13.3-21 AD
  with hypercalciuria (CASR)
X-linked hypercalciuric Mutation of CLCN5-gene Xp 11.22 XL
  nephropathy with tubular (renal chloride channel gene)
  proteinuria (Dent’s disease)
X-linked recessive Mutation of CLCN5-gene Xp 11.22 XL
  nephrolithiasis type I (XRN)

X-linked-recessive hypophos- Mutation of CLCN5-gene Xp 11.22 XL
  phatemic rickets (XLRH)
Distal renal tubular acidosis Mutations of RTA-1 gene ? AD
Bartter’s syndrome Na-K-2Cl cotransporter

(NKCC2)
William’s syndrome Deletion of the elastin gene (ELN)  7q11.23

calcitonin receptor gene (?) 7q21.3
Wilson’s disease Copper transporting protein 13p14.1-21.1

Oxalate Primary hyperoxaluria Alanine:glyoxylate- 2q37.3 AR
..type 1 (PH 1) aminotransferase
Primary hyperoxaluria Glyoxylate-reductase / AR
  type 2 (PH 2) D-Glycerate dehydrogenase

Cystine Cystinuria type I rBAT / D2H (SLC3A1) 2p21 AR
Cystinuria type III (type II) 19q13.1 AR

Uric acid Lesch-Nyhan syndrome Hypoxanthine-guanine Xq26-27.2 XL
phosphoribosyltransferase

Phosphoribosyl-pyrophosphate- Phosphoribosyl-pyrophos- Xq22-24 XL
  synthetase superactivity phate-synthetase
Glycogen-storage disease type 1 Glucose-6-phosphatase 17q21 AR

2,8 Dihy- Dihydroxyadeninuria Adenine-phos- 16q22.2-22.3 AR
droxy-adenine phoribosyltransferase

Xanthine Xanthinuria Xanthin-oxidase 2p23-22 AR

*AD: autosomal-dominant; XL: X-linked; AR: autosomal-recessive.
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Dent’s disease has phenotypic familiarities with XRN
and with X-linked recessive hypophosphatemic rickets
(XLRH), which has also been mapped to chromosome
Xp11.22 ([135], Table 2), but different mutations of the
CLCN5 gene were found for these entities [93].  Nevertheless,
these findings indicate, that CLCN5 and other renal chloride
channels may play an important part in the pathophysiology
of urolithiasis.

Medullary nephrocalcinosis and calcium-phosphate
stones are common in patients with distal renal-tubular

acidosis (d-RTA, [14]).  A high urinary pH (> 5.8 in fasting
urines), hypercalciuria (secondary to systemic acidosis) and
hypocitraturia (due to a tubular defect and the acidosis) are
the characteristics [47].  In the complete form of distal RTA
the urine pH cannot be lowered to less than 5.4 after an acid
loading test, it mostly remains > 6.1.  This test should be
performed in older children, when diagnosis of distal RTA
is suspected [54].  Recently an autosomal dominant form of
inheritance was found in a large kindred with a hereditary
form of distal RTA.  Both, a symptomatic and an asympto-
matic form were caused by a single RTA-1 gene and homo-
zygosity was observed to be followed by a severe form of
the disease [20].

There are several clinical entities leading to hy-
percalcemia with secondary hypercalciuria (Table 3, [3, 12,
44]).  Primary hyperparathyroidism, the most frequent
cause of hypercalcemic hypercalciuria in adults, is very rare
in children.  Hypervitaminosis D due to the use of
multivitamin preparations including vitamin D, or of vitamin
D added to milk preparations, can induce hypercalcemia
and hypercalciuria [35, 64, 73, 106].  An excessive daily
amount of vitamin A (> 10,000 units) may also lead to
hypercalcemia and can secondarily induce hypercalciuria
[125].  Immobilization over only 4 weeks induces a reduction
of bone calcium and bone mass of about 15-20%
accompanied by hypercalciuria [3].  Long term
administration of either furosemide or dexamethasone can
lead to hypercalciuria, nephrocalcinosis, or stone disease
[2, 71, 78].

Hypercalciuria is also found in several syndromes,
either linked to the pathogenesis (Bartter’s and William’s
syndrome [26, 44]) or due to renal tubular damage (Wil-
son’s disease and Lowe’s syndrome [66, 141]).  Patients
with Bartter’s syndrome develop nephrocalcinosis but no
stones.  The characteristic findings are due to mutations in
the Na-K-2Cl cotransporter NKCC2 [139].  William’s syn-
drome (WS), which is characterized by hypercalcemia with
aortic stenosis and mental retardation, is sometimes
accompanied by hypercalciuria and nephrocalcinosis.  It is
caused by a deletion of the elastin gene (ELN, [97], which is
found on chromosome 7q11.23 (Table 2, [107]).  A
dysfunction of the human calcitonin receptor (CTR) could
lead to disorders of calcium metabolism associated with
hypercalcemia, such as the William’s syndrome, but the CTR
gene is different from the WS gene and located on
chromosome 7q21.3 [114].  Wilson’s disease, which can be
complicated by hypercalciuria and nephrolithiasis even as
the first symptom [66], is caused by the Wilson’s disease
gene (WND), which is located on chromosome 13p14.1-21.1
[41].  It encodes a putative copper transporting protein,
that is exclusively expressed in the liver and which is im-
paired in patients with Wilson’s disease [27].

Further conditions leading to hypercalciuria include

Table 3.  Metabolic disturbances associated with
urolithiasis.

Metabolic disturbances

Hypercalciuria
Normocalcemic hypercalciuria

Idiopathic hypercalciuria
distal renal tubular acidosis
diuretics (furosemide)
Wilson’s disease, Lowe’s syndrome

Hypercalcemic hypercalciuria
Primary hyperparathyroidism
immobilisation
hyperthyroidism
hypothyroidism
Cushing-syndrome
adrenal insufficiency
bone metastasis
Bartter’s and William’s syndrome

Intestinal hyperabsorption
Hypervitaminosis D (A)
idiopathic hypercalcemia of
  childhood sarcoidosis

Hyperoxaluria
Primary hyperoxaluria type I / II
secondary hyperoxaluria:
⇒  in malabsorption syndromes

⇒  after intestinal resection

⇒  dietary
Hyperuricosuria

Inborn errors of metabolism
Lesch-Nyhan syndrome / gout
glycogen-storage diseases I, III, V, VII
overproduction in leukaemia or
  non-Hodgkin-lymphoma
high protein diet

Hypocitraturia
d-RTA
idiopathic / dietary
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both hyper- and hypothyroidism, Cushing syndrome, ad-
renal insufficiency and metastatic malignant bone disease
[23, 86], long term assisted ventilation (acid base changes)
and long term parenteral nutrition [65, 138].
Hyperoxaluria

Hyperoxaluria is probably still being underestimated
as a cause of calcium-stone formation, although oxalate is a
more important risk factor than calcium [61, 151].  Therefore,
even slightly elevated values are relevant [6, 69, 90].  Urinary
oxalate is mostly of endogenous origin, only 5-10% derive
from the daily nutritional intake.  Oxalate absorption tests
showed however, that oxalate absorption in calcium-oxalate
stone formers is twofold increased when compared to normal
controls [55, 92].  Glyoxylate, arising from the metabolism of
glycine, hydroxyproline and glycolate, and ascorbic acid
are the main precursors of oxalate [151].

Primary hyperoxaluria type I (PH 1) is a rare, auto-
somal recessive inherited disease [85] caused by a defect in
glyoxylate metabolism with low or absent activity of liver-
specific peroxisomal alanine:glyoxylate aminotransferase
(AGT, [28, 31]).  The disease prevalence is 2 patients per
million population in Europe [83].

So far eleven PH I specific mutations and a variety
of normal polymorphisms (C154T) have been found (Table
4) of which the G630A mutation, responsible for a
peroxisomal to mitochondrial AGT mistargeting, is the most
common [30, 32, 33, 34, 102, 108, 121, 122, 124, 149].  Recently
three PH I specific microsatellites (D2S125, D2S140 and
D2S895) have been linked to the single AGXT-gene, which
is located on chromosome 2q37.3 (Table 2, [32, 123, 148]).
The AGXT-gene is distributed over 11 exons, and as the
intron sequences flanking each exon have also been
determined, the entire coding region of the AGXT-gene can
be amplified of genomic DNA by polymerase chain reaction
[123].  Two different AGT alleles have been identified in
normal individuals: a major allele is differentiated from a
minor allele [121, 122, 146].  They differ in at least three
positions, two of which lead to single amino acid alterations
(e.g., Pro11⇒ Leu and Ile340⇒ Met substitutions, Table 4,
[121]).  The third difference is that the minor allele contains
a 74-bp duplication within intron 1 [122].  The frequency of
the minor allele is said to be within 10-20% [121, 122].  Table
5 shows the variation of clinical expression dependent either
on the specific mutations or the major/minor alleles.

A functional deficiency of AGT allows glyoxylate to
be oxidized to oxalate and reduced to glycolate, instead of
being transaminated to glycine.  This leads to the char-
cteristic highly elevated urinary excretion of oxalate and
glycolate (> 0.5 mmol/1.73 m2 BSA/day).  The urine is
supersaturated with respect to calcium-oxalate, which can
lead to renal calculi, medullary nephrocalcinosis, or both.
With disease progression and declining renal function,
calcium-oxalate crystals are deposited in the parenchyma

of other organs, as well as in bones and retina [85].
Although PH I is a monogenic disease, its clinical

severity is only partly correlated with its degree of AGT
deficiency [29].  There is a very large clinical, biochemical
and genetic heterogeneity with some patients presenting in
early renal failure due to nephrocalcinosis and others who
only have occasional passage of stones in adult life with
preserved renal function [89, 105].  Renal stones or
medullary nephrocalcinosis are usually the first signs of PH
I.  However, diagnosis of PH 1 is often delayed for many
years [83].  Thus, it is important to exclude the diagnosis of
PH I in all calcium-oxalate stone formers.

As expected for an autosomal-recessive disease, PH
I has a horizontal pattern of inheritance in the vast majority
of affected families, but it can sometimes show a vertical
kind of inheritance [68].  This is mostly due to the segregation
of three rather than two mutant AGXT-alleles within these
families [68].  Affected members of such families can manifest
very different clinical phenotypes, both within and between
generations.  This can be seen in patients within the same
generation and with the same disease genotype, which led
to the finding, that patients with a PH I specific AGXT-
genotype might remain asymptomatic and undiagnosed for
many years [68].  This has to be clearly considered, when
genetic counseling is offered in affected families.

Primary hyperoxaluria type II (PH 2) is less fre-
quently observed than PH 1.  It is characterized by increased
urinary excretion of oxalate and L-glyceric acid due to a

Table 4.  Mutations and polymorphisms of the AGXT gene
[33, 34, 102, 108, 121, 122, 124, 149]

Location Amino-acid
substitution

PH I specific mutations
G

243
A Exon 1 Gly

41
Arg

C
320

G Exon 2 Tyr
66

Ter
G

367
A Exon 2 Gly

82
Glu

T
576

A Exon 4 Phe
152

Ile
G

630
A Exon 4 Gly

170
Arg

C
682

T Exon 5 Ser
187

Phe
T

735
C Exon 6 Ser

205
Pro

T
853

C Exon 7 Ile
244

Thr
C

819
T Exon 7 Arg

233
Cys

G
820

A Exon 7 Arg
233

His
G

860
A Exon 7 Trp

246
Stop

Normal polymorphisms
C

154
T Exon 1 Pro

11
Leu

74bp duplication Intron 1 -
29/32bp VNTR Intron 4 -
A

1142
G Exon 10 Ile

340
Met
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defect in both liver specific D-glycerate dehydrogenase and
glyoxylate reductase ([104, 137, 150], Table 2).  Urinary
glycolate excretion is normal.  The clinical course of PH 2 is
much milder than in PH 1, although its clinical characteristics
are comparable [62, 79, 80, 94].  End stage renal failure is
rather the exception (in 5-10% of patients, [95]).

Mild metabolic hyperoxaluria is a term referring to
patients with slightly elevated urinary oxalate excretion and
plasma oxalate levels [129], but is not well defined and needs
to be differentiated from PH 1.  As glycolate excretion is
also increased, hyperoxaluria due to overingestion or
overabsorption of dietary oxalate is ruled out [129].  Patients
might have severe recurrent urolithiasis [46].

Secondary (enteric) hyperoxaluria is a complica-
tion in patients with fat malabsorption, e.g., cystic fibrosis
and chronic inflammatory bowel diseases (Crohn’s disease)
or in patients with intestinal resections (short bowel
syndrome [67, 98, 110]).  Normally, oxalate is intestinally
bound to calcium to form insoluble calcium-oxalate, which
is not absorbed.  In patients with enteric hyperoxaluria,
calcium instead binds to fatty acids, thus the soluble oxalate
is better absorbed.  Additionally, malabsorbed bile salts
increase the permeability for oxalate of the distal colon [151].
Enteric hyperoxaluria may also lead to progressive
nephrocalcinosis and renal failure if not treated adequately.

Cystine Stones

Cystinuria is an autosomal recessive inherited dis-
order, which is caused by the defective transport of cystine
and the dibasic amino acids lysine, ornithine and arginine
through the epithelial cells of the renal tubule and the
intestinal tract.  It is one of the most frequent genetic dis-
orders with an overall prevalence of 1:7000 [13].  Cystine
stones occur at any age but are infrequently seen in infants.
Whether stones are formed depends not only on the cystine

excretion, but also on the urine volume and on a (low) urinary
pH.  A high dietary sodium intake may increase the urinary
cystine excretion [74, 109].  It is necessary to pay special
attention to the method used for analyzing urinary cystine
excretion: differentiation between cysteine and cystine
excretion is important, as only cystine is relatively insoluble
at normal urinary pH, but not cysteine [8].

Three different phenotypes have been distinguished
based on the urinary excretion in obligate heterozygotes
[130].  Cystinuria type I includes the heterozygotes, type II
is characterized by a moderate elevation of cystine excretion
and type III shows a mild elevation of cystine excretion.
Whereas the intestinal transport is disturbed in type II and
III, there is no uptake at all in type I.

Recently, one of the genes responsible for cystinuria
type I named rBAT or D2H (genome data base nomenclature:
SLC3A1, [16]) has been identified, mapping it to the
subregion of chromosome 2p21 [117, 153].  This gene may
encode an activator of the renal/intestinal basic amino acid
transporter.  Several mutations have been found (Table 6),
all of which were associated with the type I phenotype [17,
70].  The most common mutation involves the substitution
of threonine for methionine at codon 467 (Met467Thr, Table
6, [9, 118]).  Whether all type I patients have mutations in
the rBAT / D2H gene remains to be determined.  Other genes
are expected to be responsible for the other subtypes, as
the cystinuria type III gene was localized to chromosome
19q13.1 [10].

Purine Stones

Uric acid stones are frequent in the adult population
(5-25% of all stones, particularly in men and at an older
age), but are rarely found in children in Western Europe
(1%).  They, however, are more frequent (5-10%) in Eastern
Europe and the near East [7, 81].  Uric acid has a pK of 5.35

Table 5.  Mutations of the AGT gene and phenotypical expression [28, 30, 31]

Phenotypical expression Mutation / minor / major
(% occurence) Polymorphism Allele

Peroxisome to mitochondrion G
630

A minor allele
AGT-mistargeting (41%) C

154
T homozygous ⇒  AGT activity ⇑

Partial peroxisome to mitochondrion AGT-mistargeting G
243

A
and intraperoxisomal AGT T

576
A minor allele (homozygous)

aggregation (3%) (G
630

A)
Normal localization of catalytically inactive AGT (16%) G

367
A major allele (homozygous)

No catalytic AGT-activity and C
682

T major allele (homozygous)
AGT-immunoreactivity (40%) T

735
C

Miscellaneous C
320

G heterozygous / normal (minor)
allele probably not expressed
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and is poorly soluble in acidic urine, but well soluble at pH
6.5.  Therefore, a low urine pH is next to a low urine volume
and an increased excretion of uric acid, the most important
risk factor for uric acid stone formation.  Hyperuricosuria
may result from high-purine diets, myeloproliferative
disorders, tumor lysis syndrome, enzyme defects etc. (Table
3).  Some drugs (e.g., probenecid, high dose salicylates,
contrast media) can increase uric acid excretion.

Primary purine overproduction occurs in some rare
inherited deficiencies of the purine salvage enzymes
hypoxanthine-phosphoribosyltransferase (HPRT) and ad-
enine-PRT (APRT, Table 2).  Partial deficiency of HPRT can
result in urolithiasis and renal failure [21, 136].  Complete
deficiency of HPRT leads to the Lesch-Nyhan syndrome,
which is a severe X-linked recessive neurological disorder,
characterized by mental retardation, automutilation,
choreoathetosis, gout and uric acid nephrolithiasis [18, 37].
It is due to a defect of the hypoxanthine-
phosphoribosyltransferase gene (HPRT-gene), which is
located on chromosome Xq26-27.2 and consists of nine
exons and eight introns totaling 57 kb [76].  Mutations
affecting the splicing of exons 1, 2 and 9 and two missense
mutations in exons 3 and 8 [11, 96] and a deletion of the
HPRT gene locus [127] lead to a profound enzyme deficiency.
A 5 kb DNA sequence deletion was found to have its
endpoints in the first and third introns of the HPRT-gene
[127].

Primary uric acid overproduction is also found in
X-linked inherited superactivity of phosphoribosylpyro-
phosphate synthetase 1 (PPS-1).  The PPS-1 gene is located
on chromosome Xq22-24 [147].

Gout and nephrolithiasis have also been reported in
glycogen storage disease type 1 [128], which is due to a
mutation of the glucose-6-phosphate gene on chromosome
17q21 (G6P-gene, [87, 88]).  In Japanese patients an exon
redefinition by point mutation within exon 5 of the G6P gene
was found to be the major cause of glycogen storage
disease type 1a [77].

Deficiency of adenine-phosphoribosyltransferase
(APRT) results in the autosomal recessive inherited
2,8-dihydroxyadeninuria (Table 2, [19]).  Several missense
mutations and a 7-bp deletion were found in the adenine-
phosphoribosyltransferase gene on chromosome
16q22.2-22.3 [15, 133].  Serum uric acid levels are normal, the
stones are radiolucent and may be confused with uric acid
stones.  Due to APRT-deficiency renal deposition of 2,8
dihydroxyadenine takes place leading to nephrolithiasis and
chronic renal failure [43].  The urine contains characteristic
brownish round crystals.  Diagnosis is confirmed from APRT
activity in red blood cells or from excretion of 2,8
dihydroxyadenine in the urine [58, 59].

The xanthine-dehydrogenase-gene (XDH) codes for
the last enzyme of the purine catabolic pathway and mu-

tations in this gene cause the autosomal-recessive disease
xanthinuria.  The human gene for xanthine-dehydrogenase
has been localized by in situ hybridization to chromosome
2p22.3⇒ 22.2 (Table 2, [132, 152]).  In xanthinuria, serum
uric acid concentration is very low due to deficiency of
xanthine-oxidase which converts xanthine to uric acid [5].
Characteristic findings of xanthinuria are an orange-brown
urinary sediment or orange-stained diapers [5] and later
xanthine stones [145].
Extrinsic factors

Primary bladder stones used to be very frequent
but have almost disappeared in the Western world, this
trend away from bladder calculi to upper urinary tract stones

Table 6.  Mutations and polymorphisms in the rBAT / D2H
gene [9, 16, 70, 118].

Name Effect on Nucleotide
coding sequence change

Missense
R365W Arg

365
Trp C

1093
T

P128Q Pro
128

Gln C
383

A
Y151N Tyr

215
Asn T

451
A

R181Q Arg
181

Gln G
542

A
T216M Thr

216
Met C

647
T

E268K Glu
216

Lys G
802

A
T341A Thr

341
Ala A

1021
G

R362C Arg
362

Cys C
1084

T
M467K Met

467
Lys T

1400
A

M467T Met
467

Thr T
1400

A
P615T Pro

615
Thr C

1843
A

Y582H Tyr
582

His T
1744

C
T652R Thr

652
Arg C

1932
G

L678P Leu
678

Pro T
2030

C
F648S Phe

648
Ser T

1943
C

Stop codon
R270X Arg Stop at 270 C

808
T

E483X Glu Stop at 483 G
1447

T
Frameshift, deletion, insertion

1749delA del of A at 1749
1306insC insC at 1306
5’del1192 del1192pb
3’del ? del

Polymorphism
114A/C no aa change A or C at 114
231 T/A no aa change T or A at 231
1136+3delT 5' intron 6 T or G at 1136+3
1398C/T no aa change C or T at 1398
1473C/T no aa change C or T at 1473
1854A/G M or I at 618 A or G at 1854
2189C/T 3' -UTR C or T at 2189
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is seen in association with industrialization and increasing
affluence.  Bladder stones are often composed of concentric
layers and contain calcium-oxalate and/or uric acid.  Dietary
factors are mainly incriminated in their formation [13, 81].
Once removed, they do no tend to recur.  Some primary
bladder stones are of infectious origin.  Bladder stones are
sometimes found in association with foreign bodies or after
surgical procedures, where sutures or metallic staples give
basis for crystal deposition and agglomeration [25].

Anatomical anomalies like uretero-pelvic junction
obstruction, primary ureter or neurogenic bladder, are often
found to be the reason for stone disease in pediatric patients.
Renal calculi then develop due to disturbances in urine
transport, due to urine stasis or changes in urinary flow
(Table 2, [13]).

Urolithiasis may occur from crystallization of sever-
al drugs, e.g., after high dose sulfonamide or ceftriaxon
therapy (Table 3, [52, 86, 100]).  Finally, stone analysis with
infrared spectroscopy will occasionally reveal an artefact,
e.g., gypsum (Table 1, [53]).

Modifiers of Crystallization

Hypocitraturia

A low citrate excretion is not always adequately men-
tioned as a risk factor for renal stone disease [99].  Citric
acid, a tricarboxylic acid, is a very potent inhibitor of calcium-
oxalate and calcium-phosphate crystallization.  Ten to 35%
of the glomerular filtered citrate is excreted in the urine.  In
alkalosis citrate excretion increases, when less citrate is
reabsorbed in the proximal tubule [140].  Depending on the
urinary pH, a stable calcium-citrate complex is formed and
calcium ions remain soluble, as less ions are bound to
oxalate.  The “activity” product for calcium-oxalate will
therefore improve.  Only 16% of calcium is bound to citrate
in an acidic urine, but more than 45% will be bound to citrate
at pH 8 [112].

Low urinary citrate excretion is characteristic of the
complete form of d-RTA [119].  Hypocitraturia is also ob-
served in persistent mild or latent metabolic acidosis, in
hypokalemia and in patients with malabsorption syndromes
[110].  Idiopathic hypocitraturia may be secondary to low
intestinal alkali absorption [134].
Other inhibitors

Glycosaminoglycans (heparan-sulfate), Tamm-Hors-
fall protein, nephrocalcin, uropontin and prothrombin
fragment 1 are other potent inhibitors of the CaOx crys-
tallization process [48, 49, 57, 60, 63, 131, 144].  However,
their physiological role has not yet been fully elucidated [4,
24, 49, 63].

Outlook

The molecular mechanism of some underlying meta-
bolic conditions for the development of urolithiasis has been
recently determined.  Whether every single urinary excretion
parameter has its own genetic “basis” is of great interest,
but can currently not be answered.  Hopefully, further work
will reveal the molecular basis of other inherited metabolic
disorders leading to urolithiasis, like most of the
hypercalciurias, of primary hyperoxaluria type II, and of
stone-inhibitory substances, e.g., citrate excretion.
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Discussion with Reviewer

B. Hess:  How frequent is the incomplete form of d-RTA in
children?
Authors:  During recent years we did not see a case of
incomplete d-RTA in our patient population (children).  We
also could not find any informative data regarding the
incidence of incomplete RTA in childhood in the literature.
Additionally, the incomplete form of d-RTA is not that easy
to diagnose.  An acid loading test has to be carefully
considered, especially in small infants and children and is
therefore not very often performed.


